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Abstract

Hierarchical graph structures are used to express abstrac-
tion and categorization in graphical modeling as well as in
data visualization. The automatic layout of these struc-
tures brings key advantages to both application areas.
Modelers and scientists benefit from tools that relieve them
of the need of creating and maintaining diagrams manu-
ally. This thesis is concerned with the automatic layout of
hierarchically structured graphs that allow hierarchy cross-
ing edges, i.e. edges that connect nodes not contained by
a common parent node. Hierarchically structured graphs
comprising this kind of edges are referred to as compound
graphs. These graphs raise special problems for automatic
layout, since they cannot be placed by simple recursive ap-
plication of a layout algorithm for flat graphs.
This explorative thesis presents a rather detailed synop-
sis of the literature on automatic drawing of compound
graphs and a special subcategory, called clustered graphs.
Furthermore it shows that a layer-based layout algorithm
for flat graphs can be extended to enable it to place com-
pound graphs in a single run without essential changes to
the typical phases of a layered algorithm: cycle removal,
layering, node ordering, node placement, and edge routing.
The capacity of a given layer based algorithm is enhanced
in this respect by a special graph import that creates a
flat representation of a compound graph. Most of the spe-
cific problems that arise are solved with the help of pre- or
postprocessing modules for the phases. The most promi-
nent problems are cyclic dependencies of compound nodes
and the treatment of subgraphs during the node ordering
phase. The latter problem even demands an additional
management module to handle the grouping of nodes pre-
sented to the crossing minimization.
This thesis demonstrates the feasibility of this concept. It
also shows that the additional ability to draw hierarchy
crossing edges is paid for with a considerable increase of
computation time when compared to recursive application
of the algorithm for flat graphs.
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Abbreviations

CGA Clustered Graph Architecture
Architecture for handling clustered graphs, introduced by Eades and Huang
[14].

CGCM CompoundGraphLayerCrossingMinimizer
A class in the node ordering phase of KLay Layered. Organizes the ordering
of layer nodes for compound graphs.

CRG Crossing Reduction Graph
Datastructure used in the crossing minimization phase for the layout of com-
pound graphs.

GRIP Graph Drawing with Intelligent Placement
Graph drawing method introduced by Gajer and Kobourov [25]

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client
A research project on the pragmatics of graphical modeling.

KIML KIELER Infrastructure for Meta Layout
KIELER subproject for abstract layout specification for diagrams.

KLay KIELER Layouters
Project of KIELER for layout algorithms.

RCB Right Compound Border
A dummy node in the representation of a compound node used by KLay Lay-
ered. Marks the right border of a compound node.

RCP Right Compound Port
A dummy node in the representation of a compound node used by KLay Lay-
ered. Represents a port of the original graph that will be drawn on the right
side of the compound node.

PATIKA Pathway Analysis Tool for the Integration and Knowledge Acquisition
A software tool vor the visualization and manipulation of cellular events de-
veloped by Dogrusoz et. al [7].

LCB Left Compound Border
A dummy node in the representation of a compound node used by KLay Lay-
ered. Marks the left border of a compound node.



LCP Left Compound Port
A dummy node in the representation of a compound node used by KLay Lay-
ered. Represents a port of the original graph that will be drawn on the left
side of the compound node.

SOP Subgraph Ordering Processor
Intermediate Processor of the KLay Layered algorithm to postprocess the node
ordering phase.
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Introduction

I 1.1 Hierarchical Graph Structures and Automatic Layout

Abstraction is one of the main concepts of computer science. One means to ex-
press it in graphical modeling are containment relationships in models. Diagrams
of hierarchical graph structures are appropriate to present those models. In hierar-
chical graph structures nodes may contain other nodes and edges. An example for
hierarchical structures in a UML Statechart used to model a phonecall is shown in
Figure 1.1.
If there are edges that connect nodes situated in different parent nodes, called

hierarchy crossing edges, we speak of compound graphs, in contrast to nested graphs.
Compound graphs restricted to edges that connect nodes containing no nodes them-
selves (leaf nodes) are called clustered graphs. Some graphical modeling languages
are restricted in a way that they correspond to nested graphs. This is true for exam-
ple for SyncCharts, which forbid edges that cross the boundaries of a node. Others,
for example UML Statecharts, allow hierarchy crossing edges. In case this edge type
is used, automatical compound graph drawing is called for.
Apart from graphical modeling, hierarchical graph structures are used in the field

of data visualization. Especially in the realm of bioinformatics there is a strong need
to present collected data in a way that is not only clearly arranged but displays data
characteristics. This usually involves the grouping of elements that belong to the
same categories, are strongly related, or share common properties. Clustered graphs
are especially apt to display this kind of abstraction. Figure 1.2 shows an example of
a clustered graph from the field of bioinformatics. It is used to visualize information
about biological pathways, which are series of molecular reactions in a cell.
Hierarchical structures in diagrams may help to make research findings obvious

and improve the understanding of diagrams in graphical modeling for the advanced
user, as Cruz-Lemus et al. [5, 6] state. However, creating and maintaining diagrams
of hierarchical graph structures by hand is even more effort prone than for flat graph
structures. Adding a node for example often means that the developer has to resize
a number of nodes, as the new node has to be spatially included by the node that
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1 Introduction

Figure 1.1. Example of an UML Statechart with hierarchical structures. Figure by [5].

contains it and making room involves all nodes in the sequence given by the chain
of inclusion relations.

As Fuhrmann [24] states, a key enabler for improved handling of graphical models
is the automatic layout of the diagrams—and this is especially true when hierarchical
structures are involved. However the benefit of automatic layout is as strong for data
visualization, since under the use of a layout algorithm, data can subsequently be
added and displayed without effort to the scientist. Thus, at any time, the current
state of work can be visualized. This requires only an update of one main diagram
instead of the creation of a new drawing done by hand.

The advantages for both application areas present a motivation to offer an auto-
matic drawing algorithm that can place clustered and even compound graphs.
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1.2 Drawing Conventions and Rules for Compound Graph Diagrams

Figure 1.2. Example of a clustered graph used in the visualization of data on biological pathways
(molecular cell reaction series). Figure by [7].

I 1.2 Drawing Conventions and Rules for Compound Graph Diagrams

For our own implementation we follow the conventions given below for the drawing
of a hierarchical graph structures. These conventions are similar to those adopted
by Sugiyama and Misue [43]:

1. Inclusion relations are denoted by full geometrical inclusion of the shape cor-
responding to the contained node in the shape of the parent node.

2. Nodes are laid out hierarchically in a way that all edges can be drawn as arrows
pointing in the layout direction. A small amount of edges may point in the
other direction, if the graph is cyclic.

Additional drawing rules are:

1. Nodes without inclusion relations never overlap.

2. The number of crossings between adjacency edges is reduced as much as pos-
sible.

3



1 Introduction

3. Nodes connected by adjacency edges should be placed as close to each other
as possible.

4. The number of crossings between adjacency edges and node shapes should be
reduced as much as possible.

5. The number of edge bends should be reduced as much as possible.

6. The size of nodes containing other nodes should be adapted to fit the content.

7. The drawing should be compact.

The first rule is imperative to guarantee the readability of the diagram with re-
spect to containment relations. The other rules are presented in the order of their
importance for readability based on the study of Purchase [33] and the catalog by
Sugiyama and Misue [43]. To my knowledge, Rules six and seven have not been
subject to a study of their influence on human perception, but have been considered
here as they affect the presentability of the final drawing in print or on a computer
screen.
For the presentation of diagrams in this work, we represent nodes as follows.

• Nodes that do not contain other nodes are drawn as round shapes or—in case
they own ports—as rectangular shapes with horizontal and vertical sides.

• Nodes that contain other nodes are drawn as rectangular shapes with horizon-
tal and vertical sides, edges may be rounded.

I 1.3 Contributions of this Thesis

This thesis is an explorative work and situated in the KIELER Layouters (KLay)
project that is part of the Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER) project. It offers a rather detailed synopsis of the literature on
automatic drawing of clustered and compound graphs.
Furthermore it broadens the capability of the layer based layout algorithm KLay

Layered to the drawing of compound graphs, which includes the layout of clustered
graphs as well. The layer-based layout scheme aims to assign nodes to horizontal
or vertical layers in a way that in general the edges point in the same direction,
called layout direction. Beforehand Klay Layered did support the drawing of nested
graphs by recursive application of the layout algorithm to the subgraphs. However
this approach was not sufficient to draw graphs with hierarchy crossing edges.
This work demonstrates the concept of enabling a layer based layout algorithm for

flat graphs to draw compound graphs without materially changing the main parts of
the algorithm like cycle breaking heuristic, layering algorithm, crossing minimization
heuristic, node placement, and edge routing.
I take advantage of the special structure of the KLay layered algorithm, which

keeps each phase of the algorithm modular and allows to introduce adjustments by
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1.4 What Is Not Covered by this Thesis

pre- and postprocessing of the single phases as well as a graph import and export
interface, see Schulze [41]. This work shows that this concept is flexible and general
enough to support compound graph layout as well.
To enable KLay Layered to draw a compound graph in a single run of the whole

algorithm, this work provides:

• A special graph import that translates the compound graph to a flat graph
representation. This import supports the KGraph format of KIELER. The
general idea follows Sander [38], but extends it with respect to port handling.

• A preprocessing intermediate processor before the cycle breaking phase to han-
dle cyclic dependencies of compound nodes, special port-edge constellations,
and insertion of dummy edges to support correct layering.

• A postprocessing intermediate processor after the layering phase to remove
dummy edges used for the layering.

• A management class in the crossing minimization phase that influences the
order of nodes processed and is able to group nodes according to their in-
clusion relations without affecting the layer sweep iteration and the crossing
minimization of the algorithm. The implementation is inspired by an approach
of Forster [20].

• A postprocessing intermediate processor after the node ordering phase to cor-
rect possible intertwining of subgraphs following a suggestion of Sander [38].

• A preprocessing intermediate processor before the node placement phase to
insert dummy nodes and edges to reserve drawing space for upper and lower
compound node rectangle sides based on Sander’s method [38].

• A postprocessing intermediate processor after the edge routing phase to remove
all dummy nodes and edges inserted for compound graph drawing and prepare
the actual layout application.

• A special layout application respecting the more complex demands on the posi-
tion calculation of hierarchy crossing edges and nested nodes. This application
supports the KGraph format of KIELER.

The approach involves port handling, even when the graph contains portless edges
as well as port edges or edges connected to a port only on one side. The placement
of compound node ports (hierarchical ports) is supported by the introduction of
special dummy nodes. Furthermore the implementation handles edges between a
containing node and one of its content nodes.

I 1.4 What Is Not Covered by this Thesis

However the general problem was restricted in some aspects due to its general com-
plexity. The approach does not yet support north-south ports, ports situated on
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1 Introduction

the top or bottom side of a node, and port constraints for compound nodes, special
treatment for self loops of compound nodes, and parallel areas in a node to represent
concurrency. Seperation of connected components and layout directions have also
not been in the focus of this work. As label placement in KLay Layered is currently
a subject to another work in the KIELER project, it has not been considered in this
thesis.

I 1.5 Outline

Chapter 2 provides definitions referred to throughout the thesis. Chapter 3 presents
a compendium of the related work. First, we discuss papers on automatic drawing
of clustered graphs to move on to approaches for the layout of compound graphs.
Works presenting a summary of algorithms are introduced afterwards and the chap-
ter concludes with a paper less closely related to the topic, but offering interesting
parallels. In Chapter 4 we briefly introduce KIELER, KLay and KLay Layered,
since they offer the development environment for the implementational part of this
thesis. The choices of algorithmic concepts are discussed in Chapter 5, following the
order in which the problems arise during a run of the KLay Layered algorithm. The
implementation is evaluated in Chapter 6, followed by the conclusion in Chapter 7,
which gives a short summary and points to future work.
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2

Definitions

Graph A graph is a pair G = (V,E) where V is a set of nodes and and E is a set of
edges e ∈ {{u, v} | u ∈ V, v ∈ V }. We call a set of sets of nodes P = {V1, . . . , Vn}
with

⋃
i=1,...,n Vi = V and Vi ∩ Vj = ∅ ∀i, j ∈ N≤n a (n-way) partition of the graph

G = (V,E).
For a partition P = {V1, . . . , Vn} of graph G = (V,E) we define the quotient

graph Q = (VQ, EQ) with VQ = P and (Vi, Vj) ∈ EQ if i 6= j ∧ ∃u ∈ Vi and v ∈ Vj

such that u, v ∈ E.

Drawing Drawing a graph G = (V,E) on a surface S means to represent G on
S such that points of S are associated to nodes and a curve in S is associated to
each edge e = u, v such that the endpoints of the curve correspond to u and v. The
circular, clockwise order of edges in connection with one node determined by the
drawing of the graph is called the embedding. A graph is called planar if it can be
drawn in the plane without any edge crossings. In a graph drawn like that, regions
bounded by edges are called faces. The infinite region surrounding the graph is
called the outer face. A drawing is called orthogonal if the edge curves consist of a
set of horizontal and vertical segments.

Directed Graph In a directed graph G = (V,E) the edges additionally hold the
notion of direction: E ⊆ V × V . An alternative notation for e = (u, v) ∈ E is
u →E v. We refer to u as the source and to v as the target of the edge e = (u, v).
We call e an outgoing edge of u, while it is an incoming edge of v. We define the
indegree of a node v ∈ V (indeg(v)) as |{(u, v) ∈ E : u ∈ V }| and its outdegree
(outdeg(v)) as |{(v, u) ∈ E : u ∈ V }|. Nodes v with indeg(v) = 0 are called sinks,
while we refer to those with outdeg(v) = 0 as sources.
If e = {v, v} or respectively e = (v, v), the edge is called a self loop or directed self

loop.
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2 Definitions

Connectivity A sequence of nodes v0, . . . , vn is called a path in a set of edges E if
{vi, vi+1} ∈ E for all i ∈ 0, . . . , n− 1, or a directed path if (vi, vi+1) ∈ E. For a path
in E we use the short denotation v1 →∗E vn.
We identify a (directed) graph as connected, if there exists a (directed) path be-

tween any two nodes. We call it k-way connected if there is no set of k − 1 nodes,
whose removal would render the graph disconnected. If at least k edges would have
to be removed to disconnect the graph it is k-edge connected.

Tree A tree is an undirected graph that is connected and contains no cycles. A
directed tree is a directed graph with no cycles and indeg(v) = 1 holding true for
each v ∈ V but one single node, called the root, which is connected to any other
node in the tree by a path and whose indegree is 0. Nodes v of a directed tree with
outdeg(v) = 0 are called leafs. A branch of a directed tree T is defined by one of the
nodes of T, which is the root of the branch. The branch contains all nodes which
can be reached by a directed path from the root of the branch and all edges whose
source and target are within this node set.

Weighted Graph A weighted graph Gw = (V,E,w) comprises sets of vertices V
and edges E and the edge weight function w : E → R. For a weighted graph,
define the weighted quotient graph Q = (VQ, EQ, wQ) with VQ and EQ as defined for
non-weighted graphs and wQ : EQ → R and ∀e = (Vi, Vj) ∈ EQ :

wQ(e) =
∑

u∈Vi,v∈Vj ,(u,v)∈E w((u, v))
|{(u, v) ∈ E : u ∈ Vi, v ∈ Vj}|

.

Compound Graph A (directed) compound graph is a triple C = (V,E, I) with the
pair (V,E) forming a (directed) graph, called the adjacency graph, and the pair
(V, I) forming a directed graph without cycles. In this thesis we will restrict our
notion of a (directed) compound graph to triples C = (V,E, I), where the pair (V, I)
is a directed tree, to which we refer as the inclusion tree. Notice that we regard the
graph itself as the root node, though it is not represented as a node in the data
structure of the implementation.
Figure 2.1 illustrates the relationship of the compound graph to its inclusion tree

and adjacency graph. We display an example of a compound graph in 2.1(c) in the
way it is actually laid out by the KIELER tool, see Chapter 4, and the corresponding
adjacency graph and inclusion tree.
The edges e = {i, j} ∈ E respectively e = (i, j) ∈ E of a (directed) compound

graph express adjacency relations and are referred to as adjacency edges. In the
case of a directed edge e = (i, j) we call the node i the predecessor of j and j the
successor of i. We denote the set of predecessors for a node v as pre(v), the set of its
successors as suc(v). An edge i = (u, v) ∈ I represents a nesting relation meaning
that u contains v. Therefore we call it an inclusion edge.

8



(a) An inclusion tree T = (V, I). (b) An adjacency graph G = (V,E).

(c) The compound graph G = (V,E, I).

Figure 2.1. A compound graph and its inclusion tree and adjacency graph.

Figure 2.1(c) pictures inclusion relations by drawing compound nodes as (slightly
rounded) rectangular shapes, here labeled c1 to c4. Leaf nodes are drawn as round
shapes, and the children of a node are drawn within the rectangular boundings of
its shape.
We name the source of an inclusion edge to be the parent of the edge’s target and

the target to be the child of the source. We write child(v) for the set of children
of a node v and parent(v) for the parent of v. Nodes that share the same parent
are called siblings. We call a node without children a leaf node and other nodes
compound nodes. The depth of a node v is the number of edges in root →∗I v and
we denote it as dep(v). The term descendants of a node v means the set of nodes u
connected to v by a nonempty path of inclusion edges v →∗I u and can be written as
des(v). We denominate the set anc(v) = {u ∈ V | ∃ u→∗I v, u 6= v} as the ancestors
of a node v. We say that descendants of a node v belong to v and that v contains its

9



2 Definitions

descendants. We call adjacency edges that connect a node with one of its descendants
descendant edges and an adjacency edge whose source and target do not have the
same parent a hierarchy crossing edge. An example for a hierarchy-crossing edge is
the edge from i2 to i3 in Figure 2.1. If there is a hierarchy crossing edge between a
descendant of one compound node and a descendant of another compound node or
this other compound node itself, we say that the compound nodes are connected by
a hierarchy crossing edge, no matter which direction the edge has. We say that an
edge belongs to a compound node, if it is a descendant edge of a child node or if the
compound node is parent of the target of the edge, no matter if it is parent of its
source as well. The induced subgraph of compound node c is a compound node, all
nodes belonging to it and edges whose target is a node in this set. In Chapter 5, the
term subgraph will refer to all nodes used to represent these graph elements. This
includes dummy nodes.
We say that two compound nodes u and v of a compound directed graph C =

(V,E, I) have a cyclic dependency, if there are paths i →∗E j and x →∗E y with
(i, y ∈ {u}

⋃
des(u)) ∧ (j, x ∈ {v}

⋃
des(v)).

A compound node with maximal depth of all compound nodes in a (sub-)graph is
an innermost compound node, a compound node with minimal depth is an outermost
compound node.

Clustered Graph A clustered graph is a compound graph, in which adjacency edges
are only allowed between the leafs of the inclusion tree.

