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Abstract

Designing an embedded, safety-critical system is a difficult task. Since such a system
should never fail under any circumstances, validation is advised. Simulations help to test
a system in a safe environment before deploying the system to tests in the real world,
therefore following a first-time-right approach that is important for safety-critical systems.

In the scope of a bachelor project, a quadcopter, a small, unmanned aerial vehicle
with four rotors, was designed, built and flown. This thesis covers a simulation that was
designed to represent the copter and to validate the flight controller. More specifically this
means that the quadcopter should be able to fly without crashing by tilting too much in
one direction and subsequently flying into a wall.

SCCharts is a visual language designed for specifying safety-critical reactive systems
like the quadcopter that uses KIEM to simulate the created model. SCCharts follows a
control-flow oriented approach, an approach that focuses on the behavior of a system,
yet offers data-flow as well. Data-flow focuses more on the flow of communication and
computation between different parts of a model. This thesis will evaluate SCCharts and
especially data-flow in SCCharts as a means to design safety-critical systems and to create
simulations to execute these systems.

Key words modeling languages, SCCharts, Data-flow, Control-flow, Ptolemy, KIELER, KIEM,
simulation, safety-critical system, quadcopter
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Chapter 1

Introduction

Safety-critical systems, such as systems used in the automotive or aerospace industry,
are difficult to design. Only one small, faulty part of the system can lead to unforeseen
circumstances or crashes and could therefore even cause injuries or worse to humans.

Traditional programming languages and practices generally have problems designing
these systems due to unpredictability or the lack of overview. Some scientists like Lee
advise against threads as a means to model or create concurrency as non-determinism
in programming is fairly dangerous and should be handled explicitly [Lee06]. Therefore,
different modeling tools like Ptolemy as well as synchronous languages such as Esterel
or Lustre are often used to model and design such systems [BCE+03]. These tools take
an approach to eliminate race conditions and therefore ensure deterministic behavior.
Ptolemy in particular qualifies especially for the simulation of environments due to its
heterogeneous approach to modeling. On the other hand, SCCharts, as described below, is
a modeling language designed to model reactive systems yet struggles to describe models
for environments of bigger physical systems [Uml15]. Recently, SCCharts underwent
development in the direction of simulations with the implementation of data-flow. The
focus of this thesis now lies on the comparison between Ptolemy and SCCharts as tools for
the creation of models on the basis of a model of a quadcopter. The paper will evaluate the
possibilities of further development in SCCharts to create a better tool for the creation of
simulations and models of environments.

Before going into more detail, the introduction gives a short overview over the most
important parts of this thesis: The core modeling technology in SCCharts as well as the
simulation tool and the quadcopter itself. Finally, this chapter describes the main problem
this thesis focuses on and the general outline of the paper.

1.1 Sequentially Constructive Charts

SCCharts, as introduced by von Hanxleden et al. from the Real-Time and Embedded
Sytems (RTSYS) group at the Kiel University [HDM+14], is a visual synchronous language
designed for specifying safety-critical reactive systems. SCCharts uses a statechart notation
similar to the one used by Harel in his Statecharts approach [Har87]. While SCCharts
provides deterministic concurrency based on a synchronous Model of Computation (MoC)

1
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Figure 1.1. Features of Core and Extended SCCharts [HDM+14]

as introduced by Berry [BB91], it also allows emitting different values of a signal (or
variable) within one tick as long as the program stays sequentially schedulable. This so
called Sequentially Constructive MoC as introduced by von Hanxleden et al. now allows
some more programming paradigms while keeping the program deterministic [HMA+13].

SCCharts can be divided into two different parts: Core SCCharts and Extended SCCha-
rts. Core SCCharts contain a minimal amount of elements that is able to express everything
the Sequentially Constructive MoC requires, such as states, transitions and hierarchies.
Extended SCCharts is built upon Core SCCharts, simplifies a magnitude of elements and
adds syntactical sugar. Figure 1.1 shows the different elements of Core and Extended SC-
Charts. Every additional feature can be translated to equivalent features in Core SCCharts
via semantics preserving Model-to-Model (M2M) transformations [HMA+13]. In SCCharts
the modeller typically designs the models with the textual language SCCharts Text (SCT).
It is a language based on an Xtext grammar, thus allowing content-assist to simplify the

2



1.1. Sequentially Constructive Charts

process. Xtext1 is a framework for development of programming languages and domain
specific languages. With SCT the user designs a textual model which is then step for step
synthesised into a graphical model as well as compilable C code or other code.

1.1.1 Data-flow in SCCharts

As a derivative of SyncCharts by André [And96], SCCharts was developed with control-
flow in mind, using hierarchical, synchronous state machines. Control-flow focuses on
descriptions of the behavior of a system. Therefore, control-flow is often visualized using
state machines. On the other hand, when trying to compute variables, where the commu-
nication between the different components of the model, the so called actors, is a more
important aspect, using a data-flow environment might be of advantage [Uml15; CPP05].
For example, to describe a falling ball, a state machine like the one in Figure 1.2a fails
to clarify the situation appropriately even in such a small example while the data-flow
oriented approach in figure Figure 1.2b is much easier to follow for an outsider.

FallingBall 
const float gravity = 9.81
const float time = 0.02
output float velocity
output float position

[-]
init 

falling 
during / velocity = velocity + gravity * time
during / position = position + velocity * time

(a) A falling ball modeled in SCCharts
(b) A falling ball modeled in Ptolemy

Figure 1.2. Difference between a falling ball in a control-flow and a data-flow oriented modeling
language

Furthermore, not every model can be completely associated with either data-flow
or control-flow. For example, if the same falling ball from above hits the ground, it
experiences acceleration upwards. This sudden change in the state of the ball can be
expressed using different states. In that case, a hybrid system using both concepts is
advantageous. Figure 1.3 shows a hybrid system in Ptolemy describing the mentioned
situation.

As evident, hybrid systems can express many situations more clearly. Therefore, data-
flow in SCCharts was introduced by Umland [Uml15]. It creates a way to use data-flow

1http://www.eclipse.org/Xtext/
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1. Introduction

Figure 1.3. A bouncing ball utilizing both control-flow and data-flow in Ptolemy (by E.A.Lee)

DFExample 
input int a
input int b
output float c = 0

[-] firstPart

a

b +

* /
c

Figure 1.4. An example model of data-flow in SCCharts. The white arrows represent the variables
of the system while the yellow boxes visualize the operations carried out on the variables

in the control-flow environment of SCCharts and vice versa. Figure 1.4 shows the chosen
visualization in SCCharts. In this approach, everything that is written in a data-flow
environment is translated via M2M translations to a core SCChart diagram and can then be
used by the SCT compiler to create usable Java code or other code.

1.2 KIELER Execution Manager

SCCharts alone is merely a modeling tool. The modeler then has to use the resulting
code from the SCT compiler to create a program running the simulation. This is what
the KIELER Execution Manager is responsible for in the KIELER environment. It is an
Eclipse infrastructure for managing multiple simulators, visualizators, validators and
input/recording/replay facilities at a time introduced by Motika [Mot09]. KIEM calls those

4



1.3. The Quadcopter

different components of a simulation which then in turn exchange data between each other.
This way, instead of creating different programs for each simulator, visualizator, etc. of a
project to send data from one part to the other, KIEM operates as a central hub, managing
the different parts of the system and their executions.

For each component, the user has to create a data component. These data components
can be scheduled linearly to create a sequence of executions. Data components observe in-
formation on a communication bus between these independent data components or produce
new data which can be used by other components. Every data component also requires a
method for the initialization, one for a step and one to wrap the simulation up. Figure 1.5
depicts the schematic layout of a KIEM execution and visualizes the communication bus
between the components. These components are modular and can be exchanged at will.
Thus, KIEM can be used to test simulations and compare two different simulations of the
same object.

In the context of this thesis, KIEM as the simulation tool interfaces data from the
simulation to the flight controller of a quadcopter for testing purposes. The modular
nature of KIEM allows an easy exchange of the Ptolemy simulation and the SCCharts
simulation. Therefore, while evaluating the results, the modeler can compare these results
fast and easily. Similarly, KIEM allows an easy exchange of the flight controller. The tests
for the controller can be conducted both on the PC running the simulation as well as the
quadcopter itself.

Execution Manager Runtime

Java Simulator

Data Producer/Observer

Generic Simulator

Data Producer/Observer

Ptolemy II

Environment
 Visualization

Data Observer

Model Feedback
Visualization

Data Observer

Recorded
Trace Player

Data Producer

TCP/IP Interface

Data Producer/Observer

External Appl.

Figure 1.5. Schematic Overview of the KIEM Interface [Mot09]

1.3 The Quadcopter

This thesis was written within the scope of a bachelor project at the RTSYS group with
the goal to create a real time, safety-critical system that is modeled as well as tested with
the software mentioned above. The created system is a quadcopter, an unmanned aerial
vehicle with four rotors, that was supposed to fly autonomously. We divided the project
into three distinct parts, one for each student participating in the project: One task was to
stabilize the flight of the copter, one part focused on distance measurement and obstacle
avoidance while the last part, the simulation, is the matter of this thesis. This way, every

5



1. Introduction

participating bachelor student had a part of the project he was responsible for and was the
most prolific in, while everyone could still help working on the other parts. Furthermore,
with these responsibilities we ensured that no part of the project was left behind.

Initially we had to learn a lot about aerial vehicles and in particular quadcopters.
Before we bought the parts and started building, we gathered information about possible
flight controllers, preexisting libraries and projects as well as the parts we needed for
our quadcopter. For more information about the building process and the used parts, I
recommend the Bachelor theses of Andersen [And15] and Machaczek [Mac15].

At the same time, it was our goal to get the simulation running before the assembly of
the copter and the first tests of the flight controller. It was important to us that the testing
of the simulation was running on the hardware of the quadcopter itself as this hardware is
limited in its computation power. Thus, not only the model itself had to be finished but
also the interfacing from and to the quadcopter. Sadly, this was not possible due to time
constraints and first tests of the assembled quadcopter were conducted without the help
of the simulation. Figure 1.6 depicts the general, final layout of the quadcopter we built.
After the initial tests were successful, we started working on the stabilization part, while
the creation of the simulation was running concurrently.

For the stabilization we utilized a PID controller. This controller computes the output
signals to the motors according to the Proportional, the Integrated and the Derivated
angles. In the code, different control constants for the P, I and D values for every angle
are introduced. They are different for every quadcopter as they depend on the physical
properties of the copter like its weight distribution, weight in general and aerodynamic
properties. Andersen describes the PID controller and the creation of the flight controller
in more detail. This controller was then implemented and tested. During testing, we
realized that the copter is slightly unbalanced. This causes that the simulation proposed in
this paper does not accurately describe the copter as the simulation assumes a perfectly
balanced copter concerning weight distribution.

After we achieved a stable flight, we introduced the distance measurement and obstacle
avoidance. For this purpose we used ultrasonic sensors attached to every side and every
corner of the copter as well as the top and bottom as Figure 1.6 shows. The obstacle
avoidance then uses the flight controller to avoid walls and other objects in the vicinity of
the copter. Machaczek [Mac15] describes the implementation of the collision avoidance
and distance measurement.

1.4 Problem Description

This quadcopter was vigorously tested. To prevent damage to the quadcopter as well as
injuries to bystanders a test can be conducted using a simulation instead of flying the
copter in real life. This simulation might not eliminate the chance of a crash, but it can help

6
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Figure 1.6. Schematic layout of the quadcopter [Mac15]

minimize it. There already exist models of quadcopters and even some simulations, yet
they run on software on the PC [Hög14; Luu11]. None of them run embedded on the actual
hardware and can therefore not necessarily accurately predict the behavior of the vehicle.
This is where not only our simulation but also KIEM is important. An implementation for
our simulation using KIEM creates an easy way to interface from and to the copter and
helps to compare and evaluate different approaches via the modularity of KIEM as well.