Ports If a directed graph has an attributive finite set P of ports, we call it a port
containing graph and denote the subset of ports belonging to a node v with P (v).
Any edge of the port based graph can have a specified source port and target port.
We will refer to edges that have a source port as source port edges and accordingly
speak of target port edges in the case the edge owns a target port. The cut-set of
the set of source port edges and the set of target port edges is called the set of port
edges. Edges contained in none of the two sets are referred to as portless edges. We
call graphs that own only port edges port based graphs.

10



3

Related Work

As this thesis is an explorative work, one of its contributions is to provide a more
thorough view on the related work than would usually be given. A subproblem of the
automatic layout of compound graphs is the drawing of clustered graphs, which is
introduced in Section 3.1. The literature directly concerned with automatic drawing
of compound graphs is presented in Section 3.2. Two main methods for layout
algorithms that we will frequently deal with in the following are the layered approach,
first introduced by Sugiyama et al. [45], and the force-directed approach, which was
first proposed by Tutte [46]. However, perhaps the most referenced approach is
that of Eades and his spring embedder model [9]. The first is a method developed
for directed graphs and is based on sectioning the drawing plane into layers, into
which the nodes are distributed such that all edges point in one direction. Since
this is not directly possible for cyclic graphs, the methods usually comprise cycle
breaking heuristics as well. For algorithms of the force-directed approach, the graph
is associated with a physical model, for example the nodes are modeled as steel rings
and the edges as springs connecting them. Physical calculation models developed to
compute equlibria in such systems are used to compute a positioning of the nodes
leading to a balanced state of forces in the model which is expected to correspond
with an appealing drawing. Additional works of synoptical character are presented in
Section 3.3. The Section 3.4 presents work on a distantly related topic—not directly
important for this thesis, but offering interesting ideas. Section 3.5 summarizes the
presented work.

I 3.1 Part of the Problem: Drawing Clustered Graphs

Drawing clustered graphs can be seen as a subproblem of drawing undirected com-
pound graphs. If the clusters are to be displayed as shapes that surround the
contained nodes, the problem is identical to drawing undirected compound graphs
with the restriction that adjacency edges may exist between leaf nodes only. Due to
this restriction, the approaches are no absolute candidates for the implementation
part of this thesis. However, it is rewarding to consider the general ideas.
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3 Related Work

Figure 3.1. A clustered graph with clusters shown as rectangles surrounding the nodes of the cluster.

Figure 3.1 shows a drawing of a clustered graph in which the clusters are pictured
as rectangles surrounding the nodes of one cluster.
Clustered graphs are usually defined as being undirected—which is consistent

with the customary use of this datastructure in practice, especially in displaying
of biological structures. Therefore, naturally the layering approach of graph layout
is of no importance to this field of graph drawing. The literature is focussed on
one hand on force directed graph drawing methods, which are well apt to mirror
organic structures in graph layout and for this reason are widely favored in the field
of biological practice. These approaches are introduced in section 3.1.1. On the
other hand there are a lot of other approaches to the solution of this problem, a
considerabley wider range of different ideas than in the field of compound graph
drawing. Some of the methods are introduced in 3.1.2. Some methods are not only
concerned with drawing a clustered graph, but also with the clustering itself. In this
case, only the nodes are given, but not the inclusion tree structure of the clustered
graph. These problems are often related to clustered graphs with only one hierarchy
level, which means that clusters are to contain only nodes, not other clusters. Some
of the clustering heuristics are given a fixed number of clusters and search for a
node assignment that is optimal with regard to a certain criterion, as for example
a minimal number of edges between nodes of different clusters. Some heuristics
respect a certain criterion, like k-way connectivity of clusters, and try to reach a
minimal number of clusters while holding the criterion.

I 3.1.1 Clustered Graphs in the Force Directed Approach

Since clustered graphs are usually defined as undirected, and in practice they are
often used to illustrate biological structures, the force-directed method for drawing
them is a quite obvious choice, for the display of organic structures and their symme-
tries are an advantage of force-directed methods. Several variants and employments
of force-directed methods for clustered graphs have been presented in the literature.

Wang and Miyamoto [47] introduce the graph layout tool LYCA. It provides three
features.
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Figure 3.2. Visual structuring of layouts by the LYCA tool of Wang and Miyamoto [47]. Figure by
[47].

1. First they suggest an improvement of the force directed layout algorithm by
Fruchterman [23] to handle graphs with vertices of different sizes.

2. Then they present a divide-and-conquer approach to generate visually struc-
tured layouts.

3. In the last part, a constraint solver is introduced.

Figure 3.2 shows the structural layout done by the LYCA tool. On the left a
drawing is shown, in which the structure is not shown visually, on the right there is
the layout result of the LYCA tool with a visually obvious cluster presentation.
To adjust the force-directed algorithm to the demands of drawing graphs with

different node sizes, the forces between a pair of vertices v and w are modified to be

Fa =
{

0 if w, v overlap,
d2

out
k′+din

otherwise,

where Fa is the attractive force, d the distance between the node centers, dout is the
distance between the node boundaries and din = d − dout, while k′ is the optimal
distance between vertices, and

Fr =
{
C k′2

d if w, v overlap,
k′2

d otherwise.
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Here Fr is the repulsive force between v and w and C a constant. It follows that an
equilibrium of repulsive and attractive force exists, when dout is equal to k′.

The authors adjust the force model further to enable a divide-and-conquer mecha-
nism to draw visually structured drawings of graphs with subgraphs1. They divide
the edges into intra-edges, whose nodes are of the same subgraph, and inter-edges,
whose nodes are not. Furthermore, the notion of a meta-graph is introduced, which
is obtained by collapsing subgraphs into meta-vertices and transforming inter-edges
to meta-edges. To calculate the position of a vertex, a composite force is calculated:

Fcomp = Fintra + S(t)Finter + (1− S(t))Fmeta

where Fintra and Finter are the intra- and inter-forces exerted on a vertex respectively
and Fmeta is the meta force on a vertex. S(t) ∈ [0, 1] is a function of layout time
t, here relating to the iterations of the algorithm, such that S(t) decreases as t
increases after a threshold t′ and reaches 0 at another threshold t′′ > t′. Such, the
layout traverses three phases:

Between time 0 and time t′ only the inter- and intra-forces are at work. A lay-
out with uniform edges and a small number of edge crossings is produced.

Between time t′ and t′′ the strength of the inter-forces decrease in favour of the
meta-force.

At t′′ only intra- and meta-forces are at work. Zones of subgraphs get displayed.

In the final part, the authors describe how LYCA integrates a constraint solver with
the layout algorithm, which can handle the following constraints:

• an absolute constraint, which fixes a vertex at its current position,

• a relative constraint, which constrains its position in relation to others and

• a cluster constraint, which enables several vertices to be processed as a whole.

The constraint solver is able to handle situations in which constraints turn a node
into a barrier for the movement of another by introducing a rigid stick between
them, allowing them only to be moved as a whole. If a node is constrained as in the
center of a set of vertices, the force on it is evenly distributed between them.
The interaction with the layout algorithm is organized in four steps:

Step 1: Calculate forces. In charge: Layout algorithm.

Step 2: Introduce sticks and distribute forces. In charge: Constraint solver.

Step 3: Calculate new positions. Layout algorithm.
1Note that the authors give examples of graphs only in the sense of clustered graphs with nesting
depth 2.
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Step 4: Satisfy constraints. Constraint solver.

Note that LYCA is reduced in its performance by the fact that the divide-and-
conquer method draws a graph twice to create the structured layout. The layout
quality is dependant on the number of constraints. LYCA performs well if either the
constraint solver or the layout algorithm are dominant, i.e. if many or few constraints
are defined. In a balanced case, as the authors state, a poor layout may result.

Eades and Huang [14, 26] introduce a tool for the visualization of large undirected
clustered graphs named DA-TU 2 which also uses force-directed methods. The au-
thors’ presentation of the underlying ideas is split into three parts.

1. Introduction of the layered architecture Clustered Graph Architecture (CGA),

2. Description of the force-directed graph drawing method and

3. Introduction of animation methods.

The layered architecture CGA is intended to support the display of abridgements
of clustered graphs, which are logical views of parts of the graph. The layers are
distinguished as follows:

Graph layer: A graph in CGA is an undirected graph, consisting of nodes and
edges. It may be large and dynamic, which means that node and edge set
may be changing, for example by user interaction. Nodes and edges may have
application-specific attributes, such as labels and semantics. Basic operations
attributed to this layer are adding and removing nodes and edges from the
graph, the changing of attributes and an operation that returns the list of
neighbours for a node u.

Clustering layer: A clustered graph consists of an undirected graph and a clus-
ter tree describing an inclusion relation between clusters. Operations on the
level of this layer are the creation and the destroying of a cluster.

Abridgement layer: The fact that the clustered graph might be too large to be
shown on the screen and comprehended by the user motivates the introduction
of an abridgement of the graph. An abridgement is characterized by a set
of nodes of the graph. It consists of all nodes and edges on paths between
nodes of this set and the root. Additionally, there is an edge between any
two nodes u and v of the characterizing set if and only if there is an edge
in the graph between a descendant of u and a descendant of v. There are
three elementary operations on abridgements. The first is the opening of a
cluster, which replaces a node u that is in the characterizing node set of the
abridgement by its children. The reverse operation is called closing of the
cluster. The third operation is the hiding of a node, which deletes the node
from the basic node set.

2“Big map” in Mandarin.
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Picture layer: The picture layer is dedicated to the actual display of abridge-
ments of large graphs. A static picture of the abridgement contains locations
for each vertex, a route for each edge and regions of the plane for each clus-
ter, the architecture here allowing overlapping regions. Dynamic pictures are
sequences of static pictures used to animate changes in the drawing for to
preserve the user’s mental map, see Eades et al. [15] on the concept of mental
maps. Operations associated to this layer are the manual movement of nodes,
the gathering, which moves sibling nodes closer together, an operation used to
make the cluster boundaries disjoint in the picture. A scaling operation can
be used to increase or decrease the size of a picture. The layout operation is
used to update the picture after changes to the graph.

The force directed algorithm employs a force model with three types of spring forces:
internal springs between a pair of nodes which are siblings in the clustering tree, ex-
ternal springs between nodes which are not, and virtual springs. The latter connect
each node of a cluster with a virtual node representing the cluster to keep its nodes
together. Furthermore there are gravitational repulsion forces between all nodes.
The movement of nodes is to be stopped when a locally minimal energy state is
reached.
In the visualization tool DA-TU, of which a screen is shown in Figure 3.3, the

changes are animated at the picture layer. If a new layout is calculated by the
force algorithm, the movements are shown by a series of drawings. Additionally,
when a node is deleted, it is animated to lose its edges first, then shrink until it
disappears. An added node gains its edges first, then grows in its place to the
full size. Rectangular regions of clusters are dynamically adapted to the minimum
enclosing rectangle of the cluster’s children. Rectangles move smoothly with the
children, especially in the gathering operation. Furthermore, scaling operations are
animated as well as cluster closing and opening, which lets the rectangular area of a
cluster shrink/grow to a certain threshold before replacing the closed by the opened
form or vice versa. The camera animations move the whole drawing to move specific
nodes to the center of the screen.
It can be observed that the example sessions given in the paper show that the au-

tomatic layout often produces cluster overlaps which have to be removed by applying
the gathering operation almost after every session step.

Frishman and Tal [22] present an algorithm for the force-directed incremental
drawing of clustered graphs. Noticeably, the term of a clustered graph in this paper
allows edges between the clusters themselves. however, the examples and evaluations
in the paper only refer to clustered graphs where clusters only contain leaf nodes.
As most force-directed algorithms tend to produce strong changes in layouts for

the same graph after a small alteration of the node or edge set, the authors aim
to find an alteration of the standard force-directed methods that makes them more
apt to preserve the user’s mental map. The authors state that the key issue is the
stability of the layout. They especially strive to minimize the movements of clusters
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Figure 3.3. A screen of the visualization tool DA-TU, introduced by Eades and Huang [14, 26],
Figure by [14].

in sequential drawings, secondly to minimize the movements of nodes within the
clusters, and with least significance, to preserve length and routing of edges. The
algorithm takes a layout of a graph and the changed new graph. It considers the
layout as a good starting position and assigns all nodes and clusters that remain the
old coordinates. The layout and the new graph are merged. In the following first
layout phase, the clusters and nodes without changes get pinned not to leave their
positions. Nodes removed from a cluster are replaced with virtual dummy nodes to
preserve the layout within the cluster. Each cluster has got a virtual gravitational
center node to which all nodes are connected with an edge. If the resulting layout
does not fulfill given criteria, especially hitting a given range for the densitiy metric
calculated as the ratio between area of the cluster’s bounding box and the number
of vertices, a second layout is produced without the pinning of nodes and clusters.
The layout among the two fulfilling the criteria best is chosen.
The algorithm can be implemented based on any force-directed layout algorithm
that allows for the pinning of vertices and the assigning of individual spring lengths
and weights, as the algorithm divides between the following edge types:
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Figure 3.4. Snapshots of a small animation sequence showing incremental layouts of clustered graphs
computed by the algorithm of Frishman and Tal [22]. Figure by [22].

1. Edges between dummy vertex of the cluster and static vertices

2. Edges between dummy vertex of the cluster and moveable vertices

3. Edges between vertices of the same cluster

4. Edges between vertices of different clusters

5. Edges between clusters

Of these the second has a longer assigned length than the first, the fourth longer than
the third. and edges of the fifth type are varying with application specific constraints.
In the implementation, the authors animate the changes with a sequence of drawings
smoothing the step from one picture to another. Figure 3.4 shows snapshots of a
small animation sequence computed by the tool of Frishman and Tal.

Bourqui and Auber To draw clustered weighted graphs in a force directed ap-
proach, Bourqui et al. [3] propose to extend the Graph Drawing with Intelligent
Placement (GRIP) algorithm [25] in order to manage edge weights in drawing clus-
tered weighted graphs. Additionally, the authors make use of Voronoi diagrams. A
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(a) Voronoi diagram for the top depth level
quotient graph.

(b) Voronoi diagram for the second depth level
quotient graph.

Figure 3.5. Voronoi diagrams for quotient clustered graphs of differend depth levels. Figure by [3].

Voronoi diagram is a decomposition of a space given by distances to specified points
in the space called generator points. A plane with n generator points is separated
into n cells, one for each generator point. The cell is determined by its containment
of all points whose distance to the point is not greater than its distance to any other
generator point. Okabe [32] provides a closer look on this kind of diagrams and their
usage. Bourqui and Auber use the diagrams to enable the drawing of clusters in non
overlapping convex regions. The algorithm uses maximal independent set filtration
and the so called intelligent placement as the GRIP algorithm, but extends this
method to edge-weighted graphs by using weighted distances. As graph distances
have to be computed in the intelligent placement the authors propose to use a tree
t-spanner, a spanning tree that approximates graph distances with a factor t. As
the problem of finding one is NP-complete, the authors introduce a heuristic.
The algorithm is a top-to-bottom multilevel drawing algorithm. It works by first

drawing the top depth level quotient graph using the GRIP placement strategy
and a force-directed algorithm capable of respecting edge weights. Then a Voronoi
diagram for this quotient graph is computed. It displays the convex regions in which
the nodes represented by the metanode can be drawn. After that, quotient graphs
of each level are laid out with the same force-directed algorithm with the restriction
that the nodes are forced to stay in their corresponding cell of the Voronoi diagram.
New Voronoi diagrams are drawn in the cells of the Voronoi diagram of the level
above. Figure 3.5 shows Voronoi diagrams for quotient graphs of different depth
level. The restriction to movements within the Voronoi cells has a similar effect to
the introduction of virtual nodes for each cluster.

Itoh et al. [28] are not directly concerned with drawing clustered graphs, but they
introduce a layout algorithm for undirected multiple category graphs, in which each
node can be attributed with one or more categories. The relation to clustering is
introduced by the fact that the authors wish to display clustering with respect to
category as well as to adjacency. The nodes are to be drawn in different colours
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Figure 3.6. Space filling hierarchy layout. Figure by [28].

in style of a pie chart according to the categories they belong to. Additionally the
radii of the nodes differ with the number of adjacent edges. Furthermore the edges
are drawn differently according to their type: edges between two categorized nodes,
edges between a categorized node and a noncategorized node and edges between
two nodes without category. The authors employ a hybrid method, involving force
directed layout as well as space filling/tree mapped technique. It is their goal to
show clustering with respect to category (extrinsic) as well as adjacency (intrinsic).
A formative structure of the algorithm is the following: all nodes are regarded to be
included in a rootnode, all categorized nodes included under a top-of-categorized-
nodes node. Clusters of noncategorized nodes are regarded to be children of the root
node. The algorithm works in four steps:

1. build clusters of categorized nodes,

2. apply force directed layout,

3. use the calculated positions as a template, and

4. apply space filling layout.

In the first step, categorized and noncategorized nodes are divided and each set
is connectivity clustered with the use of the Fast Modularity Community Structure
Inference Algorithm by Clauset et al. [4]. A dendrogram, i.e. a tree diagram, is build
by this algorithm, which is traversed bottom-up to build hierarchical clusters. This
is computationally very costly, but the result can be stored for reuse. The second
phase substitutes nodes for clusters and performs a force directed layout, whose
outcome is used as a template for the final tree mapped space filling layout. This is
based on splitting the drawing space according to the hierarchical structure of the
tree. An illustration of the space filling tree-mapped layout is shown in Figure 3.6.
For a closer look on tree-mapped space filling see also Wattenberg [48].

I 3.1.2 Other Methods for Drawing Clustered Graphs

There are several further approaches to the drawing of clustered graphs.
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Figure 3.7. An implicit surface defined in R2 by two generator points p1 and p2 with radii of influence
r1 and r2 and a threshold of τ = 0.3. Figure by [1].

Balzer and Deussen [1] introduce the concept of implicit surfaces. Object of their
paper is the level of detail visualization of clustered graph layouts. It describes
the different handling of clusters and edges in the changeover between detail levels.
First, the authors describe the cluster representation. The authors state that it is
unsatisfactory to use just a single primitive or even a set of primitives to visualize
a cluster when the representation of a cluster could well display the distribution of
its children. The representation of the cluster in the next abstraction level should
have the same shape as the distribution. To achieve this, the concept of an implicit
surface is presented. An implicit surface can be described by a set of generator
points P , each of the generator points pi ∈ P having a radius of influence ri. A
generator point influences a point q in a way defined by a density function Di(q):

Di(q) =
{

(1− (‖q−pi‖
ri

)2)2, if ‖p− pi‖ < ri

0, if ‖q − pi‖ ≥ ri
.

The density field F is the summation of the density function for all generator points:

F (q) =
∑

i

Di(q)− τ

with a threshold τ ≥ 0, thereby defining the implicit surface with F (q) = 0 as those
points q where the sum of the density values of all generators equals τ . This concept
is illustrated in Figure 3.7. The authors state that this concept can be extended to
arbitrary generator objects by solely substituting the distance computation between
the point pi and g in the equation.
Using these implicit surfaces, the authors calculate clustered graph visualizations
bottom-up: First, an implicit surface is generated for each cluster of a node, which
has only vertex children. Then the generated implicit surfaces act as generator
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Figure 3.8. The opacity of clusters determines visibility in different levels of detail. Figure by [1].

Figure 3.9. A multilevel visualization of a clustered graph. Figure by [11].

objects for implicit surfaces of the next level. In the following, the authors propose
to use a transparency approach in the changeover: Objects adapt their opacity
according to their distance to the current view point. How the visibility is determined
by the opacity is shown in Figure 3.8. Furthermore the authors introduce the routing
of an edge (u, v) along the path from u to v in the inclusion tree. If a number of
edges share parts of this route, they are bundled to ease their display as abstracted
cluster-to-cluster edge.

Eades and Feng [11] aim for the multilevel visualization of clustered graphs. The
authors’ goal is to display the structure of complex clustered graphs by drawing them
in three dimensional pictures with several layers. Each level of the inclusion tree is
drawn on a plane at different z-coordinates. An example is shown in Figure 3.9.
The multilevel drawing of a clustered graph C = (G,T ) consists of:
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• A sequence of plain drawings of views for each level from the leaf level to the
root level.

• A three-dimensional drawing of the inclusion tree. A node of height i is drawn
in the plane z = i and within the region of its cluster in the drawing of the
view at that level.

Here, the view of a clustered graph C = (G,T ) at its level i is a graph Gi = (Vi, Ei)
where Vi consists of the nodes of C with height i in T .
The authors introduce the term of c-planarity for the level views as absence of

edge crossings or edge-region crossings—with edge-region crossings denoting an edge
crossing a region more than once. If the drawings of views at all levels of a multilevel
drawing are c-planar, the drawing in the whole is called c-planar.

Two different drawing conventions are considered:

Straight-Line Convex Drawings: The goal is to represent the edges as straight-
line segments and the regions for clusters as convex polygons. The authors
suggest to use the algorithm of Tutte [46], which draws each triconnected pla-
nar graph such that every face is a convex polygon, the drawing is planar and
straight-line. Before applying the algorithm, the authors create a skeleton for
each cluster v, which is the subgraph consisting of the vertices and edges on
the outer faces of the child clusters of v. The algorithm is applied recursively
to every skeleton graph, and a convex polygon is computed for the outer face of
each cluster. As Tutte‘s algorithm is restricted to triconnected planar graphs,
the approach requires the skeletons of the clustered graph to have this connec-
tivity property.
The authors add some remarks about alternatively using the layer based draw-
ing scheme with an c-st numbering3 as a basis for the layer assignment. This
guarantees that each cluster occupies consecutive layers and such can be sur-
rounded with a convex hull. The authors state that it can be shown that such
a drawing contains no edge crossings and no edge-region crossings unless the
regions are drawn in rectangular instead of convex style.

Orthogonal Rectangular Drawings: In this case, the edges are to be drawn
as sequences of horizontal and vertical segments, leaf nodes as grid points and
regions as rectangles. The authors suggest to use the method they introduced
in [13].

The multilevel drawings are constructed by drawing the views at every level. Edges
connecting clusters c1 and c2 in a higher level are summarizing representatives of
edges between nodes belonging to these clusters in lower levels. The node positions

3For an edge (s, t) in a biconnected graph with cardinal number of vertices n, an st numbering is
a numbering of all vertices so that s receives number 1 and t number n and any other vertex is
adjacent both to a vertex of lower and a vertex of higher number. If all vertices in a cluster are
numbered consecutively, the st numbering is called c-st numbering.
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are drawn recursively by placing the leaf nodes as in a two dimensional plane draw-
ing, and for every node of level i, the average of the xy-coordinates of its children
at level i− 1 is set as position.

I 3.2 Drawing Compound Graphs

The approaches to automatic layout for compound graphs can be roughly subdivided
into force based approaches, which are introduced in section 3.2.1, and layered ap-
proaches, which are introduced in section 3.2.2.

I 3.2.1 Compound Graphs in the Force Directed Approach

There are different approaches to the automatic drawing of compound graphs by the
force directed approach. See section 3.1.1 on the term of force directed approaches.
As the implementation part of this thesis extends a layered layout algorithm, the
approaches in this section could not be chosen as basic ideas. However they will
have to be considered for future work, if a force directed algorithm for compound
graphs is to be implemented.

Bertault and Miller [2] present an algorithm called nuage for drawing directed or
undirected compound graphs. The algorithm can be parameterized with a drawing
algorithm for compound graphs without hierarchy crossing edges, which are referred
to as nested graphs in the paper. The recursive appliance of an algorithm for flat
graphs would suffice. The algorithm works in two steps and optionally one refinement
step, which is performed as a preprocessing step.

Refinement step: As the drawing of the compound graph in the first two steps
simply ignores edges between nodes that do not have the same parent, unnec-
essary edge crossings are introduced. The goal of the refinement phase is to
eliminate those crossings. A new graph Gr is built. The node set is the same
as the one of the compound graph to be drawn, but the edges are not adopted
unless they contain nodes with different parents. The initial node position-
ing is obtained by applying a force directed algorithm with disabled repulsion
forces. The relative node positioning is to be regarded in the following steps,
thus requiring an algorithm for the drawing of nested graphs that is apt to
take adequate layout constraints. The complexity of the refinement step is
stated to be O(|E| log |V |).

Step 1: First step of the algorithm nuage is to construct a nested graph N =
(V,E′, I), V , E′ and I denoting vertex set, adjacency edges and inclusion
edges respectively, from the given compound graph G = (V,E, I). Any edge
e = (u, v) ∈ G, for which parent(v) = parent(u) holds is part of E′. Otherwise
the edge is replaced by e′ = (u′, v′), u′ being an ancestor of u4, v′ an ancestor of

4Note that the definitions of ancestor(v) and descendant(v) in the paper of Bertault and Miller
are defined to return a set comprising v itself.
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Figure 3.10. A compound graph and its associated nested graph. Figure by [2].

v with a′ 6= b′ and Pa(a′) = Pa(b′). An example of a nested graph constructed
for a compound graph is shown in Figure 3.10. The complexity of this step is
stated to be O(|E| log |V |) in average and O(|E||V |) in worst case.

Step 2: In the second step, the drawing of the nested graph takes place, in which
the algorithm for the drawing of nested graphs is applied. The authors suggest
the recursive employment of a classical graph drawing algorithm.

Dogrusoz et al. I. Another force directed layout scheme for compound graphs is
that of Dogrusoz et al. [7]. It is extended to support application-specific constraints.
The algorithm is implemented within the analysis tool for biological pathways,
Pathway Analysis Tool for the Integration and Knowledge Acquisition (PATIKA).
The base model is that of repelling particles that are connected with springs of in-
dividually defined ideal lengths. Nested graphs are viewed as “carts” that can move
in all directions, possibly carrying another cart on top. Nodes of the associated sub-
graph can only move within the bounds of the cart, these however, are considered to
be elastic enough to adjust to actualized dimensions of the contained subgraph. Any
subgraph is supplemented by a virtual center of gravity, exerting attractive forces
on all nodes within this subgraph, in order to keep them together. The length of
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Figure 3.11. A compound graph and its associated force model. Figure by [7].

an inter-graph edge is treated specially with respect to the calculation of its ideal
length: It is calculated in proportion to the nesting depth of the graphs the end
nodes belong to. Figure 3.11 shows a sample compound graph and illustrates the
associated model. As PATIKA is intended to draw biological pathways, two appli-
cation specific constraints are integrated as well: First, the nodes have to keep to
special biological compartments, which are represented by regular regions. This is
achieved by a regular adaptation of the compartment bounds. Second, the conven-
tion to align substrates and products of a transition in the pathway requires a special
flow, called orientation. To comply with this request, the current relative positions
are analysed to calculate a relativity force to act upon the nodes in question. The
algorithm consists of three phases, each comprising a number of iterations, set by
an interaction count per phase:

1. In the first phase the skeleton graph (original graph without subgraphs that
are trees) is laid out with the spring embedder model, but with relativity and
gravitational forces disabled.

2. The trees are introduced back to the graph level by level, while the complete
force model is applied.

3. In the third phase the layout is improved by more iterations with all forces
activated.

The simplified pseudo-code of the algorithm is as follows:
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Listing 3.1. CompoundLayout

1 call INITIALIZATION()
2 set phase to 1
3 if layout type is incremental then
4 increment phase to 3
5 while phase ≤ 3 do
6 step:= maxIterCount(phase)
7 while (step > 0 or !allTreesGrown do
8 call APPLY_SPRING_FORCES()
9 call APPLY_REPULSION_FORCES()

10 if phase 6= 1 then
11 call APPLY_GRAVITATION_FORCES()
12 call APPLY_REPULSION_FORCES()
13 call CALC_NODE_POSITIONS_AND_SIZES()
14 call UPDATE_COMPARTMENT_BOUNDS()
15 if phase = 2 and !allTreesGrown and step%growStep = 0 then call

GROW_TREES_ONE_LEVEL()
16 step + = 1
17 phase − = 1

Dogrusoz et al. II. In a subsequent paper, Dogrusoz et al. [8] introduce a force
directed layout algorithm for undirected compound graphs. It handles multilevel
nesting with edges between arbitrary nesting levels and varying node sizes, and is
open to application specific constraints. The implementation of the algorithm is not
confined to a special convergence schema, the authors implement it based on the
algorithm by Fruchterman and Reingold [23]. Dogrusoz et al. define the term of a
graph manager as M = (S, I, F ) with S being the graph set S = G1, G2, . . . , Gl,
I the inter graph edge set, F = (V F , EF ) a rooted nesting tree. The underlying
simulated physical system comprises electrically charged particles and springs of a
desired ideal length, of which the first are associated with the nodes and the latter
with the adjacency edges of the graph. For simplicity, nodes are considered to repel
each other only in the case that they are located in the same graph. Additionally,
a gravitational force towards the center of each subgraph is introduced, which is
intended to keep the components together. This force is defined to be independent
of the node size or its distance to the graph center. The ideal length is computed
for each edge separately, involving the size of the adjacent nodes. In this model,
a minimal total energy state is searched for. In the process, a simulated annealing
technique is applied, which means that a temperature value, decreasing with every
iteration, limits the movement of the nodes. A node with a nested graph is called
expanded. In the algorithm, an expanded node and its nested graph are represented
as a single entity, which the authors compare with a cart. The cart is supposed to
be elastic in its boundaries, ready to adapt them to the current size of the nested
graph. Hierarchy crossing edges are subject to a special treatment. The basic idea is
to split the edges into two parts. The first is the part that is located in the subgraph
containing one of the nodes. It administrates forces meant to keep the node close to
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the boundary of the subgraph. The other is the part leaving the subgraph, acting as
a regular spring. As this requires heavy computation, this solution is approximated
by manipulation of the desired edge length. An amount proportional to the sum of
the depth of the end nodes, calculated from their common ancestors, is added to
the ideal length value. The authors state that application specific constraints can
be introduced as additional forces. As an example they refer to PATIKA, which
handles orientation flow and compartment-constraints.
The algorithm is working in several steps:

Initialization: Nodes are set to initial size, a threshold for the convergence is
set, a random initial node positioning is calculated, trees are moved from the
graph, the graph skeleton remains.

Step 1: The spring embedder algorithm runs on the skeleton of the graph with
gravitational forces and application specific constraints deactivated

Step 2: The spring embedder algorithm runs in multiple iterations with gravita-
tional and application specific forces activated - the trees are introduced back
into the graph level by level.

Stabilization: The layout gets “polished”.

The spring force e = (u, v) is calculated as:

FS = (Λ− ‖Pu − Pv‖)2

η

−−−→
PuPv

with Λ being the ideal edge length, η the elasticity constant of the edge and Pu and
Pv the positions of the nodes u and v.
The repulsion force is defined as:

Fr = α

‖Pu − Pv‖2
−−−→
PuPv .

The node positions and sizes are calculated bottom up, the compound nodes
propagate back to their children for an update of bounds. The authors give a
good documentation in pseudocode. Note that according to a statement of the
authors, the algorithm’s performance decreases dramatically when the nesting depth
increases.

I 3.2.2 Compound Graphs in the Layering Approach

For the layout of directed compound graphs the literature provides approaches of
the layering method. This method is based on dividing the drawing space into
different layers, into which the nodes are sorted in a way that all edges point into
the same direction. As this is not possible for graphs that contain cycles, the drawing
algorithms by this approach include a phase for the removal of cycles. Afterwards,
nodes are sorted into the layers. The algorithm also has to find an ordering of the

28



3.2 Drawing Compound Graphs

(a) Local layering. (b) Global layering.

Figure 3.12. The difference between local and global layering (top to bottom).

nodes in each layer that supports the goal of minimizing edge crossings. Actual
node placement and edge routing are further prerequisites to the final drawing of
the graph. The methods to draw compound graphs in the layering approach can
be roughly divided into methods that use local layering and methods that employ
global layers. Local layering means that one distinct set of layers is employed for
each compound node. Global layering on the other hand employs one set of layers
for all nodes, which means that compound nodes have to span more than one layer.
This is mostly implemented by representing the compound node with the help of
several dummy nodes. Forster [20] gives a good overview of the advantages and
disadvantages of the two methods. The advantage of the local layering method is
a generally good computation time, while the advantage of the global layering is
that it leads to more compact drawings. It can additionally be observed that local
layering needs several passes of a general layering algorithm, while global layering
does not.
Figure 3.12 shows the differences of the two approaches. The global layering shown

in 3.12(b) is more tightly arranged than the local layering pictured in 3.12(a).

Local Layering

Sugiyama and Misue I. Sugiyama and Misue [43] present an algorithm for the
automatic drawing of compound directed graphs based on the hierarchical layer
layout method. This algorithm was considered, but not chosen as a basic idea for
implementation in this thesis. The reason was a general decision in favour of global
layering, see The algorithm is restricted to graphs without adjacency edges between
nodes in an ancestor-descendant relationship. It is partitioned into four steps: In the
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first step, the hierarchization takes place, in which the inclusion tree gets annotated
with compound level assignments for each node. The second step, the normaliza-
tion, takes the assigned compound digraph and yields a proper assigned compound
digraph. This means that all adjacency edges lead downward with respect to the
compound level assignment of the nodes and associate only nodes with parents of
the same compound level. Edges violating these criteria are replaced with appro-
priate dummy vertices, dummy inclusion edges and dummy proper adjacency edges.
The next step consists of the vertex ordering in purpose of the minimization of edge
crossings and edge-rectangle crossings as well as the achievement of closeness be-
tween adjacent vertices. The algorithm works on subgraphs, fixes the positions of
nodes adjacent to nodes of other subgraphs in border positions, and performs the
ordering of other vertices based on barycentric methods. A fourth step is dedicated
to the determination of the metrical layout. It consists mainly of the vertex posi-
tioning, including the determination of horizontal and vertical positions as well as
width and height of the bounding boxes. The edge routing as the second part of
metrical layout is derived from the vertex positions, since proper adjacency edges
are drawn as straight lines, while nonproper adjacency edges are routed with the
help of dummy and virtual vertices originating from step two by assigning them zero
width. The routing is not orthogonal.
In more detail, the four steps comprise the following actions.

Step 1. In the context of the assignment of compound levels, the notion of a derived
graph is used, in which all adjacency edges between vertices of different levels in
the inclusion tree are replaced by edges representing < and ≤ relations of nodes
of the same level. In this derived graph, a heuristic is employed to eliminate
feedback edges in the graph in order to resolve cycles, preferring edges of the
derived type and among those the ones representing ≤ relationships. Then
the assignment of compound levels is based on the structure of the cycle free
derived compound graph.
Note that the algorithm works with local layers—each node spans only one
layer, while the interior of compound nodes is divided in a set of layers of its
own.
Finally the focus is back on the newly assigned compound digraph, in which
every edge whose direction is not downward in the compound level hierarchy
gets reverted. This reversion is undone in the last drawing step.

Step 2 Nonproper adjacency edges are replaced with the help of dummy nodes.
The dummy vertex with the highest assigned compound level is placed in
the rectangle of the lowest leveled subgraph containing both start and end
node. This means that the edges are routed outside the bounding box of any
subgraph that does not contain both nodes associated by the edge. Therefore
the edges tend to leave the lower surrounding rectangle at the side.

Step 3. In order to attain closeness between adjacent vertices of different sub-
graphs, for each node the difference between the number of adjacencies to
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subgraphs to the left and right in the ordered compound graph is calculated.
If it is not zero, the node is placed to the accordant border of the rectangle and
fixed there, multiple nodes of this kind in order of the calculated excesses of
connections to subgraphs on the side in question. The edge crossing problem
is treated by the heuristic two-level barycentric method [45]. The ordering
of the nodes of the second level according to their upper barycenters is alter-
nated with the ordering of the nodes of the first level according to their upper
barycenters. A barycenter is calculated as the sum of the positions of adjacent
edges in the complementary level divided by their number. The number of the
edge-rectangle crossings is minimized by another heuristic called insertion BC.
Into each edge between nodes of one layer, a dummy node is inserted, which is
positioned in the layer above. Then the layer of the dummy nodes is ordered
with regard to the lower barycenters, followed by an ordering of the original
nodes according to their upper barycenters. The algorithm employed is an ex-
tension of the two level barycentric methods to an n-level hierarchy. It iterates
over the levels. First, the iteration is carried out from level one downwards,
performing upper level barycentric ordering, insertion of upper level dummy
nodes, and repetition of upper level barycentric ordering (down step). Second,
the iteration is reversed starting with level n − 1, inserting dummy nodes to
the lower level, and ordering according to the lower barycenters. The whole
cycle is repeated a fixed number of times.

Step 4. The procedure for the metrical layout accepts an ordered digraph and the
width of leaves as input and calculates the widths of all other nodes as well as
their global horizontal positions. The procedure employs a heuristic method
called PR method. It works on a customized local hierarchy and moves the
nodes positions according to their barycenters without disturbing the order of
the level.

Sugiyama and Misue II. In 1996, Sugiyama and Misue [44] gave a short introduc-
tion of the compound graph visualizer D-Abductor. Features are:

• The author’s drawing algorithm for compound graphs

• Graph editing

• Collapse and expand operations

• Display with animation (preservation of mental map)

• Network communication among multiple set of D-Abductor possible

• Interface for applications (Simple)

A sample screen is shown in Figure 3.13.
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Figure 3.13. A sample screen of the D-Abductor-tool. Figure by [44].

(a) Compound graph, expanded view. (b) Compound graph, contracted view.

Figure 3.14. Expanding and contracting compound nodes. Figure by [34]

Raitner [34] presents a method for creating views for a graph drawn with the
method of Sugiyama and Misue [43, 44]. Goal is to be able to expand or contract
compound nodes in the drawing of the graph without the need to redraw the whole
graph. Figure 3.14 shows an example of an expanded and a contracted view of a
compound graph. The author states that reducing the recalculation to the affected
part of the drawing reduces calculation time and helps to preserve the mental map
of the user. The redrawing follows the four steps of the algorithm, determining the
exact part of the graph for which calculations have to be redone expanding a node:

Hierarchization: The level assignment can be restricted to the subgraph induced
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by the children of the node affected by the navigational operation. All old
nodes stay on their levels.