This furthermore helps us in comparing SCCharts with Ptolemy. Since it is easy to
exchange the SCCharts data component with the Ptolemy data component, it is also easy
to compare the two models in the simulation. Still this is not sufficient concerning the
evaluation. With data-flow in SCCharts being a new addition, it has not been tested and
evaluated much. The goal of this thesis is to compare it to Ptolemy, which is already an
established tool for the creation of models and simulations, and look for possibilities to
enhance SCCharts as a tool for models of simulations.

1.5 Outline

This thesis begins with a short overview over related work in Chapter 2. Chapter 3
introduces important technologies used in the making of the model, the simulation,
and the evaluation. It will contain information about Ptolemy, the tool SCCharts will
be compared with, as well as information about the hardware and software used in the
process of this thesis.
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1. Introduction

In Chapter 4, the physical model will be described in detail. The chapter will give insight
into the different aspects of the model such as the rotational matrices, how to calculate
the acceleration, velocity and position as well as the angular velocities. Additionally,
the reasons for the use of KIEM as the simulation tool will be explained in more detail.
Afterwards, in Chapter 5, the realization of the model in both Ptolemy and in SCCharts is
delineated. Both of these sections will cover the same model realized on different platforms.
Furthermore, this chapter will deal with the implementation of the simulation and how the
models have been tested. A short section about calculations for some physical properties
of the quadcopter will close the chapter.

Chapter 6 will evaluate the two approaches and will compare the advantages and
disadvantages of those. It will give insight into the creation of the models in the different
tools and the problems encountered. The chapter will further describe the differences in
the calculation, as the two tools are inherently different in their computations.

The final chapter covers the conclusion, lessons learned in Ptolemy and SCCharts as
well as some suggestions for future work in SCCharts, especially data-flow in SCCharts.

8



Chapter 2

Related Work

This chapter covers other scientific papers and related work. First, it addresses papers that
are also about the simulation and modeling of a quadcopter. Following that, the chapter
describes different software that could be considered for the creation of a model or a
simulation for a quadcopter or a similar vehicle.

2.1 Other Models and Simulations

There have already been multiple papers and theses describing physical properties and
models of quadcopters of different sizes. These physical properties are fairly well under-
stood and are described in a multitude of papers.

Höger [Hög14] describes the model of quadcopters in general and then adapts this
model to the Crazyflie1, a very small quadcopter for indoor use. His work is more con-
densed concerning the model and focuses more on the mathematical backgrounds of the
calculations and the adaptation required for the Crazyflie. Thus, he concentrates a lot on
determining unknown constants of the quadcopter. His approach to finding these values
is very complex and doing a similar approach would go beyond the scope of this thesis.
Therefore, only the model and information about the rotational matrices were taken from
this thesis. Höger uses Matlab as the modeling and simulation environment. Thusly, the
calculations do not run in the native code the hardware of the copter requires. This could
possibly lead to unexpected behavior if the code is finally running on the copter as it is
not tested, because of the speed of the hardware or because of differences in the native
language.

Another approach to model a generic quadcopter has been done by Luukkonen [Luu11].
He describes the physical model of the quadcopter in more detail and furthermore gives
insight into his method for controlling the copter. His approach was never tested in reality.
Furthermore, he uses values to input into his simulation that a common quadcopter cannot
accurately measure such as the current velocity as an input to the copter. The copter
might be able to calculate his velocity with the help of the accelerometer, but common
accelerometers are not very exact and often output noise. He also uses Matlab as the
modeling and simulation environment.

1https://www.bitcraze.io/crazyflie-2/
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Figure 2.1. The simulation GUI of Matlab/Simulink [Mot07]

McGilvray and Tayebi describe the physical properties of a quadcopter in their paper
Attitude stabilization of a four-rotor aerial robot [TM04]. Furthermore, they show a small part
of their simulation results using their model and the corresponding PID controller. Since
many physical properties of a quadcopter are hard to determine, the simulation in this
thesis uses the properties of the quadcopter described by McGilvray. Therefore it is hard to
apply the simulation results to the quadcopter that was built for the project of this thesis.

2.2 Simulation and Modeling Tools

Since one big part of this thesis is the evaluation of SCCharts as a modeling environment
and simulation tool for data-flow oriented models, it is also important to consider different
comparison tools. For this purpose, Ptolemy, as described in more detail in Chapter 3,
was chosen due to the preexisting integration in KIEM and the ease to create heteroge-
neous models, which simulations often times require. However, other tools should still
be considered. This section covers some popular tools that are used to design and model
simulations.

2.2.1 Matlab and Simulink

Both Höger and Luukkonen use Matlab2 as a tool for both modeling and simulating their
approach. Matlab is a programming language designed specifically with mathematical
systems in mind. This includes data-flow oriented systems like the physical model of a
quadcopter. Matlab also allows for very clear visualizations of simulation results. As such,
it is very qualified for the purpose of this paper. However, Matlab lacks when it comes

2http://www.mathworks.com/products/matlab/
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Figure 2.2. The GUI and an example project in the SCADE Suite5

to usability and is definitely neither beginner friendly nor clear when modeling bigger
systems. Therefore, Matlab alone was not considered. Simulink3, as depicted in Figure 2.1,
extends Matlab with a visualization and a graphical editing tool for data-flow models. It
simplifies a lot of the problems Matlab alone struggles with mentioned above. However,
the integration of Matlab and Simulink into KIEM is difficult as a stepwise execution of
models is only possible after computing complete results. This means that a real-time
execution of the simulation is not possible in Simulink. Therefore, it is impossible for
Matlab and Simulink to react to the behavior of the flight controller, if the flight controller
is not written in Matlab as well. Since we were already experienced with SCCharts as well
as Ptolemy, we chose to disregard Matlab. Another reason against Matlab and Simulink
and for SCCharts and Ptolemy is that SCCharts and Ptolemy are open source while Matlab
is a commercial product that is not open source.

2.2.2 Safety Critical Application Development Environment

The SCADE Suite4, as depicted in Figure 2.2, is a model-based development environment
for critical embedded software. Modelers can design their model both graphically as
well as textually with SCADE, which can then generate C or ADA code from these models.
Motika [Mot07] uses this tool to design a simulation for a model railway that is supposed to

3http://www.mathworks.com/products/simulink/
5Source: http://www.esterel-technologies.com/wp-content/uploads/2015/03/SCADE-Suite-IDE-View.png
4http://www.esterel-technologies.com/products/scade-suite/
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control multiple trains on different tracks and courses. Since KIEM was chosen to simulate
the model and SCADE interfaces using the Transmission Control Protocol (TCP) which
complicates the communication, SCADE was not considered as an alternative to Ptolemy.
Since SCADE is also not open source, another way to integrate the tool into a work-flow is
not possible.

2.2.3 Testing in a Safe Environment

Multiple studies with quadcopters were conducted in a safe environment instead of using
a simulation. One such approach is described by Castillo et al. [CLD05]. However, the
required hardware for the testing environment was not available. Furthermore, in the tests
conducted in the scope of this thesis, it was noticed, that a cable attached to the copter
influences his flying capabilities severely.

The project still used a lot of live testing without this testing environment to test the
actual capabilities of the quadcopter. These tests were conducted without an environment
like the one mentioned above and will not be a part of this thesis.

12



Chapter 3

Used Technology

Prior to explaining the model of the quadcopter, it is necessary to sketch the important
used technologies in the making of this thesis. This chapter contains information about a
tool used to create a model that compares to the one created in SCCharts, more general
information about the KIELER project as well as technology used for the exchange of
information to and from the quadcopter and the hardware on the quadcopter.

3.1 Ptolemy

The Ptolemy Project1 is an open-source, Java based tool for designing and simulating
concurrent, real-time, embedded systems as introduced by [Lee03]. Ptolemy II, hereafter
just Ptolemy, is in development by the Electrical Engineering and Computer Sciences (EECS)
faculty at UC Berkeley since 1996. This tool simplifies the creation of complex models with
hierarchical structures and an actor-oriented design. Actors are concurrently executing
software components that, when interconnected via ports, send messages to other actors
and thus make up a model. The behavior of every actor is described in its Java class and
ranges from simple mathematical operations like adding and subtracting to complex ones
like integration.

A Ptolemy model is stored in an XML-file. Thus, a user can easily extract information
if he wants to. The semantics of a model is determined by its director – a component
implementing a model of computation. Each level in the hierarchy of the model can have
its own director, and understanding these directors and their interactions is a core part
in the creation of different models with Ptolemy. These different directors allow different
approaches to modeling such as a data-flow oriented or a control-flow oriented approach.
Heterogeneous combinations of directors enable the modeler to design the model he or she
wants to create. An example for this heterogeneous approach is the use of a synchronous
reactive director, a director using a data-flow oriented approach, in combination with
a modal model, a control-flow oriented director, that is hierarchically embedded in the
model with the synchronous reactive director, creating a StateChart [Pto14].

Vergil, the UI of Ptolemy, visualizes the model as seen in Figure 3.1 and allows the
modeler to easily edit the model. The user controls the tool by drag-and-drop and can edit

1http://ptolemy.eecs.berkeley.edu/
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actors and composite models as well as open them. While a composite model is then again
opened in another Vergil window and can be edited, opening an actor displays the java
class of the selected actor describing the behavior of it.

The layout of a model in Ptolemy can be automatically generated by a layout algorithm
or created by the modeler himself.

Figure 3.1. The Ptolemy GUI, using Vergil

3.1.1 KielerIO

Furthermore, to input data to Ptolemy, for example from KIEM, the simulator needs an
actor that is not implemented in Ptolemy, the KielerIO. This actor allows both regular use
as a constant source and as a source that inputs data coming from KIEM or other similar
simulators. As KIEM is already simulating the SCCharts model, it was an easy decision to
use the already preexisting infrastructure and keep everything in the same place. Using
KIEM also ensures that there are no differences between the simulation using Ptolemy
and using SCCharts. This actor has been introduced in detail by Motika in his diploma
thesis [Mot09]. For the purpose of this thesis, the KielerIOFloat actor was created. It has
the same functionality as the KielerIO but is able to input floats and doubles instead of
integers.

3.2 Kiel Integrated Environment for Layout Eclipse RichClient

The KIELER project 2 is an academic research project from the Real Time and Embedded Sys-
tems group at the Kiel University. Its aim is to enhance the graphical, model-based design

2http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
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of complex systems. It is an open-source project under the Eclipse Public License (EPL) and
is separated into four different areas: Semantics, Pragmatics, Layout and Demonstrators.

The semantics department of the project deals with execution semantics for meta
models. It covers compiling as well as simulating models. The already mentioned SCCharts
and KIEM projects are part of the semantics department.

Pragmatics and layout cover the practical aspects of a modelers work. Enhancing the
creation and modification process of models for a modeler is the core of these areas. Thus,
a big part of these branches is automatic layout design of diagrams and graphs as well as
efficient layout algorithms.

Lastly, the demonstrators are editors used for testing and to demonstrate developments
from the other branches.

Figure 3.2. Overview over the KIELER project

3.3 Java Simple Serial Connector

The Java Simple Serial Connector (JSSC) v.2.8.03 is an open-source project published under
the Lesser General Public License (LGPL). It is a library for working with serial ports in
Java and supports every current major OS. In this project it is required to communicate
between the simulator and the flight controller. Since we wanted to test the software while
it is running on the controller, we needed a way to input and output data between the
simulation running on a PC and the flight controller.