Normalization: The node in question is expanded which comprises the adding of
the induced adjacency edges and appropriate inclusion edges, while the edges
connected to the meta-node in contraction are removed. Newly introduced
improper adjacency edges are made proper. The method is exactly that of
Sugiyama and Misue [43, 44].

Vertex Ordering: The vertex ordering algorithm is applied to the subtree rooted
at the expanded node. Positions of dummy nodes of induced edges5 are reused.
Dummy nodes of all edges inheriting from the replaced induced edge are treated
as one block, which is positioned according to the dummy node of the edge
replaced. Goal of this method is to preserve the mental map by routing the
expanded edges along the same course as the old edge.

Metric Layout: The local coordinates are adjusted for the expanded node and
all its ancestors. The Step of summing up the absolute coordinates in traversal
of the hierarchy remains unaltered.

The author states that contraction of a node that has been expanded reverts the
mentioned steps in a straightforward way, while contracting a node that has not
been expanded before is the critical case. He explains that a derived edge of the
type ≤ in the initial layout can lead to massive changes in the level assignment,
which is harmful to reaching the goal of preservation of a mental map. His proposal
is either not to allow contraction in nodes that have never been expanded or only
to allow derived edges of type <, thus accepting that the initial view might be less
compact.

Global Layering

Sander I [38] presents a layout method for general directed compound graphs. It
is based on hierarchical layered layout and similar to the algorithm by Sugiyama
and Misue [43]. Sander’s method provides the basic idea for the implementation
part of this thesis. Like in this method, layers are assigned to the nodes. To achieve
a proper hierarchy that contains adjacency edges only between nodes of adjacent
layers, dummy nodes and dummy edges are inserted to replace edges spanning several
layers.
The layers of this algorithm are global layers, so there is only one set of layers for
all nodes of the graph; in particular no compound graph has its own internal layers.
It might span several global layers instead.
In difference to the method of Sugiyama and Misue [43], the level assignment is
based on the concept of the extended nesting graph. In the nesting graph, each node

5Induced edges are edges connecting a meta node to other nodes because of an adjacency of
children of the meta node.
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without leaf-quality with respect to the inclusion tree is represented by two dummy
nodes for its upper and lower border, denoted by u(+) or u(−) respectively. The
nesting graph contains these dummy nodes, the leaves, and the following edges:

1. an edge (u(−), v) for each (u, v) in the inclusion tree (ET ) with u being an
inner node of the inclusion tree (∈ S) and v being a leaf node of it (∈ B),

2. an edge (u(−)
1 , u

(−)
2 ) for each (u1, u2) ∈ ET ,

3. an edge (v, u(+)) for each (u, v) ∈ ET with u ∈ S, v ∈ B, and

4. an edge (u(+)
2 , u

(+)
1 ) for each (u1, u2) ∈ ET with u1, u2 ∈ S.

It can be viewed as the inclusion tree and its mirror image joined at the leaves. This
nesting tree is successively extended by edges representing adjacency edges, if they
do not introduce a cycle. The rank assignment is derived from the topological order
of the extended nesting graph. The rank of the upper dummy nodes is afterwards
corrected with the help of the converse topological order to keep the upper border
of a subgraph near to the position of contained leaf nodes.
In the following, cycle-producing edges are analyzed with respect to the question
whether the choice of adequate border nodes as anchor points of the edge would
prevent the need to revert the edge to achieve uniform edge orientation. This is
especially helpful in the case of edges from descendant to ancestor, and for that
reason, this step is not found in the method by Sugiyama and Misue [43] method,
which is restricted to graphs without edges of this type. Edges whose adverse di-
rection cannot be solved by appropriate anchor point placement are reverted. The
original direction is revived in the final drawing step. Next, empty layers are re-
moved, before the splitting of long edges that cross several layers is performed. The
latter is done with the goal of reducing the span of each edge to one layer. This
is achieved by inserting dummy nodes and dummy edges. If edge (w1, w2) is to be
replaced, all dummy nodes are assigned at least to the subgraph that contains w1
and w2. In contrast to the solution of Sugiyama and Misue [43], this method routes
the edges inside of border rectangles as far as possible. This means that all dummy
nodes for an edge (w1, w2) will be routed inside subgraph u, if w1 or w2 are inside
u and Rmin(u) ≤ R(dummy) ≤ Rmax(u) holds with R,Rmin, Rmax returning the
rank, rank of lower border node, and rank of upper border node, respectively. Con-
sequently, the edges tend to leave border rectangles at the top or bottom instead
of on the sides. Compared to the method of Sugiyama and Misue [43], the phase
of crossing-reductions follows another strategy as well. Though both methods use
barycentric heuristics, the application is per subgraph in the approach of Sugiyama
and Misue [43], while Sander performs the node ordering globally. First, the crossing
reduction with barycenter weights is done for the complete levels of the graph with

Wp(v) = 1
|pre(v)|

∑
w∈pre(v)

P (w)
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as the barycenter weight for top down traversal with pre(v) returning the direct
predecessors of v with respect to adjacency and P (w) returning the actual position
of a w. Accordingly, the barycenter weight for bottom up traversal is

Ws(v) = 1
|suc(v)|

∑
w∈suc(v)

P (w)

with suc(v) returning the direct successors of v. The achieved node ordering is used
as a starting point for repositioning phase, in which the nodes are placed such that
border rectangles can be drawn around subgraphs. This requires

1. that the nodes of a subgraph of the same rank must be placed in an unbroken
sequence in their layer, and

2. that nonnested subgraphs must not be intertwined across the layers, which
means that all nodes of one subgraph must be exclusively left or right of all
nodes of the other in all levels.

The basic idea of this reordering employs the notion of average subgraph position
calculated as the sum of the positions of all leafs within the subgraph divided by
their cardinal number. If the average subgraph position of subgraph u1 is below
that of u2, it is expected that many nodes in u1 are positioned left of nodes of u2.
Accordingly this average can be calculated for one layer alone, taking only the leaf
nodes in this layer into account. The nodes are sorted bottom-up by setting the
average subgraph position of a leaf node to its position and the cardinal number of
its leafs to 1 and calculating the average subgraph positions layer-wise. The author
states that the final solving of intertwined subgraphs can be done afterwards with
the help of the complete average positions of subgraphs directly, but that this would
lead to unnecessary reorderings. He introduces the concept of a subgraph ordering
graph instead, which consists of all nodes and an edge (w,w′) if there is a subgraph
containing both w and w′ and directly neighboured nodes of a common layer v and
v′, of which v belongs to w and v′ is included in w′6. Cycles in the subgraph ordering
graph are broken at the node with smallest total average subgraph position. If the
subgraph ordering graph is sorted topologically, it yields an ordering λO denoting
which subgraphs are left of other subgraphs (under the assumption that layering
takes place from top to bottom). The algorithm performs a sorted traversal of all
layers according to this order. If during the calculation of the order λO,i for layer i
there is a possibility to choose between possible next nodes, the node u with smallest
barycentric weight

Wp,i(u) = 1
|{v ∈ B|R(v) = i, u→∗T v}|

∑
v∈B,R(v)=i,u→∗T v

Wpv

with →∗T denoting inclusion.
6Note that inclusion is defined to be given in case of identity.
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Figure 3.15. Introduction of unnecessary edge crossings by Sander’s approach [38]. From left to right
we see the layers before reordering, after reordering with Sander’s method, and the optimal result.
Figure by [20]

After this repositioning, the crossing reduction phase ends and the final positioning
of nodes and edges takes place. To prevent overlaps of rectangles, sequences of border
dummy nodes are inserted to the left and right of each subgraph, one dummy node
per layer. Invisible edges are inserted between the dummy nodes of adjacent layers.
A method to place these dummy nodes in straight vertical lines is introduced by
Sander [37]. The author uses this method to place and route the edges.

Forster [20] intents to enhance the method by Sander [38] in the realm of crossing
reduction. The method expects a proper layered clustered graph as input.
Sander already respects in his algorithm the two restrictions:

1. All nodes of the same compound node that are placed in one layer are to be
drawn in an unbroken sequence, that means placed next to each other without
nodes of other compound nodes placed in between them.

2. Compound nodes keep their relative position the same across all layers.

This is done by resolving violations of these rules after the actual crossing reduction
by sorting the compound nodes with a barycentrical method. Forster criticizes this
method for its tendency to introduce unnecessary crossings. An example for this is
shown in Figure 3.15. He proposes a strategy in which the restrictions are considered
right from the start.
It regards the first constraint by computing the child order of all compound nodes
independently by introducing the concept of a so called crossing reduction graph
G′h which is associated to one compound node h of the graph G to be laid out.
G′h consists of two layers, of which the upper layer B′1 is taken from G without
modifications and the lower layer B′2 comprises exactly the children of h in the
corresponding layer hierarchy. The latter consists of all nodes that span the layer in
question. For each edge e = (s, t) in G incident to a successor of h, a 1-weighted edge
(s, c) is substituted, where c is the child of h containing t. If this edge already exists7,
its weight is increased by 1. A conventional algorithm for weighted 2-layer crossing
reduction is applied to this crossing reduction graph. The resulting order of the lower
layer is used as an order for the children of h. Such, the hierarchy tree is traversed.

7Which might be the case if c contains more than one successor of h with incident edges,
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We use the concept of crossing reduction graphs in the implementation part of this
thesis. In order to respect the second rule, Forster proposes two alternative methods.
In the first, a 2-layer crossing reduction method with constraint support is employed.
Constraints are added between nodes with the same parent in the layer hierarchy
tree. The alternative method is called heavy edge method. It does not call for a
crossing reduction method with constraint support, but assigns very high weight
to edges incident to a compound graph. The author points out that this method
has the drawback that it does not always yield acceptable results when used with a
non-optimal reduction algorithm, leading to the possible need of a reordering phase.
Furthermore Forster explains that this method leads to less edge-rectangle crossings
but more crossings between adjacency edges.

I 3.3 Work Presenting an Overview of the Topic

Brockenauer and Cornelsen [31] present a summary of visualization methods for
clustered graphs and compound graphs. First, they introduce intrinsic clustering
goals like the Min-Cut k-Way Partition, minimizing the partition cut weight8 in
a graph with edge-weights, or the Ratio Cut Partition, which combines this with
cluster size balance. As both problems are NP-hard, heuristics concerning them
are cited. Another heuristic is referred to that approaches the goal of clustering
with respect to graph connectivity making use of the eigenvalues of the Laplacian
matrix of the graph. All heuristics in this section are concerned with a fixed number
of clusters, which is different for clustering methods of the following section which
perform structural clustering by agglomerative clustering, starting with an n-way
partition to iteratively construct a k-way partition. Different properties can be
specified to be the critical criterion to be approximated, like vertex degree, diameter
or k-edge-connectivity. Some other approaches are recited in compact manner, for
example based on successive pattern matching or methods producing unconnected
components.
In the following section, the works of Feng, Eades et al. concerning planar draw-

ings of hierarchical clustered graphs [11, 12, 13, 17, 18, 19] are presented. They are
based on the notion of c-planar hierarchical clustered graphs, which are defined to
be drawable without crossing edges and edge-region-crossings. Another constitutive
cognition is the following theorem:

Theorem on the Characterization of c-Planar Graphs: A connected hi-
erarchical clustered graph C = (V,E, T ), with G = (V,E) is c-planar, if and only
if there exists a planar drawing of G, such that for each node v of T all vertices of
V − V (v) are in the outer face of the drawing of G(v).

It is used to construct c-planar embeddings. Subgraphs are embedded recursively.
The conditions of the theorem are guaranteed by inserting additional vertices and

8taking the weight of edges with nodes in different clusters into account
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edges for the edges leaving the cluster.
The later works concern straight line drawing with convex shaped clusters, and or-
thogonal drawings with rectangular shaped clusters. Even a multilevel visualization
of clustered graphs is introduced, showing both adjacency and inclusion relations by
displaying each level in the inclusion tree in a plane of its own.
Next, the authors introduce the algorithm for hierarchical representation of com-
pound graphs by Sugiyama and Misue [43], see Section 3.2.2 of this thesis for a
summary of this work.
Furthermore, the authors refer to some methods for force-directed layout of clus-
tered graphs, reaching from simple introduction of dummy nodes for each cluster
over an expanded spring model with differentiated forces for nodes of the same or
different clusters and for virtual nodes keeping a cluster together by inserting virtual
spring forces of all nodes belonging to that cluster, see also [27]. Another method
introduced is that of Wang and Miyamoto [47]. They use metalayouts working on
a coarsened structure of the graph, treating the clusters as nodes in one phase of
the algorithm in the sense of a divide-and-conquer-approach. Wang and Miyamoto’s
method of taking layout constraints into account, namely absolute and relative po-
sition constraints for vertices, is also presented.
Finally, the authors deal with a method by Eades [10]for the drawing of extremely
large graphs, of which only a part can be known at a time.

Sander II [39] is concerned with graph visualization in context with compiler con-
struction, which involves the displaying and interactive navigation of very large
graphs. Sander gives an overview over force directed placement and the layered
approach in general, together with remarks about their application in compiler con-
struction. With regard to compound graphs, he explains the concept of recursive
layout and gives a short summary of the algorithm by Sugiyama and Misue [43] to
introduce the nondividing method in comparison. The following part of the paper
is devoted to the browsing of large graphs, in which linear views and fisheye views
that enlarge special parts of the graph and or distort it are explained.

I 3.4 Miscellaneous

Huang et al. Huang et al. [27] present a method for Online Graph Drawing. This
term refers to the drawing of huge graphs that are partially unknown and can only
be displayed on screen in tiny parts, such as hyperlink graphs of the websites in the
WWW. Though this does not specially refer to the problem of drawing clustered
or compound graphs, the authors’ method of using a queue of focus-nodes as repre-
sentation for subgraphs might offer interesting analogies. The thought has not been
elaborated for this thesis though. The authors define an exploration of such a graph
G = (V,E) as a sequence of logical frames F1 = (G1, Q1), F2 = (G2, Q2) . . .. Each
of them consists of a connected subgraph Gi = (Vi, Ei) of G and a queue Qi of focus
nodes, which represents the sequence of subgraphs viewed by the user. Additionally
the term of distance-d neighborhood, denoting the subgraph characterized by a single
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node v and a nonnegative integer d, comprising all nodes whose graph-theoretic dis-
tance from v is at most d, shortly written Nd(v) and N(v) when d = 1. For a queue
Q = (v1, v2, . . . vs), the subgraph induced by the union of N(v1), N(v2), . . . N(vs) is
called a logical frame with its focus nodes v1, v2 . . . vs Each neighborhood is divided
in the following two parts:

1. Common part C(v): Graph induced by the nodes of N(v) which also occur in
the neighborhood of another focus node:

C(vj) =
s∑

i=1,i 6=j

N(vj)
⋂
N(vi)

2. Local part P (v): Graph induced by the nodes of N(v) that do not belong to
the neighborhood of any other focus node:

P (vj) = N(vj)−
s∑

i=1,i 6=j

N(vi).

A node and its local part form the local regions. The authors state that in a drawing
of the graph, the local regions should never overlap to help the user follow the
addition or deletion of a focus node. The graph is explored by visualizing a sequence
of logical frames, of which frame is obtained from its predecessor by the addition of a
focus node and its neighborhood—this new focus node is selected by the user—and
deletion of at least one other focus node. The operation follows a deletion policy,
which can be for example FIFO or the largest k-distance rule, which requires the
node with the largest graph-theoretical distance from the new focus node to be
selected.
The authors suggest an "in-betweening" animation technique to preserve the mental
map of the user. It consists of a sequence of drawings laid out with a modified spring
embedder algorithm, in which the nodes’ positions differ only slightly. The goal is
to create the appearance of the new focus node sliding slowly towards the center of
the page.
In the modified spring embedder, with Fi = (Gi, Qi) as the current logical frame
and Gi = (Vi, Ei), the total force applied on node v is:

f(v) =
∑

u∈N(v)
fuv +

∑
u∈vi

guv +
∑

u∈Qi

huv

where fuv is the force exerted on v by the spring between u and v and guv and huv

are gravitational repulsions exerted on v by one of the other nodes u in Fi. For
each of this forces, a strength value can be set to modify their behaviour. The extra
gravitational force aims to minimize overlaps among the neighborhoods and keeps
the layout of the queue of focus nodes close to a straight line, helping to understand
the direction of exploration.
Note that the paper contains a detailed description of the mathematical equations
needed for the calculation of an equilibrium force configuration.
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I 3.5 Summary

Approaches to the drawing of clustered graphs in the force directed and other ap-
proaches have been presented as well as layered and force directed methods for the
layout of compound graphs. Table 3.1 presents an overview of the approaches in the
order of their introduction. Works of summarizing character and works presented
in Section 3.4 are omitted.

I 3.6 Relations to the Work Presented in this Thesis

The implementational part of this thesis extends the KLay Layered algorithm to lay-
out compound graphs with hierarchy crossing edges. Accordingly, only approaches
suitable for this kind of graphs came into view as suitable basic concepts. Addition-
ally the approach proposed had to be of the layered kind. We detected only two
approaches that fulfil these requirements, the approach by Sugiyama and Misue [43]
and the method of Sander [38]. The comparison of the two shows that one basic
choice had to be made, whether local and global layering would match the char-
acteristics of KLay Layered best. The approach of global layering was chosen for
its ability to yield compact drawings and for its compatibility with the structures
of KLay Layered, especially given by the fact that only one run of the complete
algorithm is needed, see also Section 5.1. Another argument is that the approach
of Sugiyama and Misue does not support descendant edges, while the method of
Sander does.
The layout of compound graphs in KLay Layered does not consist of a simple im-

plementation of Sander’s paper though. The initial point is not Sander’s algorithm,
but the KLay Layered algorithm for flat directed graphs. However this would not
be possible without the flat representation of the compound graph with the help of
dummy nodes, which is according to Sander’s idea. We extended the representation
by introducing dummy nodes that serve to represent ports and thus broaden the
application range of the algorithm to include port containing compound graphs. I
am not aware of any algorithm but KLay Layered using this expanded concept.
I did not adopt the first two phases, the cycle breaking phase and the layering

itself, from the approach of Sander but took them over from the KLay Layered al-
gorithm for flat graphs without alteration. This induces two requirements. The first
is the insertion of dummy edges for the layering phase, which is mostly done during
graph import. The directed dummy edges reflect the desired assignment order for
the layering phase and express an “should be put in a layer left of”-relationship be-
tween two nodes. The second addition consists of a preprocessing step of the cycle
breaking phase that dissolves cyclic dependencies of compound nodes, which can-
not be handled by an arbitrary cycle breaking heuristic. The concept of the cycle
removal graph is introduced, which simplifies the information of compound node
adjacency dependencies by propagating the adjacency edges to the outermost com-
pound nodes involved. While the notion of propagating edges up to ancestors of the
source and/or target nodes is not new—it is for example used by Bertault and Miller
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3 Related Work

in the replacement of hierarchy crossing edges and also by Sugiyama and Misue in
the creation of their so called derived graph structure—the concept of cycle removal
graphs has not been used before in automatical compound graph drawing as far as
I am aware of. Furthermore, to my knowledge, dummy edges have not been used
before to enable correct layering of a flat compound graph representation by an arbi-
trary layering algorithm. The crossing minimization in KLay Layered for compound
graphs however follows Sander’s approach as far as he proposes a remedy for the
intertwining of subgraphs across the layers. The other main challenge in the crossing
minimization of compound graphs is to keep nodes of the same subgraph in con-
tiguous sequence in each single layer. This task is not handeled as Sander proposes,
but works on the idea of crossing reduction graphs as introduced by Forster [20].
Instead of using Forster’s own constraint respecting crossing minimization heuristic
however, we implemented the crossing minimization phase structure such that the
choice of a crossing minimization heuristic is independent and left interchangeable.
The reservation of drawing space for the border segments of compound node draw-
ings again follows Sander’s approach [38], which was strongly motivated by the fact
that the node placement algorithm of KLay Layered already was an implementation
of Sander’s method to place node segments in straight horizontal lines [37]. This
placement strategy is reused to place dummy nodes and edges marking the side lines
of compound nodes. The edge routing of KLay Layered could remain unaltered.
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4

At Home in KIELER: The Working
Environment

This chapter presents a short introduction to the working environment for the im-
plementational part of this thesis, as it belongs to the KIELER research project1

and the implementation had to blend in an existing layout algorithm that is part of
this project, the KLay Layered algorithm. After we have introduced some additional
terms in Section 4.1, Section 4.2 leads into KIELER and its project KLay, while the
topic of Section 4.3 is the algorithm KLay Layered, which was to be extended by
this work.

I 4.1 Terms

As we will concentrate on layer-based layout in the following chapters, we introduce
some additional terms related to it. Without loss of generality, we presume in the
following that layering takes place from left to right, if not stated otherwise. We
assume that the layers are numbered 0, . . . , n from left to right. For a node v that
has been assigned to a layer, l(v) denotes the number of the layer, v is assigned to
and ord(v) refers to the position of this node in the ordering of the layer, which will
only be defined during the node ordering phase. We assume that ordering positions
are numbered 0, . . . , n from top to bottom.

I 4.2 KIELER and KLay

KIELER is a research project that aims to provide amendments to graphical model-
ing. It offers subprojects in the domains of the syntax, semantics, and pragmatics of
the graphical model-based system design. The KLay project is situated at the heart
of the pragmatics section. It is in charge to support one main concept of KIELER,
which is to employ automatically generated layout to support the creation and main-
tenance of diagrams as well as modern dynamic visualization techniques. While an-

1http://www.informatik.uni-kiel.de/rtsys/kieler

43



4 At Home in KIELER: The Working Environment

other subproject, the KIELER Infrastructure for Meta Layout (KIML), deals with
the diagram layout specifications on an abstract level, KLay provides the algorithms
that compute the concrete layout information. For this purpose, KLay procures a
set of different layout algorithms implemented in Java. One of this algorithms is
KLay Layered, which is introduced in the next section.

I 4.3 KLay Layered

I 4.3.1 Architecture

KLay layered is a layer based layout algorithm. Its structure, as introduced by
Schulze [41], is modular and consists of the following three kinds of elements.

1. An interface to the users of the algorithm. To support a certain graph for-
mat, a module responsible for the import of graph information to the internal
data structure of KLay layered and for application of the calculated layout
information is requested. Currently, there exist the KGraphImporter and the
CompoundKGraphImporter to connect KLay Layered to KIML for flat and
compound graphs.

2. The five core phases of the layout algorithm—cycle removal, layer assignment,
crossing minimization, node placement, and edge routing. Each of them han-
dles a modular task of the graph layout.

3. Intermediate processors, which can dynamically be inserted into slots before
or after the layout phases according to the layout specifications for the actual
run. The intermediate processors prepare, influence and postprocess the layout
phases, for example by adding or removing dummy nodes or edges.

Figure 4.1 shows this structure.

I 4.3.2 Dummy Edges and Dummy Nodes

KLay Layered makes use of dummy edges and dummy nodes. These do not belong
to the original graph structure, but are inserted additionally. The reason for the
insertion is either that a phase of the algorithm demands a certain quality of the
graph structure that can only be provided with supplementary dummy nodes and/or
edges, or that a certain effect can be provoked by the insertion. An example for the
first case is the creation of a proper layering, i.e. a layering in which no edge spans
more than one layer. A layering can be turned into a proper layering by sectioning
long edges by the insertion of a dummy node in each layer the edge crosses. Layering
itself can be influenced by the insertion of dummy edges. In general it will lead to
node u being placed in a layer left of v if we add a dummy edge d = (u, v).
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4.3 KLay Layered

Figure 4.1. The structure of KLay Layered. Figure by [41].

I 4.3.3 Phases of the Algorithm

Layers are to be assigned to the nodes in a way that all edges point in the layout
direction. Obviously, this is not possible in a cyclic graph. To cope with this problem
is the charge of the cycle removal phase. It has to guarantee that the graph does
not contain any cycles when passed to the actual layer assignment. Each cycle is
broken by reversing one of the constituting edges. The optimal choice of the set of
edges to be reversed is NP-hard, see Karp [30], so the cycle removal is handled by
a heuristic. In contrast to the removal of the edges, which would also render the
graph acyclic, the reversion enables us to account for these edges in the following
layout phases. It is for example respected in the minimization of edge crossings and
it is subject to edge routing. The inversed edge is restored directly before the final
layout application by an intermediate processor, called ReversedEdgeRestorer.
The layering phase assigns nodes to layers. The nodes have to be assigned in a way

that successors of a node are placed in a layer to its right. This makes all edges of the
graph point to the same direction. Since nodes might carry constraints with regard to
the layers they may be placed in, the layering phase in KLay Layered has to be able to
respect them or to use a special intermediate processor, the LayerConstraintHandler.
The layer assignment implies the rough assignment of x-coordinates for the nodes,
as the nodes of one layer are placed vertically in line.
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4 At Home in KIELER: The Working Environment

The crossing minimization or node ordering phase strives to calculate an ordering
for the nodes in each single layer that minimizes the crossings between adjacency
edges. Finding the minimum number of crossings is NP-complete even for two layers,
see [29]. This means that a heuristic is to be employed. At the time, KLay Layered
uses a barycenter heuristic. This heuristic processes two layers at a time, one of
them is regarded as fixed, while the order of the other, called free layer, is to be
determined. For each node of the free layer, the heuristic takes all nodes of the fixed
layer into account that are connected to the node with edges. The average of the
position numbers of all these nodes is considered as the nodes’ barycenter weight.
Finally the heuristic orders the nodes by their barycenter weights. This heuristic
is applied in several sweeps across the layers in both directions until the number of
edge crossings does not decrease.
During the node placement phase, the y-coordinates of the nodes are determined.

As dummy nodes that are inserted to split up long edges are placed as well, this
phase is relevant for the number of edge bends.
The last core phase is the edge routing phase, in which the routing of the edges is

determined and the final x coordinates of the nodes are assigned.

I 4.3.4 Data Structure

The internal datastructure of KLay layered is the LayeredGraph. LayeredGraph,
LNode, LEdge, Layer, and LPort are the main elements of the LayeredGraph, sub-
classing LGraphElement. In contrast to the data structure of KIELER, the KGraph,
the graph itself is not represented by an LNode, but by a LayeredGraph. The Lay-
eredGraph owns a list of layerless nodes for nodes that have not been assigned to a
Layer and a list of Layers, which themselves each own a list of LNodes. Each LEdge
is connected to its nodes by LPorts, there are no portless LayeredGraphs. This
means that we have to store additional information to know whether an LPort is a
representative of a port in the original graph structure or not. The most interesting
difference between the KGraph and the LayeredGraph in the context of this thesis
is that the LayeredGraph has no notion of hierarchy. We solve this problem by
storing a list of LNodes called CHILDREN and an LGraphElement called PARENT
as properties with the LNodes to be able to store inclusion information.

I 4.3.5 Intermediate Processors

Intermediate processors pre- or postprocess the core layout phases. Therefore they
are dedicated to a special slot before or after one of the layout phases. There can
be dependencies to other intermediate processors in the same slot. Furthermore,
the intermediate processor is defined by its preconditions and postconditions. In-
termediate processors are used in KLay layered for example for port handling, long
edge splitting and the treatment of self loops. See Schulze [41] for further informa-
tion. For the layout of compound graphs, the following five additional intermediate
processors are introduced.
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4.3 KLay Layered

1. The CompoundCycleProcessor, in charge of solving cyclic dependencies of com-
pound graphs,

2. the CompoundDummyEdgeRemover, which removes the dummy edges that
have been used for layering,

3. the CompoundSideProcessor, inserting dummy nodes and edges to reserve
drawing space for upper and lower compound node rectangle sides,

4. the SubGraphOrderingProcessor implemented to disentangle subgraphs that
have gotten interleaved in the node ordering phase, and

5. the CompoundGraphRestorer, used to prepare the final layout application.
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5

Layout of Compound Graphs in KLay Layered

The goal of the implementation part of this thesis is to provide the KLay Layered
algorithm with the capability to draw compound directed graphs with hierarchy-
crossing edges. This general problem was restricted in some respects, as Section
1.3 explains, mainly in the domain of port handling. This chapter explains several
tasks that compound graph layout encompasses and debates different approaches to
address them. For each task, the approach chosen for implementation is described.
First, the basic choice of the layering approach is considered. Next, problems are
discussed according to their order of appearance during the algorithm’s layout pro-
cess from the graph import, passing the five phases of the algorithm to the actual
layout application. As long as nothing else is declared and without loss of generality,
the following explanations are given under the assumption that layering takes place
from left to right. We write l(v) for the layer number of the node v with l(v) ∈ N,
if v is assigned to a layer, else l(v) = undef.

I 5.1 Choosing Between Global and Local Layering

We selected two approaches as candidates for the general strategy to draw directed
compound graphs with the layering approach, the one by Sugiyama and Misue [43]
and Sander’s alternative solution [38]. These are introduced in Section 3.2.2 and
both offer fairly general solutions. The main difference between the two is that
while Sugiyama and Misue employ one set of layers per compound node, a method
which is called local layering, Sander uses global layering. As discussed in Section
3.2.2, the latter means that the whole compound graph is laid out using one set of
layers only. As Forster observes [20], drawing with local layers usually is superior
with regard to computation time. On the other hand, global layers allow for more
compact drawings.
The global layering method has one further advantage. As the layering takes

place on a flat representation of the whole graph and is not performed separately
for each compound node, one single pass of the layering phase is sufficient. As it
is a goal of this thesis to implement the automatic drawing of compound directed
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5 Layout of Compound Graphs in KLay Layered

graphs with KLay Layered in one pass of the whole algorithm and with very little
changes to the phases of the algorithm, the approach of Sander is chosen as the more
adequate basis for the implementation. It must be noted though that this choice
means trading computation speed for system compatibility and tighter arrangement.
Please see Section 6.1 for the evaluation of the performance of the implementation.

I 5.2 Flat Representation of Compound Graphs

A flat representation of the compound graph opens the possibility to draw the graph
by the KLay Layered algorithm without the need of passing the algorithm in its en-
tirety more than once. In essence, the graph is represented by a plain directed
graph. The key scheme to enable such a representation is the substitution of com-
pound nodes by dummy nodes.

I 5.2.1 Dummy Node Representation

Leaf nodes are represented by single LNodes. They are imported as nodes in non-
hierarchical layout, which includes the copying of the properties, size and label and
the creation of LPorts to represent the node’s ports.
For compound nodes, a single representative cannot be sufficient, because they

span more than one layer. Therefore, they are represented by dummy nodes that
mark their left and right border. In its flat embodiment, a compound node consists
at least of one Left Compound Border (LCB) dummy node holding its left border
and one Right Compound Border (RCB) dummy node on the right border.
All edges ending directly at the compound node without having a target port are

connected to the LCB, except for incoming descendant edges. Additionally, we set
the LCB as the start node for outgoing descendant edges of the compound node, if
they have no source port.
For the edges that originate at the compound node and have no source port, the

RCB serves as source node. An exception are outgoing descendant edges. The RCB
is the target node for incoming descendant edges that are no target port edges.
Figure 5.1 illustrates the dummy node representation.
Each port in the original graph is represented by a compound port dummy node.

We connect all edges that are attached to the original port to this dummy node
in the flat representation. To date, two port dummy types are implemented: the
LCP and the RCP, which are placed together with the compound border dummies
at the left respectively right side of the compound node. As a result, all ports
are placed at the left or right side of the compound node in the final drawing,
including those that were originally at the north or south side. This is due to
the problem restrictions explicated in Section 1.3 and subject to future work. LCPs
serve for outgoing descendant source port edges and incoming non-descendant target
port edges. RCPs are inserted in case of incoming descendant target port edges
or outgoing source port edges that are not descendant edges. Please note that
once a representative dummy node for a port is created, it is reused for all edges
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5.2 Flat Representation of Compound Graphs

(a) A compound graph. Port leaf nodes are drawn as rectangles,
other leaf nodes as round shapes.

(b) The internal representation of the compound graph. Dashed
lines denote dummy edges. Left and right compound border
nodes are labeled as LCB or RCB respectively, left and right
compound port as LCP or RCP. Notice that LPorts are not ex-
plicitly shown, as the Layered Graph has source and target ports
for every edge.

Figure 5.1. A compound graph and its internal flat representation.

connected to the original node, no matter if they are descendant edges and what
direction they have. Thus, cases are solved in which a conflict in choosing between
an LCP representative and an RCP representative would arise, for example in the
case that descendant edges and non-descendant edges of the same direction meet in
the same original port. To support a future optimization with respect to meeting
port constraints in compound nodes, an LCP is chosen as representative of ports
that are situated on the western side in the original graph, while we employ an RCP
if the original port side was eastern. An additional advantage of this is that the
routing of non-descendant edges will be uncomplicated, as the compound node does
not have to be bypassed in the most cases.
We call LCBs and LCPs the opening dummy nodes, short dumO(c) of a compound

node c’s representation and the RCBs and RCPs its closing dummy nodes, short
dumC(c). We refer to the set of opening and closing dummy nodes of a compound
node c as dum(c).
We insert a set of directed compound dummy edges D for the representation of

compound node C:

D := {(u, v) : ((u ∈ LCB ∪ LCP ) ∧ (v ∈ child(C)))
∨((u ∈ child(c)) ∧ (v ∈ RCB ∪ RCP ))}
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5 Layout of Compound Graphs in KLay Layered

with LCB and RCB denoting the 1-element sets of upper respectively lower com-
pound border dummy nodes representing C and LCP and RCP being the sets of
upper respectively lower compound port dummy nodes, each part of the representa-
tion of C. This means that each child node of the compound node and each dummy
node representing such a child node is connected with the opening dummy nodes of
the compound node by an incoming edge and with the closing dummy nodes of the
compound node by an outgoing edge. In a strict sense, this insertion is part of the
preprocessing of the layering phase, because it is done to keep the representing nodes
for C together and in the right order throughout the layering phase. It is presented in
this context nevertheless as it is implemented as part of the graph import for reasons
of simplicity and performance. The compound dummy edges are removed after the
layering phase by an intermediate processor, the CompoundDummyEdgeRemover.
Figure 5.1 illustrates in Figure 5.1(b) the internal representation to which the

compound graph shown in Figure 5.1(a) is imported for the KLay Layered algorithm.
The leaf nodes have single representatives, labeled o1 to o4 and i1. The compound
node c1 is represented by four dummy nodes. The upper and lower compound
border nodes are labeled LCB or RCB respectively. The portless edges are connected
to the compound border nodes, the incoming edge to the upper compound border
dummy, the outgoing edge to the lower compound border dummy. For each port of
the compound node, a compound port dummy is inserted. The upper compound
port node, inserted for the port of the incoming port edge, is labeled LCP, the lower
compound port node is labeled RCP and represents the port of the outgoing port
edge.
Due to the compound dummy edges, the dummy nodes of a compound graph are

placed in different layers. Let i be the number of the leftmost layer in which one
of the opening dummy nodes is placed, and j the number of the rightmost layer in
which one of the closing dummy nodes is placed. We have to guarantee that the
condition i < j holds throughout the layout algorithm execution. We say that the
compound node spans the layers i, . . . , j.

I 5.3 Cyclic Dependencies and Descendant Port-Connected Edges

It is a crucial requirement for the drawing of compound nodes from flat representa-
tion that the dummy nodes and children of a compound node are layered in the right
order, meaning that if i = l(do) with do ∈ dumO(c) for compound node c, j = l(o)
with o ∈ des(c) and k = l(dc) with dc ∈ dumC(c), the following order has to be
fulfilled: i < j < k. As we have seen in Section 5.2.1, this should be provided by the
dummy edges inserted throughout the import. Unfortunately these dummy edges
may not suffice in the case of a cyclic dependency between two compound nodes.
The reason is that in the cycle breaking phase, a compound dummy edge may be
chosen to be reverted instead of one of the adjacency edges that constitute the cyclic
dependency. An example of this is shown in Figure 5.2. We see a very simple cyclic
dependency between two compound nodes in Figure 5.2(a) and the internal flat rep-
resentation of the graph before the cycle breaking phase in Figure 5.2(b). After the
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5.3 Cyclic Dependencies and Descendant Port-Connected Edges

(a) A simple cyclic dependency between two compound nodes.

(b) The internal representation before the cycle breaking phase. One of the adja-
cency edges (straight line) should be reverted to resolve the cycle. That would lead
to correct layering.

(c) Instead, the cycle breaking heuristic chooses the dummy edge (dashed line) from
LCB_2 to inner_2 to be reverted, which will result in the nodes to be layered in
the wrong order as implied by the order in the image.