Compared to other libraries for serial communication in Java, JSSC provides many
simplifications of procedures, for example opening a port. Furthermore, other projects
like RxTx or Oracles own JavaComm are currently not in development anymore. Another

3https://code.google.com/p/java-simple-serial-connector/
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reason for JSSC is that the current version of RxTx does not support Java 8 – at least without
further modifications. JavaComm on the other hand is pretty much unusable and should
not be considered for serial communication in Java. It has not been properly updated in
ten years and official support has stopped. Therefore, even finding an official download
link proves to be difficult.

After completing the program, I have heard of a relatively new java serial library called
jSerialComm4. It is a platform independent library for serial communication with java. It
claims to be very lightweight and efficient. A closer look into this library might be advised
for future use.

3.4 Arduino Mega 2560

JSSC then communicates with software running on the quadcopter, more precisely on
the Arduino Mega 2560 board, for simplification in the following called Arduino, on the
quadcopter. This flight controller is running on custom libraries and SCCharts generated
code as the flight controller. The Mega 2560 is a microcontroller board based on the
ATmega2560 5 with 54 digital input/output pins, 16 analog inputs, four hardware serial
ports, a USB connection and more. The board can be supplied with power via the USB
serial port as well as via battery over an input pin. Using the Arduino Software IDE 6,
programs in C++ or the Arduino own Arduino language can be uploaded to the board.

We have chosen this board as we deemed it powerful enough while not being too
heavy, requiring too much voltage to run or not being able to output current at the desired
voltage for our sensors. It also provides enough pins for our purposes. Too small boards
might not have enough pins or might not run fast enough to calculate the flight properties
in time. Furthermore, there was already a spare Arduino Mega in the office so the decision
was easy to make.

Another alternative to an Arduino board was using a Raspberry Pi7 or a BeagleBone8

computer. These boards, as opposed to the Arduino boards, require an operating system
to run. Thus, they are not necessarily suitable as safety-critical systems as a safety-critical
system has to react as fast as possible to the environment and an operating system
might interrupt critical computations with OS specific functionalities. This can lead to
unpredictable behavior.

Andersen [And15] as well as Machaczek [Mac15] contain more information about the
flight controller and the hard- and software of the quadcopter.

4http://fazecast.github.io/jSerialComm/
5http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
6https://www.arduino.cc/en/Main/Software
7https://www.raspberrypi.org/
8http://beagleboard.org/
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Chapter 4

Model and Simulation

To be able to compare Ptolemy and SCCharts, a model to simulate is required. Therefore,
this chapter explains the physical and mathematical properties of the quadcopter. Sec-
tion 4.1 contains all the equations and their backgrounds, explaining the model in detail. It
also explains the rotations required to describe the model accurately and afterwards the
properties pertaining to the acceleration as well as to the angles. The section concludes
with information about the physical properties of the simulated quadcopter. Following
that, Section 4.2 discusses how to integrate the simulation into the setup of the simulation
using KIEM.

4.1 Mathematical Model

Before going into detail, this section explains a few necessities for the model. As shown
in Figure 4.1, the quadcopter has to be viewed in two different frames: First, the inertial
frame, seen on the left, is the frame of the room. It is fixed and cannot change. Second,
the body frame, as seen on the right, is the frame of the copter. Its axes, the body axes
xB, yB and zB, are fixed to the arms and body of the quadcopter and its point of origin is
the center of mass, so it moves with the copter at all times. These frames of reference are
necessary, as the simulation will send data calculated from both frames to the Arduino,
which Section 4.2 describes in more detail. The inertial frame is important for the location
of the vehicle and thus for the distances to the walls and the body frame is needed for
gyroscopic values like the angular velocities or the linear acceleration of the quadcopter.
Furthermore, to compute these values, calculations in both frames are required as will be
evident from the descriptions in this chapter.

In the sections pertaining to the angles and angular velocities, Newton-Euler equa-
tions [Hah02] describe the behavior of the copter. Since the copter is assumed to be a rigid
body, these equations can be used to describe the dynamics of the quadcopter [Luu11].

4.1.1 Fundamental of the model

The absolute linear position of the quadcopter is defined in the inertial frame of the
quadcopter by ξ =

(
x y z

) T P R3 and the Euler angles describing the rotation of

the quadcopter are defined by η =
(

φ θ ψ
)T

P R3 with the roll angle φ, the pitch
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(a) Inertial frame of the quadcopter
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(b) Body frame of the quadcopter, taken and
adapted from Höger [Hög14]

Figure 4.1. The different frames of the quadcopter

angle θ and the yaw angle ψ. φ turns around the x-axis, θ around the y-axis and ψ around
the z-axis as can be seen in Figure 4.1a. These three angles are important for the conversion
of values from one frame to the other.

There are multiple conventions for the Euler angles [Gol80]. This paper will use the
zyx convention commonly used when studying the properties of vehicles, especially aerial
vehicles [Hög14].

In the body frame, the angular velocities ν are given by ν =
(

p q r
)T
P R3 with

p being the angular velocity around the xB-axis, q around the yB-axis and r around the
zB-axis of the body frame. These angular velocities are positive if the copter is turning
clockwise around the axis while facing the direction of the axis.

4.1.2 Rotation

Since there are two different frames of reference this section will explain a way to convert
a vector in one frame to a vector in another frame. For this purpose, rotational matrices
are applied to these vectors. Since the model uses the zyx-convention, a vector has to be
rotated in a specific way in order to convert it from the body frame to the inertial frame:
First, the vector has to rotate around the z-axis by ψ, then it has to rotate around around
the y-axis by θ and finally around the x-axis by φ.
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Applying these rotations

Rx(φ) =

 1 0 0
0 cos(φ) sin(φ)
0 ´ sin(φ) cos(φ)



Ry(θ) =

 cos(θ) 0 ´ sin(θ)
0 1 0

sin(θ) 0 cos(θ)


and

Rz(ψ) =

 cos(ψ) sin(ψ) 0
´ sin(ψ) cos(ψ) 0

0 0 1


to a vector l and its representative in the body frame lB in the correct order leads to the
following equations:

l = Rx(φ)Ry(θ)Rz(ψ)lB

=

 CθCψ CθSψ ´Sθ

SφSθCψ ´ CφSψ SφSθSψ + CψCψ SφCθ

CφSθCψ + SφSψ CφSθSψ + SφCψ CφCθ

 lB

= Rη lB (4.1.1)

with Sα = sin(α) and Cα = cos(α).

The rotational matrix Rη is orthogonal, thus R´1
η = RT

η . This is the rotational matrix
from the inertial frame to the body frame.

These two rotational matrices cannot translate the angular velocities from one frame to
the other, as these rotations behave differently. For example, the angular velocity around the
z-axis never changes, no matter how the copter is turned. Thus, the yaw angle undergoes
two rotations, the pitch angle one rotation and the roll angle no rotations. The resulting
matrix Wη translates changes in the Euler angles η with θ ‰ π

2 to angular velocities and
the inverse matrix W´1

η maps the angular velocities to changes in the Euler angles:

ν =

 p
q
r

 = R3(φ)R2(θ)

 0
0
ψ̇

+ R3(φ)

 0
θ̇

0

+

 φ̇

0
0


=

 1 0 ´ sin(θ)
0 cos(φ) sin(φ) cos(θ)
0 ´ sin(φ) cos(φ) cos(θ)

 φ̇

θ̇

ψ̇


= Wη η̇ (4.1.2)
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zB

xB

yB

Figure 4.2. The axes of the gyroscope in the body frame depending on the position of the gyroscope
with the xBody, yBody and zBody axes (short: xB, yB, zB)

η̇ = W´1
η ν

=

 1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) ´ sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)


 p

q
r

 (4.1.3)

Importantly, θ ‰ π
2 is necessary, both because cos(π

2 ) = 0, and tan(π/2) is undefined.
Realistically though, this state of the quadcopter should never be achieved.

Lastly, as the gyroscope has been mounted on the quadcopter in a way such that the
angles do not coincide with the angles from the model as depicted in Figure 4.2, it will be
necessary to rotate a vector l by 45°. To accomplish that, the model uses a rotational matrix
once more, this time only rotating around the zB-axis:

lrot = Y450 l =

 cos(π
4 ) ´ sin(π

4 ) 0
sin(π

4 ) cos(π
4 ) 0

0 0 1

 l (4.1.4)

4.1.3 Linear Accelerations, Velocities and Position

The gyroscope in the quadcopter provides values for the linear acceleration. Therefore,
the simulation has to output this value as well. The linear acceleration is a vector that is
determined via the thrust T of the vehicle in the direction of the zB-axis. Every rotor exerts
a force fi in the direction of its rotor z-axis as can be seen in Figure 4.1b. Since the body of
the copter is rigid, all four rotors exert a force in the same direction. The totaled force of
all four rotors is the thrust of the copter. This is calculated by
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fi = lω2
i (4.1.5)

T =
4

∑
i=1

fi = l
4

∑
i=1

ω2
i (4.1.6)

with l being the lift constant1 and ωi being the angular velocity of the rotor corresponding to
the motor i. The calculated thrust exerts constantly along the z-axis of the quadcopter and
is therefore in the body frame. By applying the rotational matrix Rη from Equation 4.1.1
to the vectorized thrust, we can translate this force into the inertial frame. Additionally,
gravity exerts on the quadcopter. Therefore it has to be subtracted from the acceleration
provided by the thrust.

a =

 ẍ
ÿ
z̈

 =

 0
0
´g

+

 0
0
T
m

 Rη

=

 0
0
´g

+
T
m

 cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)
cos(φ) sin(θ) sin(ψ)´ sin(φ) cos(ψ)

cos(φ) cos(θ)

 (4.1.7)

This acceleration though does not yet factor in aerodynamic effects. Thus, the following
equation describes these effects with the drag force coefficients Ax, Ay and Az and the
velocity v slowing the acceleration down.

 ẍ
ÿ
z̈

 = a´
1
m

 Ax 0 0
0 Ay 0
0 0 Az

 v (4.1.8)

The velocity v has to be known to calculate the acceleration, which in turn has to be
known to calculate the velocity. Thus, a loop-back is required.

Now that the linear acceleration is known, this value is integrated over time to calculate
the velocity v and integrated once more to calculate the current position ξ of the quadcopter.

4.1.4 Angular Velocities and Angles

To actually apply the rotational matrices mentioned above, the Euler angles η have to be
computed. Thus, it is necessary to calculate the torques τφ, τθ and τψ in the direction of the
corresponding body frame axes:

1More about the lift and drag constants can be read here:
http://mragheb.com/NPRE475WindPowerSystems/AeorodynamicsofRotorBlades.pdf
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τ =

 τφ

τθ

τψ

 =

 drl(´ω2
2 + ω2

4)

drl(´ω2
1 + ω2

3)

∑4
i=1 τMi

 (4.1.9)

with dr being the distance between the rotor middle and the center of mass of the quad-
copter, l being the lift constant1 mentioned before and

τMi = bω2
i + IMω̇i (4.1.10)

where b is the drag constant1 of the rotors and IM is the inertia moment of the rotors. Since
the rotor acceleration ω̇i as well as the inertia moment IM is very small, it is omitted.

This implies that movement in the roll direction can be increased by increasing the
velocity of the fourth rotor and/or decreasing the velocity of the second rotor. Likewise,
pitch direction movement can be increased by increasing the velocity of the third rotor
and/or decreasing the velocity of the first rotor. Turning around the zB-axis can be achieved
by increasing opposite rotors and decreasing the other two rotors. These movements can
obviously be combined to create a smooth turning of the copter if wanted.