Figure 5.2. Cyclic dependencies in compound nodes.

cycle breaking phase, one of the dummy edges, which are drawn with dashed lines,
is chosen by the cycle breaking heuristic to be reverted as shown in Figure 5.2(c).
The layering phase will sort the nodes into layers according to a faulty order now.
The LCB that is part of the representation of compound node compound_2 will be
placed in a layer to the right of the RCB representing the same compound node and
as well to the right of the leaf node inner_2. This will prevent compound_2 to be
drawn correctly by the KLay Layered algorithm. This is exactly what happens if we
run KLay Layered on this graph without special treatment of cyclic dependencies
in compound nodes.
We would have a simple solution of this problem at hand, if we were in possession

of a cycle breaking heuristic that supports constraints on which edges not to choose
for edge reversion during the cycle breaking phase. Setting such a constraint for
each compound dummy edge would yield correct layouts.
The GreedyCycleBreaker currently in use in KLay Layered does not support con-

straints of this nature. But it is worthwhile to take a closer look on what would
happen, if we expanded it to respect them. In short, the GreedyCycleBreaker works
in the following steps:
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5 Layout of Compound Graphs in KLay Layered

1. Remove all sources and sinks from the graph.

2. Chose a node v with min(indeg(v)− outdeg(v)).

3. Revert incoming edges of v.

4. Remove v

5. If there are nodes left, go back to the first step.

To enable the GreedyCycleBreaker to correctly handle compound dependencies, the
choice of the node in the second step would be restricted to nodes without incoming
compound dummy edges. Now we take a look at the example in Figure 5.3. Figure
5.3(a) shows a drawing of two compound graphs with a cyclic dependency. The
adjacency edges are on different depth levels. Figure 5.3(b) shows the internal
representation in KLay Layered.
An optimal decision for edge reversion would be to revert the edge from RCB_c2

to LCB_c1. For this graph, min(indeg(v) − outdeg(v)) is −1, which indeed holds
for LCB_c1. Additionally, it has no incoming dummy edges. It follows that it is
eligible to be chosen in step two of the cycle breaking heuristic. However, the same
conditions hold for LCB_c2. The GreedyCycleBreaker is free to choose any of the
two nodes for incoming edge reversion. In the case that LCB_c2 is elected, we cannot
but get a suboptimal result in the number of edges reverted, because the graph is
still cyclic. Furthermore, as soon as LCB_c2 is removed from the graph according
to step one in the second iteration, LCB_m2 becomes eligible for step two in the
second iteration, for then it has one incoming and two outgoing edges, the incoming
edge being an adjacency edge. Suppose it to get chosen in the second iteration, the
graph is still cyclic and a third edge has to be removed to resolve the cycle. So the
handling of this constellation by a GreedyCycleBreaker with constraints could lead
to three edges being reverted instead of one.
This observation motivated us to provide a preprocessing step that allows for the

drawing of compound graphs with cyclic dependencies independently of the cycle
breaking strategy currently chosen.
The CompoundCycleProcessor expects a layered graph as input and has no further

preconditions. It is placed in the slot before phase 1. After processing, the graph
contains no more cyclic dependencies between compound nodes. These are removed
by edge reversion. Reverted edges are marked for later recovery. Basically, this
preprocessor works in three steps.

1. Represent the cyclic dependencies of compound nodes in a cycle removal graph,
comprising representatives of the edges that form cyclic dependencies.

2. Use an arbitrary cycle breaking heuristic to remove cycles from the cycle re-
moval graph.

3. Revert the set of edges represented by the chosen edges of the cycle removal
graph.

54



5.3 Cyclic Dependencies and Descendant Port-Connected Edges

(a
)
Tw

o
co
m
po

un
d
no

de
s
in

cy
cl
ic

de
pe

nd
en

cy
.

(b
)
T
he

in
te
rn
al

re
pr
es
en
ta
tio

n
in

K
La

y
La

ye
re
d.

D
as
he

d
ed

ge
s
ar
e
du

m
m
y
ed

ge
s.

St
ra
ig
ht

ed
ge
s
ar
e
ad

ja
ce
nc
y
ed

ge
s.

(c
)
T
he

co
rr
es
po

nd
in
g
cy
cl
e
re
m
ov
al

gr
ap

h.

Fi
gu

re
5.

3.
A

cy
cl
ic

de
pe

nd
en

cy
w
ith

ad
ja
ce
nc
y
ed

ge
s
on

di
ffe

re
nt

de
pt
h
le
ve
ls
.

55



5 Layout of Compound Graphs in KLay Layered

The CompoundCycleProcessor creates representatives for adjacency edges, in which
source and target nodes are dummies of different compound nodes or belong to dif-
ferent compound nodes. Dummy edges are not considered. To create the according
representative, the adjacency edge is propagated up the inclusion tree, which means
that source and target are replaced by their parent node until both source and target
share the same parent. Formally put, for an edge e = (u, v) the propagated edge is
the edge ep = (up, vp), where

(up = u ∨ up ∈ anc(u)) ∧ (vp = v ∨ vp ∈ anc(v)),
up 6= vp, parent(up) = parent(vp).

When we refer to the number of hierarchy levels crossed by one edge in the fol-
lowing, we mean the sum (dep(u)− dep(up)) + (dep(v)− dep(vp)).
The general notion of propagating edges up the inclusion tree is used by Sugiyama

and Misue [43] in the creation of a derived graph that is used for the assignment
of compound levels to the vertices. In the context of this thesis the reason for the
propagation of compound adjacencies is that up and vp are the outermost compound
nodes, whose internal representation is affected by the adjacency edge e. Only to
consider the outermost compound nodes keeps the cycle removal graph simple and is
sufficient to express the cyclic dependency without regard to the depth of the nodes
connected by the adjacency edge. After propagating the edge, the CompoundCy-
cleProcessor inserts agent nodes for up and vp into the cycle removal graph as well
as an edge between them that serves as representative of the adjacency edge in the
cycle removal graph. After insertion of representatives for all concerned adjacency
edges and their source and target agents, the cycle removal graph is cyclic if there
are cyclic dependencies between compound nodes of the graph to be laid out. Any
cycle breaking heuristic can be used to resolve these cycles. At the moment, the
greedy cycle breaking heuristic, see Eades et al. [16], is employed in the implemen-
tation. It is possible to develop a heuristic specialized on this concrete problem in
the future as a small and modular task.
For every edge of the cycle removal graph that is chosen to be reverted by the

cycle breaking heuristic, we access the represented adjacency edge of the graph to
be laid out and revert it. The original edge direction is restored before drawing
with the help of the same intermediate processor that restores the edges reverted
during phase 1, the ReversedEdgeRestorer. The employment of this intermediate
processor is done simply by setting the boolean REVERSED property of the edges
concerned. We see the concept of the cycle removal graph illustrated in Figure 5.4.
In Figure 5.4(a), the adjacency edges of a compound graph are inserted into its
inclusion tree. Figure 5.4(b) shows the propagated edges and the resulting cycle
removal graph is pictured in Figure 5.4(c). The suffix _rep indicates that the object
shown is representing the according graph element in the cycle removal graph. All
three representations show that there are cyclic dependencies, so that two of the
adjacency edges have to be reverted.
The reverting of edges that are connected to a compound dummy node involves

finding and possibly creating the corresponding dummy node on the opposite side
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5.3 Cyclic Dependencies and Descendant Port-Connected Edges

e1

e2

e3

e4

(a) The inclusion tree of a compound graph with inserted adjacency
edges (dotted edges).

e1_rep

e2_rep

e3_rep

e4_rep

(b) Representatives of adjacency edges derived by propagating source
and target up the inclusion tree until they share the same parent.

e1_rep e2_rep e3_repe4_rep

(c) The resulting cycle removal graph with
edge and node representatives.

Figure 5.4. Deriving a cycle removal graph from a compound graph by propagating edges up the
inclusion tree.
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of the compound node. If an edge was connected to the LCB, it has to be connected
to the RCB after reversion, if it was connected to an LCP, it changes connection
to a RCP and vice versa, including the removal of no longer needed compound port
dummy nodes. Please note that in the current implementation this process is not
reverted during the restoring of edges before drawing, for the aesthetic appeal of the
outcome is more satisfying that way. The reason is that edges do not have to be
routed around the shape of the compound node. An example is Figure 5.2(a). The
drawing is more readable with the two short edges than it would be with the edge
from compound_2 to compound_1 routed around compound_1. In the case that port
constraints have to be respected, the original port and connection of the edge have
to be restored. As the support of port constraints for compound nodes is not part
of this thesis, this is not implemented yet.
Coming back to the motivating example, we see in Figure 5.3(c) the cycle removal

graph of the compound graph in 5.3(a). When we run the GreedyCycleBreaker
with this cycle removal graph, it will immediatly chose the right edge to revert
as c1 has three outgoing edges but only one incoming adjacency edge, thus being
the only node with min(indeg(v) − outdeg(v)). Information formerly hidden from
the GreedyCycleBreaker—namely that the cyclic dependency is caused by multiple
edges in the direction c1 to c2— is now available.
Additionally we will see in Section 5.4, that for the insertion of additional dummy

edges needed for the layering phase, the edge propagation process is necessary at
the latest, so that the most complex work of the CompoundCycleProcessor cannot
be spared even with a constraint respecting cycle breaking phase.
Another constellation that is producing cycles in the graph representation that

cannot be solved by a constraint-free cycle breaking heuristic is that of ports with
incoming and outgoing descendant edges. Ports of this kind are represented by one
single compound port dummy node as explained in Section 5.2.1. This means that
the compound port dummy node is connected to descendant nodes by incoming as
well as by outgoing edges, possibly leading to its assignment to a layer in the midst
of layers occupied by descendant nodes, which would be a faulty assignment. It can
be observed that one of the responsible adjacency edges is forming a direct cycle
with a compound dummy edge connecting the same compound port dummy and
descendant representative as the adjacency edge, only in reverse direction. This
adjacency edge should be reverted to solve both, the cycle and the general lay-
ering problem as Figure 5.5 shows. As we chose not to introduce constraints to
the GreedyCycleBreaker, another solution is chosen here that completes the goal of
keeping compound graph drawing independent of the choice of the cycle breaking
heuristic. The adjacency edge forming a cycle with a compound dummy edge is re-
verted during the edge iteration of the CompoundCycleProcessor. More specifically,
this is the incoming descendant edge in case of an LCP and the outgoing edge in
case of a RCP.
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5.4 Layering in a flat Compound Graph Representation

(a) A compound graph with an in-
coming an an outgoing descendant
edge.

(b) The internal representation. Dashed lines are dummy edges. Adjacency edge
and dummy edge between the RCP and the descendant leaf node inner_2 form a
cycle. If the dummy edge is to be reverted, the nodes will be layered in the faulty
order implied by the image.

(c) Solving the cycle by reverting the adja-
cency edge instead allows for correct layering.

Figure 5.5. Cycle problem imposed by drawing ports with incoming and outgoing descendant edges.

I 5.4 Layering in a flat Compound Graph Representation

A major requirement in drawing compound graphs with the help of a flat repre-
sentation is the preservation of the correct order of compound node dummies and
compound node descendants. LCB and LCPs have to be layered left of representa-
tives of descendants of the compound node, which themselves have to be placed in
layers before the RCB and RCPs. As explained in Sections 5.2.1 and 5.3, the main
means of meeting this requirement is the insertion of directed dummy edges that
directly represent the constraints by expressing that the source node is to be layered
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5 Layout of Compound Graphs in KLay Layered

(a) Stair effect without additional dummy
edges.

(b) Layout result with additional dummy edges.

Figure 5.6. Solving the stair effect problem for hierarchy crossing edges with the help of additional
dummy edges for the layering phase.

left of the target node. The main problems not solved by this approach arise from
situations that tempt the cycle breaker to revert one of the dummy edges instead
of an adjacency edge to solve cycles in the internal flat graph representation. This
is the case, if cyclic dependencies exist between compound nodes or if a port has
incoming as well as outgoing descendant edges. These situations are disarmed by
the intermediate processor CompoundCycleProcessor before the layering phase as
described in Section 5.3. There remains a minor problem that does not affect the
correctness of the drawings but their aesthetics and readability by introducing more
edge bends than necessary. The problem arises in drawing hierarchy crossing edges
and is rooted in the fact that the internal flat representation has no means yet to
force the source nodes of such edges to be layered left of the LCB and LCPs of the
compound node to which the target node belongs. For this reason we can observe
that the source nodes appear at the top or bottom side of the compound node con-
taining the target. As this leads to stair-like edge bends, we call this the stair effect
of global layering with a flat graph representation. The effect is illustrated by Figure
5.6(a). Both hierarchy crossing edges have to be bent twice, because the source leaf
nodes are placed in one layer with the opening dummy nodes of the compound nodes.
Though this improves the compactness of the final drawing, it is not desirable, be-
cause the edge bends affect the readability. Drawings based on global layering tend
to be compact in general for the reason that compound nodes are allowed to span
multiple layers instead of spreading the width of one layer. We already profit from
this advantage, so there is no need to trade readability for drawing space. The stair
effect is therefore eliminated by the insertion of additional dummy nodes for the
layering phase.
Figure 5.7 illustrates this process. It shows a very simple graph with a hierarchy

crossing edge in Figure 5.7(a) for which the appearance of the stair effect would
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5.4 Layering in a flat Compound Graph Representation

(a) Directed compound graph with hi-
erarchy crossing edge.

(b) Internal representation with inserted additional
dummy edge (dotted). The straight line is the hier-
archy crossing edge, dashed lines are dummy edges
inserted during graph import.

Figure 5.7. Additional dummy edge inserted in the case of a hierarchy crossing edge.

be very irritating. To avoid this, we insert an additional dummy edge, which is
displayed in Figure 5.7(b).
The insertion of this dummy edge results in the leaf node labeled outer to be put

in a layer on the left of the LCB that is part of the representation of the compound
node. The drawing in Figure 5.6(b) is laid out with the help of according dummy
edges and does not show the stair-like bends, since source nodes are put left of the
compound nodes instead of at their sides.
An interesting aspect is the insertion of dummy edges for hierarchy crossing edges

that cross more than one hierarchy level. See Section 5.3 on how the number of
hierarchy levels crossed is defined. In this case it is important to find the two
distinct compound nodes that contain—or are identical with—source and target
node and have the same parent node. We call them source containing and target
containing compound node. Now we insert a dummy edge between the closing
dummy nodes of the source containing compound node and the LCB of the target
containing dummy node. This serves to guarantee that two compound nodes of the
same depth connected by a hierarchy crossing edge are not placed side by side but
span disjunct layers. Figure 5.8 illustrates the compound node level for which the
layering constraint is to be inserted. We insert a dummy edge from the RCB of
compound_1 to the LCB of compound_2 to realize this constraint.
We observe that the problem is closely related to propagating adjacency edges

for the building of the cycle removal graph as described in Section 5.3. In view
of the logical structure of KLay layered, the task of inserting additional dummy
edges is one to be handled by an intermediate processor placed before phase 2, but
it is striking that the propagation is already performed for each hierarchy crossing
adjacency edge by the CompoundCycleProcessor, so that it is easily possible to let
this intermediate processor handle the insertion of the additional dummy edges as
well. Otherwise the same work would be done twice. For better performance, the
dummy edge insertion is implemented within the CompoundCycleProcessor.
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5 Layout of Compound Graphs in KLay Layered

Figure 5.8. Eliminating the stair effect for edges crossing more than one level of hierarchy. The thick
dotted edge illustrates the requested constraint for the layering phase.

I 5.5 Node Ordering

The special demands compound graph drawing imposes on the node ordering phase
can be stated as two restrictions that are not to be violated in the crossing mini-
mization. Those restrictions are introduced in Section 5.5.1. The following sections
present different possible approaches to meeting these restrictions and the actual
implementation to KLay layered.

I 5.5.1 The Two Restrictions for Node Ordering in Compound Graphs

To reuse the crossing minimization phase of an algorithm for simple directed graphs
for the layout of compound directed graphs might lead to a node ordering that pre-
vents the compound nodes to be drawn correctly. There are two main restrictions
that are essential. The first, in the following referred to as restriction A, focuses the
single layer and demands that all nodes that belong to a subgraph or the represen-
tation of one of its nodes or edges have to be put in an unbroken sequence. Please
note that we will regard long edge dummy nodes representing a hierarchy crossing
edge to belong to the compound node containing the target and all subgraphs to
which the target belongs. Thus restriction A means that nodes assigned to different
compound nodes are not allowed to be mixed up within the layer.
The second restriction, which we call restriction B in the following, refers to the

relative ordering of nodes of different subgraphs across all layers and claims that this
ordering must be the same on all layers. This means that nodes of one subgraph
must not be placed above nodes of another subgraph in one layer and below nodes of
this other graph in another layer. In other words, subgraphs must not be interleaved
across the layers. The reason for each of the restrictions is that its violation would
render it impossible to surround all nodes of the given compound node by a bounding
rectangle while leaving other nodes outside.
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s1

s2

s1

(a) Violation of restriction A.
A broken sequence of subgraph
nodes in one layer.

s1 s2

s1s2

(b) Violation of restriction B.
Intertwining of two subgraphs
across the layers.

Figure 5.9. Violation of the two restrictions of node ordering in compound graphs. s1 and s2 denote
nodes of different subgraphs.

Figure 5.9 illustrates both restrictions. Part 5.9(a) signifies a violation of restric-
tion A. Nodes labeled s1 are of a different subgraph than the node labeled s2. As
the two nodes of subgraph s1 are not placed in sequence, restriction A is violated
and there is no way of drawing a bounding rectangle around subgraph s1 excluding
subgraph s2. Figure 5.9(b) shows the meaning of restriction B. The two subgraphs
s1 and s2 do not have the same order on both layers. In the left layer, the node of s1
is placed above the node of s2, while in the right layer, a node of s2 is placed above
one of s1. None of the subgraphs could be surrounded by a bounding rectangle in
the final drawing excluding each other.

I 5.5.2 Keeping Compound Node Contents in Contiguous Sequences

The first requirement to be met is to prohibit nodes belonging to different subgraphs
to mixed up in one layer. It is important to keep in mind that this restriction is
to be regarded with respect to hierarchy, which means that nodes belonging to the
subgraph given by a compound node C have to be kept in an unbroken sequence,
but the same condition is to hold for subgraphs given by any of its descendants. A
result of this is that, with the exception of the highest depth level, we have to regard
ordering node sequences instead of only single nodes. In this section first we explore
an approach that was taken into account for solving this problem for KLay Layered,
but not chosen in the end due to its restrictiveness. Then the approach by Sander is
introduced, which was considered as well. Furthermore the basic idea for the current
implementation is explained, which follows a method from Forster. Finally, some
details about the implementation and a new class structure that resulted for the
node ordering phase of KLay Layered are given.
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A Road Not Taken: Constraint-Based Approach

One of my first ideas for meeting restriction A was to impose constraints on the
node ordering phase of the algorithm that would prevent the nodes of a subgraph
from leaving the boundaries of its sequence.
If we want to implement such an approach, additional dummy nodes that mark

those boundaries would be a helpful device. Assuming that for each subgraph there
is an opening sequence dummy node in the layer as well as a closing one, it is possible
to express the constraint: For each node v that is part of subgraph S with opening
border dummy node os and closing border dummy node cs condition

ord(os) < ord(v) < ord(cs) (5.1)

must hold.
The concept of using sequence dummy nodes is illustrated in Figure 5.10. Figure

5.10(a) shows a layer with eight leaf nodes. Leaf nodes two to eight belong to the
subgraph given by compound node A, three and four also to the one of compound
node B, and six to eight also to the subgraph induced by compound node C. Figure
5.10 shows the representation of compound node sequences with opening and closing
sequence dummy nodes. In this representation, condition 5.1 holds. We can see
however that this condition is not sufficient to guarantee the fulfillment of restriction
A. If we take a look at another ordering of the same nodes as presented in Figure
5.10(c),we observe that constraint 5.1 still holds. Additionally, the sequences of the
compound nodes A and C are still contiguous. In contrast, the sequence of compound
node B is broken now by the insertion of the full sequence of compound node C. To
solve this problem, another constraint would have to be introduced, which prohibits
the faulty nesting of compound node sequences. In the example, a constraint such
as

ord(oC) < ord(oB) (5.2)

together with the constraint 5.1 would lead to a node ordering that fulfills restric-
tion A. The problem with constraint 5.2 is that it fixes the order of the compound
node sequences for compound node B and C. This implies that restriction A cannot
be met by inserting constraints of this kind for the node ordering phase without at
least fixing the order of sequences belonging to compound nodes that are siblings.
Even their leaf-node siblings have to be included in the ordering constraints, which
can be understood by examination of a node ordering in our example sequence, in
which node 1 is moved within the sequence of compound node A: while constraint
5.1 is not violated, restriction A is. The only nodes that could be swapped in order
freely would be leaf node siblings sharing the same constraint relations concern-
ing their compound node siblings. This would handicap the crossing minimizer to
an unacceptable extent. For this reason, we decided to drop the constraint based
approach.
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(a) A layer with three com-
pound nodes, A, . . . ,C, and
eight leaf nodes, 1, . . . , 8. Com-
pound nodes are drawn as rect-
angles. Leaf nodes are part of
the subgraphs given by com-
pound nodes that surround
them.
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(b) Compound nodes repre-
sented by opening (triangle on
peak) and closing (triangle on
base) dummy nodes. Condi-
tion 5.1 holds.
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(c) Another order of the nodes.
Constraint 5.1 still is fulfilled
for all compound nodes, but re-
striction A is violated: The se-
quence of compound node B is
broken.