In the body frame, the angular acceleration Iν̇ together with the centripetal forces
ν ˆ (Iν) and the gyroscopic forces Γ equal the torque τ. Thus, with a little bit of
reorganizing, the following equation can be formulated:

Iν̇ + νˆ (Iν) + Γ = τ (4.1.11)

ν̇ = I´1

´
 p

q
r

ˆ
 Ixx p

Iyyq
Izzr

´ Ir

 p
q
r

ˆ
 0

0
1

ωτ + τ


=


1

Ixx
1

Iyy
1

Izz


 (Iyy ´ Izz)qr

(Izz ´ Ixx)pr
(Ixx ´ Iyy)pq

´ Irωτ

 q
´p
0

+

 τφ

τθ

τψ

 (4.1.12)

with ωτ = ω1 ´ω2 + ω3 ´ω4.

The derivative of the angular accelerations ν̇ from the equation above can now calculate
the angular velocities ν in the body frame by integrating them over time. These values are
an output value of the gyroscope.

Furthermore, the angular velocities ν, translated to the inertial frame with the help of
the rotation matrix W´1

η from Equation 4.1.2, when integrated, result in the current angles
η.
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wle f t

dle f t

ψ
wle f t + x

Figure 4.3. Distance measurement of a quadcopter at the position (x,y,z)

η̇ =

 φ̇

θ̇

ψ̇

 = W´1
η ν

=

 1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) ´ sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)


 p

q
r

 (4.1.13)

The Euler angles η allow the accurate use of the rotational matrices.

4.1.5 Distance Calculation

To calculate the distances d =
(

d f ront dright dback dle f t dup ddown
)T
P R6 between

the copter and the walls, the model requires information about the room. This is provided
by the distance between the walls w =

(
w f ront wright wback wle f t

)T
P R4 and the

center of the room as well as the height wroo f . The walls of the room are assumed to be
rectangular with the quadcopter initially being in the center of the room. At the start of the
simulation the arms of the quadcopter point to the corners of the room. Figure 4.3 depicts
the general layout of the room after the quadcopter has been flying for a short time.

The calculations for the distances use a few simplifications minimizing the stress on the
simulations, since especially Ptolemy started to slow down during the calculations. First,
the simulation assumes that the roll and pitch angles will remain in a fairly stable range
close to 00. This means that the quadcopter remains in a stable flight position. Therefore,
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4. Model and Simulation

Table 4.1. The different distance calculations for every state of the copter in every direction

Distance sensor Facing front
´π

4 to π
4

Facing right
π
4 to 3 π

4

Facing back
3 π

4 to ´3 π
4

Facing left
´3 π

4 to ´π
4

d f ront
w f ront´y
cos(ψ)

wright´x
cos(ψ´ π

2 )
wback+y

cos(ψ´π)

wle f t+x
cos(ψ+ π

2 )

dright
wright´x
cos(ψ)

wback+y
cos(ψ´ π

2 )

wle f t+x
cos(ψ´π)

w f ront´y
cos(ψ+ π

2 )

dback
wback+y
cos(ψ)

wle f t+x
cos(ψ´ π

2 )

w f ront´y
cos(ψ´π)

wright´x
cos(ψ+ π

2 )

dle f t
wle f t+x
cos(ψ)

w f ront´y
cos(ψ´ π

2 )

wright´x
cos(ψ´π)

wback+y
cos(ψ+ π

2 )

dup wroo f ´ z wroo f ´ z wroo f ´ z wroo f ´ z

ddown z z z z

only the yaw angle ψ and the x and y coordinates of the current position ξ is necessary to
calculate the distance to the walls and only the z coordinate is required to calculate the
distance to the floor and the roof. Second, as Figure 4.4 illustrates, it is hard to measure
the distance to the actual closest wall as every sensor would have to calculate his distance
to every of the four walls and then comparing all distances creating a lot of redundant
information and calculations. To counteract this, the simulation assumes that, when a
sensor is facing the general direction of a wall, it only calculates the distance to this wall.
As can be seen in Figure 4.4 this does not necessarily compute the distance to the actual
closest wall and therefore the distance a real distance sensor would detect. Yet, another
sensor would detect this wall with a closer distance then the first sensor, signalizing the
copter to back off from this wall. Therefore, these calculations should be sufficient.

With these simplifications multiple different equations were developed for each of the
four directions the copter can face. Table 4.1 shows these equations.

Another reason for this heuristic was to create a possibility to use both data-flow and
control-flow in the model. This approach makes it possible for the model to compare the
implementation of heterogeneous models in Ptolemy and SCCharts.

4.1.6 Adjusting Output Values to the Quadcopter

There are multiple different peculiarities to consider when transmitting the values to the
Arduino. First, the acceleration calculated in Section 4.1.3 are values in the inertial frame.
Thus, they have to be converted to the body frame with the inverse of the rotational matrix
from Equation 4.1.1. Furthermore, since gravity constantly exerts a force on the gyroscope,
it measures an acceleration of ´g in the direction of the ground at all times, even if the
copter is completely stationary. As such, before the conversion to the body frame, we need
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dle f t

ψ

Figure 4.4. Distance to the left is not the next encountered wall

to subtract g from the acceleration in the z-axis.

Secondly, the gyroscope doesn’t output values in SI-units but in different ranges
depending on the value. The acceleration values lie in a range between ´32768 and 32767
with g ” 16384. Accordingly, the model multiplies all acceleration values with 1670.

The angular velocities also range between ´32768 and 32767 but with 250 deg
s ” 32768

and are therefore scaled with 131.072.

Since the gyroscope on the quadcopter is attached to the copter in another angle, the
model has to rotate every output value corresponding to an output value of the gyroscope
by 450 around the zB axis using the rotational matrix Y450 from Equation 4.1.4. Taking all
these adjustments into consideration, the simulation outputs the acceleration aB in the
body frame and the angular velocity ν as follows:

aB =

 ẍ
ÿ
z̈

´
 0

0
g

Y4501670

=

 1670
√

2(ẍ´ ÿ)
1670

√
2(ẍ + ÿ)

1670(z̈´ g)

 (4.1.14)
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Table 4.2. The different constants of the quadcopter and their respective units

Parameter Value Unit

g 9.81 m/s2

m 0.468 kg
dr 0.225 m
Ax 0.25 kg/s
Ay 0.25 kg/s
Az 0.25 kg/s

Parameter Value Unit

l 2.980 ˚ 10´6 –
b 1.140 ˚ 10´7 –
IM 3.357 ˚ 10´5 kg m2

Ixx 4.856 ˚ 10´3 kg m2

Iyy 4.856 ˚ 10´3 kg m2

Izz 8.801 ˚ 10´3 kg m2

ν =

 p
q
r

Y450131.072 =

 131.072
√

2(q´ p)
131.072

√
2(q + p)

131.072(r´ g)

 (4.1.15)

Lastly, the ultrasonic sensors of the quadcopter only output values in cm. Therefore the
distance values are multiplied by 100 to accommodate this.

4.1.7 Physical Properties of the Quadcopter

The model presented above contains some physical constants that describe properties of the
quadcopter. Since these are hard to find out without the proper equipment to for example
calculate the surface area of the rotors. Therefore, these constants have been extracted
from McGilvray and Tayebi [TM04]. Table 4.2 shows the values of the mass m, the distance
between the rotor middle and the middle of the quadcopter dr, the lift constant l, the drag
constant b, the drag force coefficients Ax, Ay and Az of the quadcopter in every direction
as well as the inertia of the rotors IM and the inertia around the axes Ixx, Iyy and Izz. The
two inertias Ixx and Iyy are identical due to the symmetrical nature of the quadcopter.

4.2 Simulating the Model

This model alone won’t be enough to test the flight behavior of the quadcopter, as there is
no possibility to let the program running on the Arduino interact with the model. Thus,
a way to input data into the model and output the data to the Arduino is needed. KIEM

provides a way to do this. KIEM uses data components to create a linear execution of
the simulation. Since the model as well as the flight controller need data from the other
component – and thus have to output data for each other – they both have to be producer
and consumer.

This section explains the different components needed for the simulation. The compo-
nents diagram in Figure 4.5 gives a short overview over these components. The simulation
requires exactly one component for the flight controller and one for the model to run. The
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Simulator

KIEM
SerialComponent

SCChartsFlight
 Controler

SCChartsModel
 Simulator

PtolemySimulator

Arduino

FlightControler
<<component>> <<component>>

<<component>>

<<component>>

<<component>>

<<component>>
USB Serial

SerialConnector

FlightControler

Model

Figure 4.5. The different components of the KIEM simulation

Data Component

+ initialize: void
+ step: JSONObject
+ wrapup: void

SerialComponent

- connected: boolean

+ initialize: void
+ step: void
+ wrapup: void
- sendOutput: void

SerialCommunicator

- motorFR: int
- motorFL: int
- motorBR: int
- motorBL: int
- readable: boolean

+ getMotors: float[]
+ connect: void
+ disconnect: void
+ writeIntData: void
+ serialEvent: void

ExecutePtolemyModel

- kielerIOList: 
       List<KielerIOFloat>
- modelOutputList: 
       List<ModelOutput>
- manager Manager

+ executionInitialize: void
+ executionStep: void
- fillModelOutputList: void
- fillKielerIOList: void

1

1

Figure 4.6. The classes of the KIEM simulation with their most important attributes and methods

class diagram in Figure 4.6 depicts the different classes of the KIEM simulation. While the
DataComponent and ExecutePtolemyModel classes describe the PtolemySimulator component
of the components diagram, is the SerialComponent elaborated through the SerialComponent
and SerialCommunicator. The other two components were already existing before the project
began and will not be explained further at this point.
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4.2.1 Simulating the Flight Controller

To simulate the flight controller the user has two choices: He can either run the program
on the Arduino to test the compatibility of the software and hardware or run it on the
simulating PC. If the user wants to run the execution completely on the simulating PC,
he can use the SCChart of the flight controller. KIEM is able to simulate any SCChart
that is compilable. Running the flight controller on the Arduino however requires a
serial connection to the Arduino that is realized in KIEM using the implemented Arduino
Communication data component. This data component uses the SerialCommunicator java
class which in turn uses JSSC to establish a serial connection between the simulation and
the Arduino.

Communication Protocol

The communication follows a simple protocol. First, the Arduino sends the four motor
values together with an identifying character – a number assigned to the motor in the
beginning of the project that corresponds to the pin it was connected to on the Arduino. The
simulation simply waits for all four motors to be transmitted. Afterwards, the simulation
sends every important output of the model to the Arduino. Similarly, the simulation sends
an identifying character with each output. Since the data being transmitted to the Arduino
is in integers and not in bytes and the serial communication can only transmit single bytes
at a time, the serial communication class cuts the integer into four bytes and sends these
one by one over to the Arduino which in turn converts these bytes back to an integer.
Closing the communication is a delimiter byte from the simulation signaling the Arduino
that it can now continue with his calculations. On the other side, the simulation can simply
continue with its computations as it does not need any more input data from the flight
controller.

Alternatives to the Arduino and SCCharts

The Arduino itself is not necessary for the simulation. Both the code of the flight controller
as well as the model should theoretically be testable by running everything via KIEM. The
prerequisite for this is that there exists a way to simulate the flight controller in KIEM. Since
the code on the Arduino that controls the flight behavior has been written with SCCharts,
KIEM can easily simulate the flight controller.

If the code is not written in SCCharts, then a new data component would have to be
developed. As there was code written for the flight controller in C and C++ as well for
comparison purposes, a new component would have to be written to test this. This was
not done in the scope of this paper due to time constraints and since the code was already
tested and deemed working as of the completion of the simulation.
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For further information on creating data components in KIEM, reading the diploma
thesis of Motika [Mot09] is advised.

4.2.2 Simulating the Model in KIEM

To simulate Ptolemy in KIEM the data component Simple Ptolemy Simulator, which is created
by the DataComponent class, is used. It is a component developed by Motika [Mot09] and
cleaned up for this thesis that loads a Ptolemy XML file for the simulation. The Ptolemy
model is then executed stepwise with every step of the KIEM execution. KIEM provides the
model with input data of the motors and extracts the outputs of the simulation via the
communication bus.

Similarly, the SCCharts model can be executed using the SCCharts / SCG Simulator (C)
data component. This data component was already implemented prior to this thesis and
comes with two other data components accompanying it. The Synchronous Signal Resetter
and the Synchronous Signal View. While the former resets every synchronous signal at the
beginning of each tick to ensure that each signal is present if and only if it is set to present
in this tick, the latter creates a view showing the value of every signal at every tick. Both of
these are rather unimportant for this project and could be omitted. Similar to the Ptolemy
model, the SCChart is executed stepwise by KIEM and exchanges inputs and outputs with
the communication bus of the simulation.
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Chapter 5

Realization

After establishing the physical properties in the previous chapter, the next section covers
the realization of these models. It first explains the realization with the tool Ptolemy as
well as with SCCharts. Afterwards, this chapter covers the implementations required to
simulate the model using KIEM and concludes with the realization of the data exchange
between the Arduino and the simulation.

5.1 Realization with Ptolemy

The properties from Chapter 4 were subsequently modeled in Ptolemy using a continu-
ous time director as explained in the book System Design, Modeling and Simulation using
Ptolemy II [Pto14].

To start off, the model begins with four KielerIO actors as described in Section 3.1.1.
These receive the input data from the KIEM simulation or, for debugging purposes, from
the Ptolemy file itself. They then output these to the first composite model calculating
the actual rotations per second of every rotor as these are needed to calculate thrust and
torque of the copter.

(a) Calculating the rotations per second of
the rotors in Ptolemy

(b) Calculating the thrust of the quadcopter
in Ptolemy

Subsequently, using Equation 4.1.6 and Equation 4.1.9, the simulation computes both
the mentioned thrust and torque. Calculating the thrust is fairly simple, as the model
squares the revolutions per minute and adds the results of all motors together. On the
other hand, differences in the axes can be spotted in the calculations for the torque. Both
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Figure 5.2. Calculating the torque of the quadcopter in Ptolemy

roll and pitch use pretty much the same logic, but yaw calculates very differently from the
other two as explained in Section 4.1.3. The torque around the x and y axis is only affected
by two motors respectively, since these axes are on two of the arms of the quadcopter,
which contain the motors. Therefore, a change in these motors does not affect the torque
around these axes. On the other hand, two of the rotors affect the torque around the z
axis positively and two affect it negatively resulting in a rotation around the zB axis. If the
motors on the quadcopter have been mounted the other way around and the copter in the
simulation turns clockwise while the real one turns counter-clockwise, this issue can be
fixed in this part of the model.

5.1.1 Linear Accelerations, Velocities and Position in Ptolemy

With the thrust mentioned above and assuming already preexisting and correct angles,
the model can now calculate the linear accelerations with Equation 4.1.7. Figure 5.3
delineates the general calculation of the accelerations. The composite models in the figure
are implementations of the rotational matrix 4.1.1 applied to the thrust vector. Afterwards,
the thrust, mass and gravity are factored in.

Since this is still not the real linear acceleration, the composite model in Figure 5.4
considers the aerodynamic effects on the copter. It delineates the in Equation 4.1.8 presented
contexts and considers the drag force coefficients of the quadcopter in the different
directions.

To accurately calculate these aerodynamic effects, the model needs to compute the
linear velocity of the copter. Ptolemy already provides an integrator actor for integrating
values over time in the continuous director. Furthermore, the simulation also calculates the
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Figure 5.3. Calculating the acceleration in the inertial frame in Ptolemy

Figure 5.4. Calculating the drag affecting the quadcopter in Ptolemy

current position of the copter by integration, which it later needs for the distance sensors.

5.1.2 Angular Velocities and Angles in Ptolemy

With the torque calculated in Section 5.1 as well as the angular velocities of the rotors, the
model can calculate the angular velocities of the copter. Both the angular velocities in the
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body frame as well as the angles in the inertial frame are required, the former as an output
to the flight controller and the latter as a variable for other calculations. Figure 5.5 shows
the outline of the Ptolemy model describing the angular properties. Once again, the model
makes use of the integration actor multiple times. Figure 5.6 shows the computations for the
change in angular velocities. These need already existing values of the angular velocities
as input, so the integration actors are initialized with reasonable values – for example 0 m

s .
Equation 4.1.11 was used to create this composite model.

The modal model to the right of Figure 5.5 calculates the rotation of the angular
velocities from the body frame to the inertial frame according to the rotational matrix W´1

η

from Equation 4.1.13. After rotating, the simulation calculates the current angles, again
by integration, and then divides them modulo 360 to receive an angle between 00 and
3600. This is necessary to ensure that the modal model operates correctly. Furthermore
the values of the angles have to be scaled from degree to radians, as the sine, cosine, and
tangent actors in Ptolemy use angles in radians.

Figure 5.5. Calculating the angles in Ptolemy

5.1.3 Distance Calculation in Ptolemy

The distance calculation in Ptolemy uses a modal model – a state machine – with four
states, one for each general direction the copter could be facing. Every state contains a
refinement, each describing one column of the equations from Table 4.1 appertaining to the
direction. Figure 5.7 shows this modal model while Figure 5.8 depicts one representative
refinement.

Since the times for a tick are very short with just a few milliseconds in general, it is not
important for the states to have transitions to the opposing state. For example, the state
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Figure 5.6. Calculating the angular accelerations in Ptolemy

facingLeft does not need a transition to facingRight, because such a sudden change in one
tick is very unlikely if not impossible. In case this happens, the state between facingLeft
and facingRight would merely been active for one tick. This means that its calculations are
also only relevant for one tick. This would not create a lot of problems since the distance
measurement smooths singular outliers [Mac15].

Figure 5.7. The modal model describing the current direction of the quadcopter in Ptolemy
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Figure 5.8. Calculating the distances to the walls in Ptolemy

5.1.4 Adjusting the Output Values in Ptolemy

Finally, to adjust the output values, the simulation first rotates the acceleration values back
into the body frame, rotates both the angular velocities and the acceleration by 450 and then
simply scales each of the output variables with the corresponding constants mentioned in
Section 4.1.6.

5.2 Realization with SCCharts

Similar to the section above, this section will deal with the implementation of the model
with the help of data-flow in SCCharts. Unlike Ptolemy, everything in SCCharts is written
in the SCT language and then visualized by a layout algorithm and is not created in a
graphical editor. Thus, the creator only has complete freedom over the content and not
over the layout of the model. Since the code snippets describing the model are fairly simple
as they are pretty much the equations from Chapter 4, the figures in this chapter will be of
the visualization of the model.

The different parts of the model are realized in multiple regions. Due to the sequentially
constructive MoC of SCCharts the executions of the regions are scheduled in a way such that
all variables are first initialized, then updated and lastly read from [HMA+13]. Therefore,
the execution order of the code generated by SCCharts is determined by the scheduler. The
order of execution is not the same as the order of the visualization.

Due to the complexity of the topic, this section is ordered mostly the same as Chapter 4
and Section 5.1. Just like in Ptolemy, the model first starts with the calculation for the
propellers and the thrust. Contrary to the model in Ptolemy, this model calculates the
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Figure 5.9. Calculating the thrust in SCCharts

torque in another region. This has no specific reason, other then the thematic relation.
Figure 5.9 shows these calculations. Since the calculation is done in one model, there is
much less redundant computation than in Ptolemy. The picture further shows one of the
main problems in data-flow in SCCharts right now: Many helper variables such as the
propBLRPM variable do not need to receive markings in the visualization. Furthermore,
these markings are often times not large enough to fit the entire name of a variable.

thrust
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Figure 5.10. Calculating the accelerations in SCCharts

5.2.1 Linear Accelerations, Velocities and Position in SCCharts

Figure 5.10 and Figure 5.11 delineate the calculations for the linear accelerations of the
quadcopter. They encompass all the necessary calculations including the computation of
the drag counteracting the acceleration as depicted in the top of the model in Figure 5.10
as well as scaling the output to values that can be read by the Arduino. Figure 5.11 depicts
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the rotation back into the body frame on the left of the model and calculates the actual
outputs to the Arduino in the top right by rotating the x and y acceleration values by 450

as described in Equation 4.1.4 and then scaling the outputs as described in Section 4.1.6.

On the other hand, Figure Figure 5.12 visualizes the calculations for the velocity and
position. In the current version of the model, referenced SCCharts is not used and the
integration is executed in the main model. This leads to some redundancy and takes away
some clarity from the visualization.
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OutputAccZ

Figure 5.11. Calculating the output accelerations in SCCharts

Integration in SCCharts

SCCharts itself does not have an integrate function. Thus, a SCCharts model was developed
using the same integrating method as Ptolemy to ensure that both simulations will be as
similar as possible. This method is the Riemann summation using the trapezoidal rule. If
the intervals of the sum are small enough, the sum approaches the Riemann integral [SG78]
and can therefore be used to approximate the integral [TF96]. With this method the model
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Figure 5.12. Calculating the velocity and the position in SCCharts

calculates the integral x of ẋ at time n as follows:

x[n] = x[n´ 1] +
1
2
(ẋ[n]ẋ[n´ 1])∆t

Since the integration was used multiple times in the model, referenced SCCharts could
have been used instead of the current approach.

5.2.2 Angular Velocities and Angles in SCCharts

As mentioned, the torque of the quadcopter is calculated at another place in the model
in SCCharts then in Ptolemy. Here, the torque is calculated together with the rest of the
angular calculations. Figure 5.13 and 5.14 together describe these calculations. The layouts
of these two regions are sadly confusing and hard to follow. Just like above, they contain
the integration themselves and not as a referenced SCChart, complicating the layout even
more. Figure 5.13 contains the information about the angular velocities p, q and r while
Figure 5.14 visualizes the calculation of the angles. Not depicted is the computations of the
trigonometric functions of φ, θ and ψ since data-flow does not visualize these currently.

In the bottom left of Figure 5.13 are the calculations for the torque as described in
Equation 4.1.9. The top however depicts the calculations for the angular velocities. Since
they are in a loop-back due to the integration, the data-flow is hard to follow.
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Figure 5.15. Calculating the distances between the walls and the quadcopter in SCCharts

5.2.3 Distance Calculations in SCCharts

The nested model for the distance calculations can already be seen in Figure 5.14. This
SCChart, as visualized in Figure 5.15, does the same as the modal model in Ptolemy in
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+ serialEvent: void

ExecutePtolemyModel

- kielerIOList: 
       List<KielerIOFloat>
- modelOutputList: 
       List<ModelOutput>
- manager Manager

+ executionInitialize: void
+ executionStep: void
- fillModelOutputList: void
- fillKielerIOList: void

1

1

Figure 5.16. The classes of the KIEM simulation with their most important attributes and methods

Figure 5.8 and calculates the distances to the different walls yet does it slightly differently.
Contrary to Ptolemy, the model does not memorize the current state it is in but has to
calculate the direction the quadcopter faces in every tick by first entering the nested
SCChart in the state setup. The control-flow then enters one of the next states via an
immediate transition depending on the current yaw angle ψ.