Figure 5.10. Sequence based approach: Using sequence dummies to represent sequence borders of
compound nodes.

Sander’s Approach: Reordering according to Average Position

The idea of Sander [38] (for an introduction of his complete approach see Section
3.2.2) is to correct each step of barycenter oriented crossing minimization by re-
sorting the layer according to average position weights of the subgraphs. For this
purpose, only the nodes of one layer are taken into account. For this layer, a reduced
nesting tree T ′ is built. This means that the inclusion tree is reduced to the nodes
present in this layer and their ancestors up to their first common one. The building
of T ′ is illustrated in Figure 5.11(b). Here, T ′ of the upper layer shown in Figure
5.11(a) is pictured.
Position weights P (v) are denoted for the leaf nodes v of the reduced nesting tree.

The weights are identical with the actual node positions in the layer. From these
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weights, average position weights for the subgraphs are calculated. The average
position weight Pi(u) of subgraph u for layer i is calculated as:

Pi(u) = 1
|{v ∈ VL|u→∗T ′}|

∑
v∈VL|u→∗T ′

P (v)

with VL denoting the set of nodes placed in this layer. In Figure 5.11(b) we can see
the (average) position weights denoted on the reduced nesting tree of the example.
The subgraphs in the layer and their belonging nodes are now reordered according
to ascending average position weight. The result for our exaple layer is shown in
Figure 5.11(c).
As we can observe by a comparison of this outcome and another reordering, which

is both meeting restriction A and optimal in the number of edge crossings, pictured in
Figure 5.11(d), this method tends to introduce unnecessary edge crossings. This was
already observed by Forster [20]. In the example, four out of seven edge crossings
are not necessary. To truly estimate the effect of this disadvantage, it might be
rewarding to take a look at the behaviour of the whole algorithm with respect to
more than one iteration. As we know, so far this has not been done by any critic
of the approach. It might also be interesting to observe, whether another strategy
of weight calculation, perhaps taking edge-induced barycenter values into account,
would enhance the method.
We did not choose to follow this approach however, because in any case it is very

intrusive with respect to the node ordering algorithm itself.

Forster’s Approach: Crossing Reduction Graphs

Another approach to respect the hierarchy within one layer is that of Forster [20],
see also Section 3.2.2. A main contribution of this work is the observation that
computing the child order of all compound nodes independently does not result
in losing quality. In consequence of that finding, Forster proposes to serve the
nodes in accordant portions to a conventional algorithm for weighted 2-layer crossing
reduction. As a means to handle that task, he introduces the Crossing Reduction
Graph (CRG).
A CRG is a representation of two layers and is created for each compound node.

In the fixed layer, the nodes remain unaltered. Let C be the compound node, for
which the CRG is created. From the free layer, all nodes that are no descendants
of C are removed as well as their incoming edges. For each compound child of C
that is represented in the layer, all descendants are combined to form one single
node that is to represent the compound child. All edges that were connected to the
single descendants of the child are now connected to the new node. If multiple edges
result, this is expressed by according edge weights. Now for each child of C there is
at most one node in the free layer. The creation of the CRG is illustrated in Figure
5.12, which shows two layers of nodes with related compound nodes for the lower
layer in Figure 5.12(a). In Figure 5.12(b) we see the CRG for the grey compound
node.
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5.5 Node Ordering

(a) Situation in two layers after a step of barycenter oriented re-
ordering. We consider the upper layer. There are no edge cross-
ings, but the nodes of different subgraphs are mixed up (Sub-
graphs indicated by labels A to C).

2 31 4

5 2.53.67

6

(b) The reduced nesting tree of the upper layer with
annotated (average) position weights.

(c) The layers after resorting the upper layer according to average
position weights of the subgraphs. Several edge crossings result,
of which four are unnecessary as figure 5.11(d) shows.

(d) Optimal result of resorting the upper layer to meet restriction A.

Figure 5.11. Reordering of one layer according to average position to solve restriction A. The layers
are displayed top to bottom instead of left to right for better readability.
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(a) A clustered graph. (b) The CRG of the grey node.

Figure 5.12. Creating the CRG. Figure by [20]

If the CRG of a compound node is fed to a conventional algorithm for weighted
2-layer crossing reduction, the outcome can be used as the order for the children
of C. This way, a child order for each compound node in the inclusion tree can be
computed and the order for the layer nodes can be determined by traversing the
inclusion tree.

Implementation

We chose Forster’s approach, see Section 5.5.2, as the basic idea for our imple-
mentation. Two main reasons for this were that it does not yield the danger
of loosing quality of crossing reduction and that it is uninvasive with regard to
the crossing minimization heuristic itself. Implementing this approach does not
hurt the modularity of KLay Layered in this respect. The crossing minimization
heuristic can still freely be interchanged, given the expression of multiple edges
does not alter. The fundamentals of the implementation were created by provid-
ing a new structure of the node ordering phase of KLay Layered that introduces
the CompoundGraphLayerCrossingMinimizer (CGCM), which implements the ac-
tual crossing minimization step for a given free layer. If the graph to be laid out
is a compound graph, it creates CRGs for the compound nodes and hands them to
the crossing minimization heuristic to calculate the seperate child orders, working
its way from the innermost compound nodes to the outermost ones.
Figure 5.13 shows the structure of the node ordering phase. The class LayerSweep-

CrossingMinimizer is used to implement the performance of layer sweeps. It handles
the layer iteration and the counting of edge crossings and uses a class that imple-
ments the interface IPortDistributor to determine the distribution of ports. The
standard implementation of the IPortDistributor is the NodeRelativeDistributor, see
Spönemann [42]. The LayerSweepCrossingMinimizer does not perform or even or-
ganize the actual crossing minimization however, but uses a CGCM, which manages
the crossing minimization. For that purpose, the CGCM chooses an ICrossingMini-
mizationheuristic, of which the Barycenterheuristic, see Spönemann [42] and Schulze
[41], is the standard implementation. The Barycenterheuristic does not handle con-
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LayerSweepCrossingMinimizer

CompoundGraphLayerCrossingMinimizer NodeGroup

BarycenterHeuristic

<<Interface>>
ICrossingMinimizationHeuristic

<<Interface>>
IConstraintResolver

ForsterConstraintResolver

uses

implements

SimplePortDistributorNodeRelativePortDistributor

<<Interface>>

IPortDistributor

Figure 5.13. Architecture of the KLay Layered node ordering phase implementation.

straints by itself but uses an IConstraintResolver to resolve them. The interface
is implemented by the ForsterConstraintResolver, see Schulze [41]. To calculate
the node barycenters, the BarycenterHeuristic takes port ranks into account, see
Spönemann [42], for which it uses an IPortDistributor.
It follows that for the implementation of compound graph node ordering, no

changes to the actual layer sweep and to the crossing minimization heuristic have to
be introduced. The additional means is added between the two as a kind of middle
management deciding on which nodes and edges of the two layers to pass on in which
order to the heuristic. The class CGCM is the only part of code working on the
notion of hierarchy in the node ordering phase, while all others are left unaltered in
their essence.
To build the CRGs, the CGCM makes use of the NodeGroup class, formerly called

Vertex, see Schulze [41]. A NodeGroup can contain one or more nodes and is used
in the node ordering phase to model sets of nodes that are placed next to each
other. Now it is employed as well to envelop the child nodes of one compound
graph to be able to express it as a single node group in the CRG of its parent. The
class offers two constructors, one to generate a node group containing one single
node, and another that merges two given NodeGroups into a new one. The latter
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constructor also handles the weight, and barycenter calculation of the NodeGroup.
The LayerSweepCrossingMinimizer already builds a single-node-NodeGroup for each
node in the free layer and hands an according Map down to the CGCM. When nodes
are grouped to represent a compound node in the CRG of its parent, the single-node-
Node-Groups are merged by the CGCM to form a new NodeGroup. The order of
the nodes will be preserved by this action in the nodes list of the NodeGroup. The
CGCM passes a list of NodeGroups to the crossing minimization heuristic and will
receive it back with the new ordering of NodeGroups. The CGCM exerts its only
impact on the layout, if a compound graph is to be placed and the free layer contains
any nodes. In the case of an empty free layer its main method would return directly
and in case of a non-compound graph, it will pass the layer unaltered to the crossing
minimization heuristic.
If the layered graph is a compound graph, two datastructures are essential to the

algorithm. The first is the compoundNodesMap, in which for each compound node
the layer nodes that are its children or its dummy nodes, together called content
in the following, are stored in a list, represented by NodeGroups. It follows that
in the beginning, the lists contain only single node NodeGroups. In order to build
up the Map, the related compound nodes for nodes of the free layer are identified.
This is the parent for leave nodes, the related compound node for dummy nodes.
In the processing, we preserve the order of processed compound nodes in a list
called compoundNodesMapKeys for to procure a documentation of the order of
appearance.
The second data structure is a list of LNode lists called compoundNodesPerDepth-

Level. This list has one NodeList for each depth level of the graph. At the beginning,
we sort all compound nodes of the compoundNodesMapKeys into the lists indexed
by their depth level. Now compoundNodesPerDepthLevel contains all compound
nodes that are represented by own dummy nodes or by child leaf nodes in the layer.
The building and processing of CRGs takes place from the leafs of the inclusion

tree up to the root. To manage this, the CGCM iterates the lists of compoundNodes-
PerDepthLevel from the highest index to the lowest. For each compoundNode in
the actual list, the content taken from the compoundNodesMap is passed to the
crossing minimization heuristic.
Preserving the achieved order, the nodes are afterwards merged to form a node

group, which is inserted into the content of the ancestor from the next depth level.
This ancestor itself is inserted into the list of compoundNodesPerDepthLevel that
is indexed by its depth. When the root of the inclusion tree is reached, the order of
the nodes can be extracted from the remaining NodeGroups.
The pseudocode for the CGCM is shown below.

Listing 5.1. CompoundLayout

1 initialize crossing minimization heuristic: heuristic;
2 merge := NodeGroup.list −> Nodegroup
3 if layer = ∅ then
4 return;
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5 if graph is not compound then
6 call heuristic(layer NodeGroups);
7 apply order;
8 else do
9 CNM := LNode −> NodeGroup−list;

10 K := LNode−list;
11 for each node V in layer do
12 C := parent(V); // or related compound for dummy nodes
13 append V to CNM(C);
14 append C to K;
15 CNPDL := LNode−lists−list;
16 for each depth level i do
17 DL_i := LNode−list;
18 store DL_i at CNPDL(i);
19 for each node N in K
20 append N to CNPDL(dep(N));
21 while CNPDL ! = ∅ do
22 L := last element of CNPDL;
23 remove last element of CNPDL;
24 for each node P of L do
25 compoundContent := CNM(P);
26 call heuristic(compoundContent);
27 if P ! =root then
28 NG := merge(compoundContent);
29 append NG to CNM(parent(P));
30 append parent(P) to CNPDL(dep(parent(P));
31 else do
32 apply order;

I 5.5.3 Ordering of Subgraphs across the Layers

The CGCM ensures that the contents of different compound nodes are not mixed up
in one layer, but it does not preclude that different subgraphs get intertwined across
the layers. There are two main approaches to guarantee the compliance with restric-
tion B. One is to respect it in the node ordering heuristic by inserting constraints
or manipulating edge weights. The other approach consists of a postprocessing of
the node ordering phase, in which the subgraphs are carefully disentangled. Both
methods are introduced in the following.

Forster’s Approaches: Constraint Method and Heavy Edge Method

Forster [20] aims to respect restriction B right from the start in the node ordering
phase. He introduces the constraint method as well as the heavy edge method, both
are illustrated in Figure 5.14. The figure shows compound nodes spanning two lay-
ers on the left, an illustration of the constraint method in the middle, and it shows
the heavy edge method in the drawing to the right. Note that the figures show
layers from top to bottom, not left to right. The constraint method depends on a
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5 Layout of Compound Graphs in KLay Layered

Figure 5.14. Forster’s approaches to respecting subgraph ordering across the layers. The left drawing
shows compound nodes spanning two layers. The constraint based approach is illustrated in the
middle, while the heavy edge method is shown in the right figure. Figure by [20]

2-layer crossing reduction algorithm that supports constraints in the sense of prede-
fined relative orders of some node pairs. Forster himself has proposed a constraint
respecting crossing reduction algorithm in a subsequent paper [21], another is intro-
duced by Schreiber [40]. The constraint method inserts constraints into the CRGs.
The relative order of two sibling compound nodes in the fixed layer is sustained in
the free layer by inserting an according constraint between their representing node
groups in the CRG. The constraint is shown in Figure 5.14 as a dotted arc. The
problem with this approach is that the order of compound nodes is determined by
the first fixed order, which makes the crossing minimization too restrictive. Hence,
it is not implemented in KLay Layered. The second proposal of Forster is the heavy
edge method, which consists in modeling compound nodes as edges with very high
weight. Figure 5.14 shows these edges labeled∞. Forster explains that this method
does not guarantee compliance with restriction B, so that postprocessing may still
be necessary. Furthermore he points out that the heavy edge method penalizes ad-
jacency edges that cross compound nodes at the expense of an increased number of
adjacency edge crossings. For these reasons, the heavy edge method was not chosen
for the KLay Layered implementation.

Sander’s Approach: The Subgraph Ordering Graph

Sander [38] introduces the subgraph ordering graph as a means to disentangle sub-
graphs as a postprocessing of the node ordering phase, to see also Section 3.2.2. We
recall the definition of the subgraph ordering graph:
The subgraph ordering graph consists of all nodes of the graph. It contains an
edge (w,w′), if there are nodes v, v′ and a subgraph u0 with l(v) = l(v′) and
P (v) = P (v′) − 1 and w 6= w′ and u0 →∗I w →∗I v and u0 →∗I w′ →∗I v′ with
P (i) is the position of the node in the layer. The condition P (v) = P (v′)− 1 means
that Sander wishes to insert edges representing the relation is left of. To understand
this it is important to keep in mind that Sander thinks of top to bottom layering, not
left to right. The Subgraph Ordering Graph is shown in Figure 5.15. We can see in
the example that there are disconnected graph components, one for each compound
node in the inclusion tree.
There can be an arbitrary number of cycles in each of the components, indicating

intertwined subgraphs. To achieve an ordering of the node that satisfies require-
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5.5 Node Ordering

Figure 5.15. The subgraph ordering graph. Figure by [38]

ment B, the cycles in the subgraph ordering graph have to be dissolved. Then a
correct node order is given by the topological ordering of the subgraph ordering
graph. Sander’s approach was chosen for implementation in KLay layered for two
reasons. First, it does not affect the node ordering phase itself and is not dependent
on heuristics that respect constraints or consider heavy edge weights. Second, its
performance with respect to the number of node crossings is dependent on the cycle
breaking heuristic employed, so this implementation yields a modular, compact task
for future work. At the moment, the GreedyCycleBreaker heuristic is employed,
leading to correct results. A future research topic might be to implement and use
different heuristics and strive to enhance the layout with regard to the number of
node crossings. One approach might be to cut the cycle at the node u with the
smallest average position:

P (u) = 1
|v ∈ B|u→∗I v|

∑
v∈B,u→∗I v

P (v)

with B being the nodes that are no compound nodes and P (v) being the position
of node v in the layer, as Sander proposes.

Implementation

The compliance with restriction B is the task of the intermediate processor Subgraph
Ordering Processor (SOP) of KLay Layered. It assumes that the node ordering has
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taken place and that the nodes in one layer that belong to the same compound node
are placed according to restriction A. Its postcondition is that all subgraphs have
the same relative order on all layers. The SOP is an implementation of the approach
of Sander, hence its basic steps are:

1. Build a subgraph ordering graph.

2. Break the cycles in the subgraph ordering graph.

3. Retrieve the order of the nodes for each layer by a topological sorting of the
subgraph ordering graph.

As we assume without loss of generality that layering takes place from left to right,
we think of an is below-relationship of nodes in the layer rather than of an is left
of -relationship. We start with an empty subgraph ordering graph, iterate each node
in each layer and update the subgraph ordering graph in the case that nodes are
neighbors in one layer that are of different compound nodes and are no leaf nodes
of the highest depth level. To find the correct graph component to insert the edge,
we propagate it in the way described in Section 5.3, until two (compound) nodes
with the same parent are reached. Representatives for those nodes are inserted
into the subgraphOrderingGraph as well as the connecting directed is below-edge.
As explained before, the greedy cycle breaking heuristic is employed to remove the
cycles from the subgraph ordering graph. If the cycle breaking heuristic detects no
cycles, the order of the nodes remains unaltered, because restriction B is already
satisfied. In any other case the layers are reordered such that the node ordering is
in accordance to the topological sorting of the subgraph ordering graph. During the
recursive order application, all compound nodes have to be processed, even if not
all nodes have been inserted in the subgraph ordering graph. Merging those nodes
into the order given by the subgraph ordering graph has to respect the layer node
order determined by the crossing minimization phase as far as possible.

I 5.6 Drawing Bounding Rectangles

During the node ordering phase we have respected the restrictions of not intertwining
subgraphs across the layers and of keeping nodes of one subgraph in an unbroken
sequence with regard to the single layer. This was already a prerequisite to drawing
compound nodes as rectangles surrounding the shapes of all the node’s descendants,
leaving out all other nodes. Furthermore, the opening and closing dummy nodes of
the compound node reserve the drawing space needed for the left and right sides
of the bounding rectangle plus any additional drawing space needed, as for insets
etc. What is not taken care of by these methods is to prepare the drawing of the
upper and lower side lines of the bounding rectangle. As we wish to draw straight
lines between the subgraphs placed above each other in the layers, we have to enable
the node placement phase to arrange the nodes such that drawing space is reserved
accordingly. One problem in this is that the subgraphs will in most cases have a
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varying number of nodes in the different layers. Without interference, the node
placing algorihm would assign node positions that would allow for the drawing of
curves rather than for straight side lines. Figures 5.16(a) and 5.16(b) illustrate this
problem. As compound node c2 owns one node in the first layer, two in the next and
one in the third, special effort has to be taken to ensure that straight side segments
of the border rectangles can be drawn between both subgraphs.