5.3 Simulating the Model

As explained in Section 4.2, the model cannot simulate the behavior of the quadcopter
without help. Therefore, this section explains the required software to simulate the model.
First, this section will cover the data component for the Ptolemy model. Since the SCCharts
data component was unchanged, it is not important to take a closer look at this component.
Following that, there will be a short paragraph about the serial communication components
on both the side of the simulation as well as on the side of the Arduino.

5.3.1 Ptolemy Data Component

The Simple Ptolemy Simulation is a data component developed by Motika [Mot09] that
was cleaned up for the purpose of this paper. The functionality of this data component
is explained in detail in his thesis. Therefore, this section only summarizes this data
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1 private void f i l l K i e l e r IOL i s t ( final List<KielerIOFloat> kielerIOListParam ,

2 final List<InstantiableNamedObj> children ) {

3

4 for (Object child : children ) {

5 i f ( chi ld instanceof CompositeActor ) {

6 CompositeActor compositeActor = (CompositeActor ) child ;

7 f i l l K i e l e r IOL i s t ( kielerIOListParam , compositeActor . ent i tyL ist ( ) ) ;

8 }

9 i f ( chi ld instanceof KielerIOFloat ) {

10 kielerIOListParam .add( ( KielerIOFloat ) child ) ;

11 }

12 i f ( chi ld instanceof ModalModel) {

13 ModalModel modalModel = (ModalModel) child ;

14 f i l l K i e l e r IOL i s t ( kielerIOListParam , modalModel . ent i tyL ist ( ) ) ;

15 }

16 i f ( chi ld instanceof ModalController ) {

17 ModalController modalController = (ModalController ) child ;

18 f i l l K i e l e r IOL i s t ( kielerIOListParam , modalController . ent i tyL ist ( ) ) ;

19 }

20 }

21 }

Listing 5.1. Loading the input and outputs of the Ptolemy model

component. For further information, reading the thesis of Motika is advised. The class
diagram in Figure 5.16 is the same as the one in Section 4.2 included again for easier
reading.

The initialization of the DataComponent begins with loading the XML-file of the model
and parsing this model into a string that is readable for the program. Subsequently, the
execution needs fills a list of every object in the model so it can find every input, output
and nested models. Every KielerIO actor or, adapted for this thesis, every KielerIOFloat
actor is considered an input variable and every MonitorValue actor an output variable. The
method to load inputs is described in more detail in Listing 5.1. It searches the current
model for every nested model, recursively calling the search for more inputs in every
nested model. If it finds a KielerIOFloat, it adds it to the list of input actors which are
needed later. The method to load outputs does the same without searching for outputs
in nested models. These inputs and outputs are then stored in the kielerIOList and the
modelOutputList respectively. Afterwards, the initialization starts the simulation.

The most important part of the component is the step function. Listing 5.2 depicts that
the step starts with exporting the input data from the simulation, the jSONObject, to the
model and then executes one step of the model, which is shown in Listing 5.3 in more
detail. Since Vergil is merely a graphical UI of Ptolemy and Ptolemy can run alone without
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1 public JSONObject step ( JSONObject jSONObject ) throws KiemExecutionException {

2 JSONObject returnObj = new JSONObject ( ) ;

3 try {

4 model . setData( jSONObject ) ;

5 model . executionStep ( ) ;

6 } catch (Exception e) {

7 / / Catch Exception

8 }

9 List<ModelOutput> outputs = model . getModelOutputList ( ) ;

10 for (ModelOutput output : outputs ) {

11 String signalName = output .getName( ) ;

12 boolean present = output . isPresent ( ) ;

13 Double value = output . getValue ( ) ;

14 try {

15 JSONObject signalObject = JSONSignalValues .newValue(value , present ) ;

16 try {

17 returnObj . accumulate(signalName , signalObject ) ;

18 } catch (Exception e) {

19 / / Catch Exception

20 }

21 } catch ( JSONException e) {

22 / / Catch Exception

23 }

24 }

25 return returnObj ;

26 }

Listing 5.2. Starting a step of the Ptolemy model

this UI, this step is executed without the need of the visualization provided by Vergil. After
the step, the component receives the values from every output and writes these values as
well as the corresponding name of the actor into a JavaScript Object Notation (JSON) object,
a language independent data format often used to transmit information between different
parts of a system. In KIEM, JSON is used to transmit information between the different data
components. All JSON objects are now accumulated into one JSON object and then saved in
the simulation so they can be used by other parts of the KIEM execution.

The step execution in Listing 5.3 is the one finally executing the step in the actual
Ptolemy model. First it changes the present flag of all output signals to false as to overwrite
the changes from the previous tick. Afterwards, the system gets the value of every input
variable in the kielerIOList by extracting the value of the JSON object with the same name
as the input variable. They are subsequently written into the KielerIO object corresponding
to the input variable and the Ptolemy manager executes a step of the model in Ptolemy.

Once the user ends the simulation, the wrapup function is called by KIEM. This function
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1 public synchronized void executionStep ( ) throws KiemExecutionException {

2 try {

3 for (ModelOutput modelOutput : modelOutputList ) {

4 modelOutput . present = false ;

5 }

6 float value = 0;

7 for ( KielerIOFloat kielerIO : k ie ler IOList ) {

8 String signalName = kielerIO .getSignalName ( ) ;

9 kielerIO . setPresent ( isSignalPresent (signalName ) ) ;

10 Object objVal = getSignalValue (signalName ) ;

11 i f ( objVal instanceof Float ) {

12 value = ( Float ) objVal ;

13 } else i f ( objVal instanceof Double) {

14 value = ((Double) objVal ) . floatValue ( ) ;

15 } else i f ( objVal instanceof Integer ) {

16 value = (( Integer ) objVal ) . floatValue ( ) ;

17 }

18 kielerIO . setValue (value ) ;

19 }

20 manager. iterate ( ) ;

21

22 } catch ( KernelException e) {

23 / / Catch Exception

24 }

25 }

Listing 5.3. Loading the inputs during a step and executing the step

however merely stops the execution of the model and unloads the XML file.

5.3.2 Communication between the Simulation and the Quadcopter

To exchange data between the flight controller and the model, the simulation requires
a communication component. This component requires the protocol from Section 4.2.1
which it adheres to as well as an implementation both on the side of the simulation as well
as on the side of the flight controller.

Serial Communication Data Component

The Arduino Communication data component offers the serial communication between
the models and the Arduino. It utilizes the SerialCommunication java class as the data
component as well as the SerialCommunicator java class using simple JSSC commands. Using
the same structure as all data components, the initialization begins with connecting the
simulation via a serial port to the Arduino. The initialize function of the data component
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1 public JSONObject step ( JSONObject jSONObject ) throws KiemExecutionException {

2 JSONObject returnObj = new JSONObject ( ) ;

3 JSONObject [ ] signalObject = new JSONObject [4] ;

4 while ( !com. isReadable ( ) ) {

5 try {

6 Thread . sleep (5) ;

7 } catch ( InterruptedException e) {

8 e. printStackTrace ( ) ;

9 }

10 }

11 float [ ] motors = com.getMotors ( ) ;

12 try {

13 for ( int i = 0; i < 4 ; i++) {

14 signalObject [ i ] = JSONSignalValues .newValue(motors[ i ] , true ) ;

15 }

16 returnObj . accumulate( " FrontLeft " , signalObject [0 ] ) ;

17 returnObj . accumulate( "BackRight" , signalObject [1 ] ) ;

18 returnObj . accumulate( "FrontRight" , signalObject [2 ] ) ;

19 returnObj . accumulate( "BackLeft" , signalObject [3 ] ) ;

20 } catch ( JSONException e) {

21 / / Catch Exception

22 }

23 try {

24 JSONObject xAcc = ( JSONObject ) jSONObject . get ( "OutputAccX" ) ;

25 JSONObject yAcc = ( JSONObject ) jSONObject . get ( "OutputAccY" ) ;

26 / / [ . . . ]

27 com. writeDelimiter ( ) ;

28 } catch ( JSONException e1) {

29 / / Catch Exception

30 }

31 return returnObj ;

32 }

Listing 5.4. Executing a step in the Serial Component, transferring data between the simulation
and the Arduino

calls the connect method of the SerialCommunicator class, which opens the port to the first
connected serial port. Since we assume that only the Arduino is connected to the simulating
PC, this should be sufficient. Listing 5.4 then depicts how a step is executed in the serial
component. The component first waits for the motor outputs from the Arduino, if they
haven’t already arrived. As soon as the component receives the outputs, it saves them to the
JSON object of the simulation that is loaded by the simulation as described in Section 5.3.1.
Afterwards, it sends all the outputs of the model by acquiring the corresponding JSON

objects from the simulation and writing their values to the serial port together with a letter
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1 serialPort . writeBytes (name. getBytes ( ) ) ;

2 for ( int n = 0; n < 4; n++) {

3 serialPort . writeByte ( (byte) (data & 0xFF ) ) ;

4 data >>= 8;

5 }

Listing 5.5. Shifting an integer so it can be sent byte for byte

identifying the output so that the Arduino can save the values to the correct variables. At
the end of the transmission the controller sends a delimiter byte containing only ones to
the Arduino.

Since JSSC can only send single bytes in a format that the Arduino is able to read, the
communicator has to send integers as four bytes to the Arduino, which in turn has to write
these bytewise into an integer. Listing 5.5 shows that this was done using the bitwise shift
command in Java. Masking the value so that only the first eight bits are written into the
byte is not necessary, yet helps to understand the process of the transmission.

Serial Communication on the Arduino

On the other end of the communication is the Arduino. The libraries on the Arduino
already implement serial communication and thus only small adjustments were necessary.

Every tick on the Arduino, the flight controller calls the setMotor function for every
Motor and the readValue function to get all required inputs. Listing 5.6 depicts how a
motor value is written to the serial port and shows with an example how the readValue
function operates. The setMotor functions simply write the name of the motor and the
corresponding value as a byte onto the serial port. Since the motor values of the flight
controller never exceed 255, a byte is enough to transfer the information of the motors.
On the receiving end in the readValue function, the Arduino loops as long as it has not
received the delimiter byte. If the Arduino receives a letter identifying a variable, the
following four bytes are written to this variable. If the delimiter byte has been received
and not all values have been overwritten, these values stay the same as in the last tick.
While it is reasonable to argue that the Arduino should re-request data it has not received,
this way we can simulate behavior occurring in real environments. In our tests we often
times realized that sometimes some input data from the gyroscope are lost and the flight
controller continues operating with the old values.

It is important to note that this synchronization determines that one tick in the model
equals one tick on the Arduino. While this might not be the best solution, it disallows very
asynchronous behavior. Thus, the simulation cannot do multiple steps while the Arduino
is too slow to react making him crash or allows the Arduino to do multiple steps during
one instance of the environment causing outputs to be lost.
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1 void SimulationConnector : : setMotor0( int thrott le ) {

2 Serial . write ( ’9 ’ ) ;

3 Serial . write (number) ;

4 }

5

6 / / [ . . . ] Other transmission functions for sending motor values

7

8 void SimulationConnector : : readValues( int * serialValPtr , float *yprPtr ,

9 int *accPtr , int *distancesPtr ) {

10 int inChar = 0;

11 int value = 0;

12 boolean l ight = false ;

13 delay(200);

14 digitalWrite (13 , LOW) ;

15

16 int i = 0;

17

18 while ( !ended) {

19 delay (5) ;

20

21 i f ( Serial . available ( ) ) {

22 int inChar = Serial . read ( ) ;

23 value = 0;

24

25 i f ( inChar == 255) {

26 ended = true ;

27 } else {

28 while ( Serial . available ( ) < 4) {

29 delay (5) ;

30 }

31 }

32

33 / / Acceleration in x́ axis

34 i f ( inChar == ’X ’ ) {

35 value = Serial . read ( ) ;

36 value = value + ( Serial . read ( ) << 8);

37 value = value + ( Serial . read ( ) << 16);

38 value = value + ( Serial . read ( ) << 24);

39 accptr [0] = value ;

40 }

41 / / [ . . . ] Other received variables

42 }

43 }

44 ended = false ;

45 }

Listing 5.6. Examples of transmitting and receiving functions of the Arduino
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Chapter 6

Evaluation

This chapter evaluates and compares the two different approaches to simulate the quad-
copter. First, it gives a short overview over the results of the simulation using the flight
controller. Afterwards, it compares the different implementations, the differences in the
calculations as well as the respective advantages and disadvantages of the two approaches.
Lastly, it explains problems encountered in the making of the simulation.