I 5.6.1 Compound Side Dummy Nodes and Edges

To reserve drawing space for the upper and lower rectangle borders of compound
nodes, we insert two compound side dummy nodes per layer for each compound
node represented in the layer. This is inspired by the approach of Sander [38], who
uses dummy nodes for the representation of side segments as well. The nodes are
placed at the beginning and end of the contiguous sequences of the compound node’s
content in the layer. We call a side dummy placed at the beginning of a sequence
upper compound side dummy and one placed at the end of the compound node’s
sequence a lower compound side dummy. Additionally, directed compound side
dummy edges are inserted. If i resp. j is the number of the leftmost resp. rightmost
layer compound node c spans, uk resp. lk are the upper resp. lower side dummy
nodes inserted for c in layer k, then we insert compound side dummy edges such
that ui, . . . , uj and li, . . . , lj are paths in the set of compound side dummy edges.
Figure 5.16(c) shows the representations of the two example compound graphs with
inserted side dummies and side dummy edges. The insertion of side dummy nodes
and edges is performed by an intermediate processor in the slot before the node
placement phase, the CompoundSideProcessor.

I 5.6.2 A Side Job for the LinearSegmentsNodePlacer

Having inserted compound side dummy nodes and edges as explained in Section
5.6.1, we can take advantage of a main ability of the node placement algorithm
currently implemented in KLay Layered, the LinearSegmentsNodePlacer. It is an
implementation of the algorithm introduced by Sander [37]. Sander defines the term
of linear segments as a maximal sequence of nodes w1, . . . , wm with:

1. l(wi) = l(wi+1)− 1,

2. indeg(w1) ≤ 1, outdeg(wm) ≤ 1, suc(w1) = {w2}, pre(wm) = {wm−1}, and

3. pre(wi) = {wi−1} and suc(wi) = {wi+1} for i ∈ 2, . . . ,m− 1.

The algorithm strives to draw linear segments and the edges connecting the nodes
as a straight line, horizontal in case of left-to-right layering1. The background of this
goal is the need to draw long adjacency edges that cross several layers and are split

1Note however, that Sander’s explanations are based on the notion of top-to-bottom-layering, thus
referring to “vertical” lines.
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5 Layout of Compound Graphs in KLay Layered

(a) Two compound nodes lay-
ered above each other.

(b) The internal representation with-
out side dummy nodes and edges.

(c) The internal representation with
side dummy nodes and edges. Dotted
edges are side dummy edges, dashed
edges are compound dummy edges.

Figure 5.16. Drawing bounding rectangles of compound nodes with the help of side dummy segments.
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up by dummy nodes to form a proper hierarchy. We simply extend the algorithm to
regard the sequences of side dummy nodes as linear segments as well. Sander assigns
each node to a linear segment, introducing naive segments with only one node—for
nodes that do not have to be placed in line. He requires that edges of different linear
segments do not cross after the crossing minimization phase. This prerequisite is
easily met by the side dummy sequences of KLay Layered, which are inserted only
after the crossing minimization phase in a way that compound side dummy edges do
never cross. The algorithm orders the linear segments according to the relation “is
below” and then uses a pendulum method Sander introduced in an earlier work [36].
The linear segments are modeled as the ball and the edges between them as the
strings of a pendulum. If the uppermost segments are modeled to be fixed on the
side opposed to the direction of gravity, the balls on the string swing to a balanced
layout driven by their gravity. Gravity is regarded to be working in the direction of
the layout, to the right in our case. Neighboured balls are modeled to influence each
other to guarantee a minimum spacing between them. If all forces are balanced, the
linear segments are placed in straight lines. Thus, the LinearSegmentsNodePlacer
places the compound side dummy nodes and edges in straight lines, allowing for
rectangle sides to be drawn in their place in the final layout. The minimal spacing
guarantees the seperation of rectangle boundings. Additional drawing space, for
example concerning insets, can be reserved by influencing the size of the compound
side dummy nodes. It is important to notice that if the LinearSegmentsNodePlacer
is to be exchanged for another node placing algorithm, this algorithm needs the
ability to place the side dummy segments in a straight line.

I 5.7 Restoring a Compound Graph from Flat Representation

Before the layout application can be performed, all dummy nodes and edges that are
still left in the graph are removed with the exception of the LCB of every compound
node that serves as final representative. To prepare this, the size of the compound
rectangle is calculated from the positions and size of the leftmost upper and lower
side dummy nodes and the rightmost upper side dummy node. Port positions are
derived from the position of the according dummy nodes and edges are transferred
from these to accordingly created ports of the LCB. This work is done by the
intermediate processor CompoundGraphRestorer, which is placed in the slot after
phase 5 and assumes, that the splitting of long edges has been already been undone.

I 5.8 Summary

Drawing compound graphs in KLay Layered is done with the help of a special
graph import that translates the compound graph into a flat representation. Cyclic
dependencies between compound nodes and special port edge constellation demand
preprocessing of the cycle removal phase, during which also special problems of
compound graph layering are handled. However the most effort has to be made in
the realm of node ordering to keep the children of compound nodes grouped in the
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layers and to correct possible intertwining of subgraphs across the layers. For this
purpose, a management class had to be inserted into the node crossing phase, which
does not affect the central crossing minimization heuristic, but reflects hierarchy in
the processing of the layer nodes. Additionally a postprocessing step was inserted to
unify the subgraph order across the layers. Further challenges were the reservation
of drawing space for the upper and lower side segments of bounding rectangles for
compound nodes and restoration of the compound graph from the flat representation
after phase 5. With the exeption of the node ordering phase, for which compound
graphs need additional processing management, the tasks were handeled without
interfering with the central phases of KLay Layered.

78



6

Evaluation

This chapter is concerned with experiments and tests that have been run on the
implementation of compound graph layout in KLay Layered. Section 6.1 is concerned
with the results of experiments with the topic of computation time performance,
while Section 6.2 discusses the tests of the algorithm extensions and gives some
drawing examples.

I 6.1 Computation Time

I 6.1.1 Hierarchical vs. Recursive Layout of Nested Graphs

In order to explore which effect the layout of hierarchy has on the computation time
behaviour, we conducted an experiment to compare the layout of nested graphs
by KLay Layered by recursive application or hierarchical layout. The recursive
application means the application of KLay Layered for flat graphs to each subgraph
recursively. Hierarchical layout refers to the approach presented in this paper. This
is no comparison of methods that have the same capabilities, since recursive layout,
in contrast to hierarchical layout, simply ignores hierarchy crossing edges. However,
these measurements serve as an indication of the additional cost of the drawing of
hierarchy crossing edges. The graphs were generated by random, the number of
edges was fixed to 40 edges. The number of nodes is ascending from 28 to 246.
Figure 6.1 illustrates the results of the experiment.
Due to the random generation, though with fixed specification parameters, the

nesting structure of the graphs varies, which is in addition to the relatively small
number of graphs the cause for some up- and downturns in the results.
We ran an additional experiment to find out what effect an increase of nesting

level itself has on the computation time of hierarchical and recursive layout of nested
graphs. We chose a small cyclic graph of five nodes and eight edges shown in
Figure 6.2 and determined computation time results of both specifications of KLay
Layered, with the graph situated in increasing nesting depth. The result is shown in
Figure 6.3. It is obvious that hierarchical layout leads to a considerable increase in
layout time. In this experiment, hierarchical layout exceeded the computation time
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Figure 6.1. Experimental comparison of hierarchical and recursive layout with KLay Layered on
nested random graphs. The number of edges is fixed, the number of nodes and the nesting structure
varies.

Figure 6.2. The small graph used in the experiment on the effect of increasing nesting depth

of recursive layout application to the single compound nodes by an average factor of
20. This motivated us to take a closer look on the layout times for the single phases
and intermediate processors to determine which modules use the most time.

I 6.1.2 Computation Time of Submodules

While investigating which components use up what part of the computation time,
we were also interested in the differences of computation times for each module, i.e.
phases and intermediate layouters, for small and large graphs. This is motivated
by the significance of the computation time difference of hierarchical and recursive
layout for large graphs. We examined the component layout time of two sample
graphs. One was a small graph with ten nodes, four of them compound nodes.
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6.1 Computation Time

Figure 6.3. The effect of increasing nesting depth on the computation time of hierarchical and re-
cursive layout for a small graph.

The graph comprises three levels of hierarchy and has a set of seven edges, one of
them is a hierarchy crossing edge. The second graph consists of 150 nodes and 198
edges, almost all of them are hierarchy crossing. 96 of the nodes are compound
nodes, and the graph has 7 levels of hierarchy. Figure 6.4 shows the outcome of
the experiment, while Figure 6.5 especially illustrates the partition of computation
times. Components that demand a very small amount of computation time are
summarized in the drawing. The overall computation time was 613.794 ms for the
small graph and 14870 ms for the large graph. The component computation times
for the components in processing order are shown in Table 6.1.
While for the small graph two of the classical layout phases, the edge routing and

the crossing minimization, use up the greatest part of the component time, it is a
special compound graph drawing module that is predominant for the layout of the
large graph. The Subgraph Ordering Processor (SOP) takes up about 83% of the
component time. This explains why the computation time differences of recursive
and hierarchical layout are more eminent in the domain of large graphs: The special-
ized module SOP, uniquely used in hierarchy based layout, gains a larger portion of
computation time with the increase of nesting level and number of compound nodes.
The SOP clearly emerges as bottleneck for the layout time of hierarchical layout in
KLay Layered. Optimizing this module can be expected to exert great influence on
the computation time behaviour of compound graph layout.
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Figure 6.4. Component computation times on large and small graph. Legend: 1 = removal of cyclic
dependencies, 2 = layering, 3 = order subgraphs, 4 = node placement, and 5 = edge routing. The
other modules are summarized under the label other.

I 6.2 Testing and Examples

During development we built up a test suite of 45 test graphs by hand successively.
They are small, partly minimal examples of special graph constellations. Each of
them was created to test the implementation with regard to a special aspect as soon
as the according kind of graph constellation had received special attention. After
each development step, the whole test suite was run to ensure that no interference
with former achievements had taken place. Amongst others the graphs represent the
following problems. Of some, we show drawing examples laid out by KLay Layered.

• Nested nodes - different depth levels.

• Compound node with more than one child.

• Edge connected to port on only one side.

• Compound node with incoming port edges as well as incoming non port edges.
See for example Figure 5.1(a).

• A compound node with outgoing edges of three types: hierarchy crossing, port
edge, and normal edge.

• Descendant edges, incoming and outgoing, with ports or without.
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(a) Distribution of computation time for a small graph (10 nodes, 7
edges, 3 hierarchy levels).

(b) Distribution of computation time for a large graph (150 nodes, 198
edges, 7 hierarchy levels).

Figure 6.5. Component time partition for graphs of different size. Legend: 1 = removal of cyclic
dependencies, 2 = layering, 3 = order subgraphs, 4 = node placement, and 5 = edge routing. The
other modules are summarized under the label other.
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module small graph (ms) large graph(ms)
removal of cyclic dependencies 10.088 320.268
edge and layer constraint edge reversal 0.132 0.287
greedy cycle removal 1.150 1.629
layering 8.791 1.721
layer constraint application 0.184 0.180
removing compound dummy edges 0.796 2.673
long edge splitting 0.657 15.011
port side processing 0.190 2.580
port order processing 2.341 6.591
layer sweep crossing minimization 62.073 831.750
order subgraphs 0.806 12154.000
layer constraint edge reversal 0.127 1.225
port position processing 0.204 2.064
node margin calculation 0.714 7.161
set compound side dummies 1.306 89.832
linear segments node placement 14.238 1155.000
orthogonal edge routing 102.905 43.817
long edge joining 0.300 10.992
restoring of reversed edges 0.194 1.479
preparation of layout application 0.913 12.362

Table 6.1. Module computation times for a small and a large graph.

• Outgoing descendant edge to target with successor.

• Descendant edges crossing more than one depth level - both directions.

• Graphs containing hierarchy crossing edges. See for example Figure 2.1(c).

• Edge crossing more than one hierarchy level. See for example Figure 6.6.

• Hierarchy crossing edges with ports. See for example Figure 6.7.

• Compound nodes with northport or southport edges.

• Ports connected to more than one edge, even with descendant edges. See for
example Figure 6.8.

• Simple cyclic dependency - two constituting edges on the same depth level.
See Figure 5.2(a).

• A cyclic dependency with different depth levels at the source and target of the
edges. See Figure 6.9

• Compound graph with a cyclic dependency formed by an edge without ports
and a port edge. See Figure 6.10.
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Figure 6.6. Indirect compound cycle via a leaf edge.

Figure 6.7. Graph with different types of edges and a hierarchy crossing descendant port edge.

• Indirect cycle of compound nodes via a leaf node. See for example Figure 6.6.

• A graph with hierarchy crossing edges and a cyclic dependency built by edges
situated in different depth levels. See Figure 6.11.

• Graphs with potential for the stair effect. See for example Figure 5.6(b).

• Graph containing a cyclic dependency built by four edges, leading via a leaf
node, and with edges of different depth level as well as edges with different
depth levels of source and target. Additionally, the graph contains an outgoing
descendant edge crossing more than one depth level. See for example Figure 6.6

• Graph with two cyclic dependencies, one with multiple edges, both indirect
(constituted by more than one edge) and built by edges on different depth
levels. See Figure 6.12.

• Graphs without nested structure.

Additionally, the algorithm was tested with 35 random graphs, almost all contain-
ing cyclic dependencies. A test graph example is given in Figure 6.13. The highest
amount of nodes tested was 246, the largest number of edges 198. The highest
nesting level tested with random graphs was seven. The largest graph tested that
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Figure 6.8. Port with multiple edges, including a descendant edge.

Figure 6.9. A cyclic dependency with different depth levels at the source and target of the edges.

contained hierarchy crossing edges consisted of 150 nodes, 198 edges and had seven
hierarchy levels. We made the observation that node overlaps occurred in none of
the graphs tested and that edges were connected correctly to the nodes. The draw-
ings were duly compact, however the avoiding of the stair effect, see Section 5.4,
causes distention in the layout direction. We can observe that the aspect ratio of
graphs from papers is sometimes different from that of our results in this respect,

Figure 6.10. A cyclic dependency with port and no port connections of the edges.
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Figure 6.11. A graph with hierarchy crossing edges and a cyclic dependency built by edges situated
in different depth levels.

Figure 6.12. A graph with indirect cyclic dependencies and multiple edges.

an example is shown in Figure 6.14. Here we have to choose whether to prefer edge
bend minimization or aspect ratio, as these criteria are in conflict. It would also be
possible to insert according dummy edges in dependence of a layout option.
The number of crossings between adjacency edges as well as between nodes and

adjacency edges is not yet satisfactory. This is due to the cycle breaking heuristic
used in the SOP, which is not specialized in the problem. Subgraphs that are
intertwined after the node ordering phase are untangled correctly, but the edge and
node/edge crossings introduced could be reduced by implementation of a dedicated
cycle breaking routine.
To improve crossing minimization, together with optimization of the SOP with

regard to computation time, is one of the most pressing tasks for the future.
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(a) Original drawing from [35].

(b) According graph structure drawn by KLay Layered.

Figure 6.14. An example from literature drawn by KLay Layered.
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7

Conclusion

This closing chapter gives a short survey of the preceding chapters (Section 7.1) and
draws some attention to work to be done in the future (Section 7.2).

I 7.1 Summary

This thesis provided a rather extensive overview of the literature on automatic lay-
out for clustered and compound graphs. Furthermore the KLay Layered algorithm
of KIELER was furnished with additional modules to enable it to draw clustered
graphs.
We connected our implementation to KIML and its KGraph structure by means

of the CompoundKGraphImporter, which imports the graph to a flat representation
in the LGraph format. This is rendered possible by the introduction of accord-
ing dummy nodes, especially those marking the first and last layer a compound
node spans. This flat graph representation and its global layering leads to a sensi-
ble penalty with regard to computation time. However it brings the advantage of
compact drawing and the possibility to draw compound graphs with KLay Layered
without severe changes to the structure and the main phases of the algorithm.
The problem of cyclic dependencies of compound nodes was solved by the in-

troduction of the CompoundCycleProcessor, which preprocesses the cycle breaking
phase. It constructs simplified representations of the dependencies by the propaga-
tion of edges up to the outermost compound nodes affected by them and decides on
edge reversion with the help of these graph structures.
The actual layering of the flattened graph structure is managed with the help

of dummy edge insertion and asks special treatment to avoid the stair effect, an
occurrence of unnecessary edge bends.
The node crossing phase in contrast gave cause to the most complex changes

and additions. As the nodes of different compound nodes have not only to be kept
separate in each layer, but also in the same relative order over all layers, both an
additional organization class for the node ordering, the CGCM, and the intermediate
processor SOP were introduced. The CGCM presents the nodes and gathered node
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groups to the crossing minimization heuristic in a way that the child order of each
compound node is determined separately. Thus, nodes of a subgraph are kept in
unbroken sequences. The SOP unknots mingled subgraphs over all layers.
The drawing of bounding rectangles is rendered possible with the help of dummy

node and edge segments at the upper and lower sides. They are presented to the
node placement algorithm as linear segments to place in a straight line.
The actual layout application is prepared by the CompoundGraphRestorer, an

intermediate processor situated after the edge routing, and realized by the Com-
poundKGraphImporter, which closes the cycle of compound graph drawing in KLay
Layered.

I 7.2 Future Work

There is some future work to be proposed. KLay Layered would profit from attention
to the following aspects.

• Currently, north and south ports of compound nodes are moved to the left or
right side of the node, according to their direction. They should be placed at
the upper or lower side of the bounding rectangle instead, the edges routed in
the way KLay Layered handles the problem for leaf nodes.

• Port constraints for compound nodes need support. This concerns also the
restoring of reversed edges, which have to be reconnected to their original port
dummy nodes.

• The drawing of regions, for example for the expression of concurrent execution
in SyncCharts, is not yet accounted for.

• It should be explored if dedicated cycle breaking heuristics in the Compound-
CycleProcessor and in the SOP can be implemented resp. developed to im-
prove the quality of the drawings, especially with regard to adjacency edge
crossings.

• Selfloops of compound nodes have not been regarded especially so far.

• Interactive layout, different layout directions and the separation of connected
components should be supported.

• Label placement for compound graphs has not been object of concern yet.

• The SOP has to be optimized with regard to computation time.

• Dummy edges that connect dummy side nodes to the LCB and RCB during
the node ordering phase might reduce the size of compound dummy nodes.

• It could be explore, how the side dummy node placement in relation to long
edge dummies can be improved to reduce node size problems.
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Especially the task of finding a favorable cycle breaker for the SubGraphOrdering-
Processor should be an appreciable enhancement with respect to crossing minimiza-
tion and therefore readability, while the optimization of the SOP can be expected
to lower the overall computation time.
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