It is important to note once again that the simulation uses constants describing another
quadcopter. The results of this simulation sadly do not guarantee that a quadcopter running
on the tested software is able to fly or not as it could be unbalanced like the one built as
part of the project.

6.1 Results of the Simulation

There are a lot of problems with the simulation. Sadly, due to time constraints towards
the end of the project the simulation could not be properly tested in the context of the
SCCharts flight controller. Since the flight controller has a lot of adjustments made to fit
the hardware and the collision avoidance and the flight controller were not implemented
in one SCChart but in two different SCCharts, it could not properly be tested. Regardless,
the model was tested with the flight controller alone without the collision avoidance.

6.1.1 Problems with the simulation

After adjusting the names of the variables and removing constraints on the controller that
were made due to hardware constraints of the quadcopter, the flight controller would
output -2147483648, the largest negative value of an integer, on every motor, regardless of
the input of the simulation. Testing the flight controller alone results in the same output
values. After some more testing and changing the time input variable to be present at
every tick, reasonable values were produced by the simulation. Making the input time to a
constant integer or locking it in KIEM to output every tick did not work however. Therefore,
the input had to be manually set to present at every other tick of the simulation.

Even after these adjustments, the simulation could not produce realistic values. While
this could be due to the fact that the copter in the model does have different physical
properties to the copter that the flight controller was written for, further investigations
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showed that a flaw in the calculations is more likely. Tests without the flight controller
concluded that the acceleration values seemed too high while the angular velocities in
comparison seemed very low.

Another problem is the input to the motors of the quadcopter. Since the component
outputting the voltage to the motors is outputting them with a Pulse Width Module
and their data sheets are non existent, it is impossible to find out how much voltage is
provided at which value of the motor output of the flight controller. Therefore, it is hard to
properly adapt the simulation to a real quadcopter. Other work on the physical properties
of quadcopters bypassed this issue by inputting the actual measured angular velocity of
the rotors like Höger [Hög14] or using a feedback control with a current and a desired
state like Luukkonen [Luu11].

6.2 Comparison between Ptolemy and SCCharts

As evident from the previous chapter, Ptolemy and SCCharts have their differences. While
some of them like the design of the actors are pretty apparent just from looking at the
figures in Chapter 5, many more become obvious using the two tools. Not only are there
implementation differences, there are also slight differences in the calculation.

6.2.1 Implementation Differences

The first and most glaring difference between Ptolemy and SCCharts is the method of
creating a model. While in Ptolemy the user builds the model using various building
blocks such as the actors and connecting these with each other mostly using drag and drop,
he writes the equations in SCCharts directly in SCT. Furthermore, in SCCharts the layout
of the displayed model is completely automatically created, whereas in Ptolemy the user
himself has control over the layout and can either choose to use an automatically generated
layout or create the layout himself. Those two aspects create two very different ways to
designing a model. The method used in SCCharts makes it much easier for new users.
They can simply create their model by writing down the equations they want to simulate.
While the user has to know some commands to create a new model, if he just wants to
create a small and quick data-flow simulation, he doesn’t need to know much about these
commands. On the other hand, Ptolemy is not very difficult to understand either. Simple
mathematical equations most often only use addition and multiplication or sometimes
integration or trigonometric functions. These are easy to use, if sometimes hard to find, in
Ptolemy. The only negative aspect of Ptolemy concerning new and inexperienced users
is the multitude of different directors the user might not necessarily know. As already
mentioned before SCCharts does not have built in integration and the modeler has to fall
back on hostcode if he wants to use trigonometric functions. Concerning the integration,
this necessitates that the modeler has to create a method to integrate himself.
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Figure 6.1. A very cluttered and unclear part of the model in SCCharts

Since SCCharts creates the layout for the user, he does not need to focus on creating a
good layout. Sadly, the data-flow layout in SCCharts is often times not very clear, especially
for large models. The modeler can choose to create one big model that contains everything
maintaining all connections like in Figure 6.1 or create multiple small regions like in
Figure 6.2. While the second option maintains a clearer layout, it loses some relations
between some components. For example, in Figure 6.2, the actor ’AccZOut’ in the top left
of the region ’CalculateAccelerations’ is an output that is required as an input in the region
’CalculateVelocityAndPosition’ on the left. A visually better option as depicted in Figure 6.3
is to create nested SCCharts containing a single state that then contains the equations in a
data-flow environment. The picture shows two parts of the model, one opened and another
one closed. Sadly, the inputs are still not completely connected to the actual actors. While
this also creates a lot of work for the modeler it is probably the best option as unnecessary
information can be hidden and a lot of clutter can be removed from the model.

On the other hand, Ptolemy users can create their own vision of the model. Actors and
composite models can be moved around manually and a good modeler can create a model
that is clear and can be understood very easily. This of course can take up a lot of time and
effort the modeler does not necessarily have to expend. Alternatively, Ptolemy offers the
possibility to layout the model automatically as mentioned above. This automatic layout
is generated by the KLay Layered algorithm from the KIELER project [SSH14]. SCCharts
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however does not offer the possibility to manually edit the layout of a model.
Another important aspect of modeling is reusing parts of a model. Instead of using a

copy and paste approach, it is often of advantage to create a way to reuse a part of the
model in another place, while still maintaining the information that this part of the model
is a copy of the original. This way, fixing a mistake in the original can also fix the mistake
in the copy. Otherwise, the modeler might have to repair multiple chunks of the model.
This kind of feature is implemented both in Ptolemy by converting an actor to a class and
then creating instances of this class as well as in SCCharts via referenced SCCharts.

6.2.2 Differences in Calculations

One big difference in the calculation could be the order of computation. In data-flow
in SCCharts it is pretty clear which computation comes before which computation and
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even if variables occur in multiple different regions, the order of computation is given by
the sequentially constructive MoC. This MoC states that in one tick a variable should be
initialized first, then updated and lastly read. On the other hand, the order of computation
in Ptolemy depends on the director used in the model. The continuous director used
mostly in the model of this thesis converts all actors into one big equation and calculates
the values of each variable with the help of a solver. The book System Design, Modeling and
Simulation using Ptolemy II [Pto14] presents the different solvers as well as the computation
methods for other directors. Ultimately this should not change much in the behavior of
the quadcopter, as one tick should cause only small increments in the angles and thus
only small differences in the acceleration values, yet can change the calculations in the
simulation alone a lot.

Another difference between the two models could be the integration. Yet, since the
integration used in SCCharts in this thesis was modeled after the integration method in
Ptolemy, there should be no noticeable difference in the calculation of the integration. The
only factor impacting different outcomes is the time of a tick. Since the time of a tick can
vary wildly in Ptolemy with the continuous director, the results of the integrations can be
very different from the SCCharts model as this model uses a constant time interval.

6.3 Encountered Problems

In the creation of the models I have encountered a lot of problems. Most of these problems
could be solved directly or with a little bit of a workaround. Sometimes these problems
were more severe and required – or will require – attention from the creators of the
software. In the following I will describe these problems and how I solved them or how
and why I could not solve them.

6.3.1 Problems Encountered using Ptolemy

Ptolemy is a fairly complex program. Since I already had some experience working with
Ptolemy, I luckily did not have to get used to the peculiarities of the program. These
peculiarities include the inability to attach the output of one actor to the inputs of multiple
other actors. To do this, the user has to create a so called relation, a sort of anchor that
a connection between elements has to go through – weirdly enough a relation is both a
connection between actors and/or models and the afore mentioned anchor. These relations
can then connect to multiple input ports of other actors or models. The automatic layout
for relations is furthermore sometimes a bit finicky and can go through places the user
does not want it to go through. Therefore, I made extensive use of the anchor relations that
force the relation along a more or less fixed path. Using the automatic layout generation
might have solved these problems but I personally prefer to create the layout myself in
these projects because I can design the layout close to a mental map of the project I have.
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The automatic layout generation of Ptolemy also currently does not consider annotations
and comments. These will be arranged at the top of a model with a automatic layout. On
the other hand, creating and maintaining a clear design is often fairly difficult, especially
in some of the composite models that calculate the rotations. Fixing these layouts would
be time consuming and might not necessarily yield much better results.

Another big problem encountered was the pause function. Ptolemy itself has its own
run function. With it the user can see the change of outputs in real time. Pausing the run
function causes the model to stop calculating. Still, the system clock continues. This causes
the integrator values to jump after continuing, since they calculate their values according
to the system time. Luckily, this does not occur when using KIEM to simulate Ptolemy. This
presumably has to do with the properties of the director as some of these are discarded
when KIEM runs the model.

Lastly, the Ptolemy data component for KIEM uses a dependency on an old Ptolemy
Java project correlating to version 8.0.1 of Ptolemy while the simulation runs on version
10.0.1. Furthermore, there was no newer version of the Java project available to create a new
dependency. Luckily, this did not create big problems. The only noteworthy problem that
occurred was that in the XML-file every mention of gui.MonitorValue had to be renamed to
MonitorValue. Furthermore, for KIEM to recognize the MonitorValue actors as an output, the
user has to add a property to the actor called signal name. The value of that property is then
displayed in the KIEM simulation. This was already in the original approach. Otherwise,
the functionality of version 8.0.1 was sufficient for this thesis.

6.3.2 Problems Encountered using SCCharts

Before going into the problems I have encountered using SCCharts, it is important to once
again stress that data-flow in SCCharts is a recent development emerged from the diploma
thesis of Umland [Uml15]. As such, many of these problems are attributable to the general
lack of polish and the unfinished nature of the project and were fixed in a very short time.
As such, many of these problems would not be encountered by a new user now.

Fixed Problems

At the beginning of the project, many of the models created were compiling properly
to code using the SCCharts synthesis. Yet, when looking at the generated code, a lot
of the information was lost, because the local variable declarations inside the data-flow
environment were disregarded. This originally caused the generated program to not be
runnable.

Another problem was the use of referenced SCCharts. At the beginning I assumed
that referencing an SCChart in data-flow worked the same way as it does in SCCharts
without data-flow. This then entailed creating a node in data-flow, referencing an SCChart
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inside this node, outputting the outputs from the referenced SCChart out of the node and
then calling these outputs. This is of course very error-prone and did not work properly.
However, for experienced SCCharts users this is the known way and should theoretically
work yet does not. Using reference calls in data-flow the way it was intended yielded
positive results.

Non-Fixed Problems

The first problem one encounters when using data-flow in SCCharts is that the visualization
of larger models can take some time. While synthesizing the model works pretty fast,
saving or loading a model causes the editor to slow down significantly for a few seconds
as the visualization is loaded.

Furthermore is the visualization pretty overloaded. As can be seen in Figure 6.1 or in
general in Section 5.2, the realization section of SCCharts, big models can become quite
confusing. While nested SCCharts like in Figure 6.3 can help to create a more clear layout
in bigger models, sometimes even smaller models are very cluttered and a nested SCChart
might not clarify the model. In this case, manual or semi-manual adjustments might be of
advantage.

More reasons for the cluttered look of the model are the partially redundant markings of
relations. As Figure 6.4 shows, the model can have a lot of redundant markings that exist to
keep the SCT file readable. Creating one big equation would help eliminate these markings
but at the same time make corrections and adjustments nearly impossible. Therefore, I
would suggest that these markings are removed from the visualization if the variable is
merely a local variable in the data-flow. Similarly, one could not visualize every variable
that is neither declared as an in- or output. Another idea would be to remove the marking
if the variable is both an output and an input to actors. This however could remove some
variables that the user would want to have displayed.

Another big problem is the use of hostcode for trigonometric functions. Not only
should there be a possibility to calculate trigonometric functions without having to resort

Redundancy 
input int in
int helper1
int helper2
output int out

[-]

in
*

helper1
+

helper2

2

*
out

Figure 6.4. Redundant information in data-flow
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1 scchart Hostcode {

2 input int in ;

3 output int out ;

4 int helper ;

5

6 dataflow test :

7 helper = <sin ( in )>;

8 out = ’ sin ( helper ) ’ ;

9 }

(a) Hostcode implementations in SCCharts data-
flow

HostcodeTest 
input int in1
output int out
int helper

[-] test

helper

out

(b) Hostcode disappearing in data-flow

Figure 6.5. Hostcode in SCCharts data-flow

test 
input int in1
input int in2
input int in3
input int in4
input int in5
input int in6
input int in7
input int in8
input int in9
output int out1
output int out2

[-] data

in1

in2

in3

in4

in5

in6

in7

in8

[+] innerNode

in1
in2
in3
longInputOnTheLeftSide
in4
in5
in7
in8 out1

out2
out3
out4

longerOutputOnTheRightSide out1

Figure 6.6. Cluttered inner node with too much text

to hostcode, currently hostcode is not even visualized in data-flow as Figure 6.5 shows.
This occurs because the synthesis disregards the contents of the hostcode calls and simply
forwards the code until the end of the synthesis and therefore does not know if any
variables of the model are being used in the hostcode.

Even more visualization issues occur when using nested or referenced nodes inside
data-flow. When the modeler adds more input or output variables or uses very long names
for the variables, the size of the node does not change while it is closed. This leads to very
cluttered nodes as in Figure 6.6 and prevents the user from opening the node to look at the
contents of it as there are too many labels overlapping to click the button to open the node.
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Chapter 7

Conclusion

This chapter shortly summarizes the results of this thesis in Section 7.1. It concludes with
a look into future work in SCCharts in Section 7.2.

7.1 Summary

The aim of this thesis was to create a simulation of a quadcopter as a demonstrator for
data-flow in SCCharts and to be able to compare it with other established modeling tools.
With this demonstrator it was possible to evaluate the usability of SCCharts in the context
of simulations and data-flow. This simulation managed to reveal flaws and errors in the
data-flow environment such as the unclear layout of larger models and the lack of core
elements of physical models like trigonometric functions as well as to evaluate its possible
uses.

Data-flow in SCCharts might be a possible, time saving alternative to Ptolemy or Matlab
in the future since creating a model is as easy as typing the equations in and watching the
model visualize itself. While heterogeneous models might still be problematic for SCCharts,
data-flow alone seems to be working pretty well and fluid, as long as the models don’t
become excessively large. Large models might be too unclear and fixing this is the most
important issue. Since the modeler has almost no hand in the layout of the final product, it
is difficult to give the model a reasonable layout from the creators point of view.

The simulation however should be developed further and tested more rigorously before
actually being used to verify a flight controller of a quadcopter.

7.2 Future Work

As Chapter 6 has revealed, there are a lot of problems in data-flow in SCCharts as well as
the simulation that was created for this thesis. Therefore, this thesis proposes some future
projects to close this thesis.
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Figure 7.1. An example diagram displaying the acceleration in the direction of the y-axis of the
quadcopter

7.2.1 Future Work on the Simulation

As a first step for the simulation it should be tested and overworked. While the first step
to a good simulation would be to map the motor values that are put out by the Arduino to
voltages that are then read by the motors, the distance calculation should be reworked as
well as the current system is just a simplification.

To get the simulation to work with the quadcopter that was built for the project, a lot
of physical properties would have to be determined such as the movement inertia of the
quadcopter in every direction, the rotational inertia around each axis and the inertia, lift
constant and drag constant of the rotors.

The current visualization of the simulation utilizes only the data tables component.
While this component is able to show the values of all data, this does not necessarily help
with a simulation. In simulations a visualization via diagrams like in Figure 7.1 is very
helpful. This could be done via the KIELER Environment Visualization (KEV) [Kna10]. This
project provides an interface for visualization that loads JSON Strings and create SVG
graphics. An integration into this simulation could be very helpful.

For this simulation in particular, a better visualization using a 3D picture of a quad-
copter in a room could be a good idea. This visualization could depict the position of the
quadcopter in the room as well as its current angles at the current time like in Figure 7.2.
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Figure 7.2. A three-dimensional representation of the quadcopter slightly tilted in a room

The simulation could further give information if the value of a variable has exceeded a
certain limit, for example if the quadcopter has exited the boundaries of the room or is
tilted more then desired. The creator should however analyze the costs and benefits of this
work. As long as the simulation is not working properly, this visualization would not be
very helpful.

7.2.2 Future Work on Data-Flow

Data-flow in SCCharts has a lot of room for expansion. Since the model with all the
equations was already created beforehand, the model was very easy to implement in
SCCharts. But, as mentioned in Section 6.3.2, there still exist some issues that need to be
fixed.

The first step to making data-flow in SCCharts more usable is to improve the layout
algorithm or to create a way to influence the layout more easily. Right now, unrelated
variables can be located very close to each other while related ones are very far from
each other away, which makes it hard to understand the model for outsiders. Even I as
the modeler often times had problems understanding the flow of data in some models.
Removing unnecessary markings as well as making it possible to group related variables
without losing the connection to other variables would be a first step to better layouts. As an
example, Ptolemy does an excellent job providing means to hide unnecessary information
as well as to show connections via the ports of composite models. Data-flow in SCCharts
already does the latter when using nested SCCharts but still struggles with mid-sized
models. These models often struggle with unnecessary markings. Removing a marking
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when it is not declared as an input or output variable of the diagram might be a good
idea. Ptolemy handles this fairly well by only portraying the names of ports when the user
hovers over this port. This or hovering over the connection to reveal the name instead of
just the port could be implemented in SCCharts.

Furthermore, trigonometric functions and ways to integrate or derivate are often
times very important for physical simulations, which is an important use case for data-
flow. Therefore these functions should be more easily accessible. Since trigonometric
functions are currently merely implemented via the use of hostcode, which in itself is quite
problematic as the modeler might want a platform independent model, and integration and
derivation are not implemented at all, SCCharts clearly lacks a lot of appeal. Implementing
these kinds of functionalities though should not be hard to do. Furthermore, hostcode is
not visualized in data-flow currently. Perhaps creating a small box signifying hostcode in
the diagram could fix this. The hostcode could be written inside the box so the modeler
knows what it does instead of it being a black box.

Lastly, Data-flow in SCCharts requires more demonstrators. At this point in time,
data-flow in SCCharts has not been used by many people. A larger test – maybe as a part
of a course – would be required to verify data-flow and to search for more flaws in the
implementation or the visualization. An important part of this would be to let the students
create both smaller and larger models and to conduct a survey afterwards.

In conclusion, this thesis describes with the help of a simulation for a quadcopter
a demonstrator for data-flow in SCCharts. With this demonstrator the thesis compares
Ptolemy and SCCharts as modeling and simulation tools. It shows the strength and
weaknesses of SCCharts in the context of physical simulations.
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Instructions for the Simulation

.1 Simulating without the Arduino

To start the simulation without the Arduino you will require the following:

Ź Eclipse including a workspace with the repository of the semantics branch of the KIELER

group

Ź The Eclipse Project for the Ptolemy data component located in the repository un-
der Praktika/15ss-realtime/Ptolemy-Simulation/de.cau.cs.kieler.quadcopter.simulation
imported into the Eclipse workspace

Ź The Ptolemy model located in the repository under Praktika/15ss-realtime/Ptolemy-
Simulation/QuadcopterSimulation.xml or

Ź The SCCharts model located in the repository under Praktika/15ss-realtime/SCCharts
Simulation

Ź The flight controller in SCCharts

Start the Eclipse instance and open the SCCharts Simulation perspective including the Execu-
tion Manager. Add a Simple Ptolemy Simulation and an SCCharts/SCG Simulator (C) to the ex-
ecution and open the flight controller in the project explorer. Starting the execution should
now execute the simulation. Alternatively, you can download the Quadcopter.execution
file from the 15ss-realtime/SCCharts Simulation and execute this simulation file. If the
input and output variables of the flight controller are not the same as these of the model,
simply rename these variables in the SCChart.

If, instead of the Ptolemy model, you want to simulate the SCCharts model, you will
merely need the SCCharts/SCG Simulator (C). Then open the combined flight controler/-
model SCCharts file in the repository under Praktika/15ss-realtime/SCCharts Simulation.

.2 Simulating with the Arduino

For this simulation you will require the following:

Ź The Arduino with the QuadcopterController project installed and connected via USB to
the simulating PC
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. Instructions for the Simulation

Ź If you have Ubuntu installed: You will have to give some rights to the port the Arduino
is connected to. To do that, go to the console and type sudo chmod a+rw dev/[serialPort]
with [serialPort] being the port the Arduino is connected on. Typically this is ttyACM0
or ttyUSB0.

Ź Eclipse including a workspace with the repository of the semantics branch of the KIELER

group

Ź The Eclipse Project for the Ptolemy data component and Arduino Communication
data component located in the repository under Praktika/15ss-realtime/Ptolemy-
Simulation/de.cau.cs.kieler.quadcopter.simulation imported into the Eclipse workspace

Ź The Ptolemy model located in the repository under Praktika/15ss-realtime/Ptolemy-
Simulation/QuadcopterSimulation.xml or

Ź The SCCharts model located in the repository under Praktika/15ss-realtime/SCCharts
Simulation

For this you will have to connect the Arduino with your PC first and install the Quad-
copterController project on the Arduino. Otherwise, the method is the same as the above.
However, instead of adding an SCCharts/SCG Simulator (C) data component, you will
have to add the Arduino Communication data component. Then either add the Simple
Ptolemy Simulation data component or the SCCharts/SCG Simulator (C) and open the
SCCharts model (standalone! Not the combined version).

.3 Changing the Models

Changing the SCCharts model is quite easy with a working installation of SCCharts,
preferably the nightly build since the current release v0.10.0 does not yet support data-
flow.

Changing the Ptolemy model requires Ptolemy II 8.0.1 or newer. Furthermore, the
KielerIO and KielerIOFloat actors have to be installed. These can be downloaded in the
repository under Praktika/15ss-realtime/Ptolemy-Simulation and put into the new folder
ptII[version]/ptolemy/actor/kiel. After saving the model, the XML file has to be put
into the data component of the simulation. Copy the model XML file to the folder
de.cau.cs.kieler.quadcopter.simulation/model. The model has to be named QuadcopterSim-
ulation.xml to work. Furthermore, if you have installed version 0.10.0 or newer of Ptolemy,
you have to search and replace every mention of gui.MonitorValue with MonitorValue.
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