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Abstract

The main focus in the KIELER project is the e�cient modeling of complex systems.
To this end, we would like to be able to make use of the advantages of both textual
and graphical editors that work together in a synchronized manner. As an application
of this approach a textual editor for SyncCharts has been developed in this work using
TMF Xtext. To accomplish this objective we have de�ned a new textual language for
SyncCharts, namely KITS, developed its grammar and a textual editor for it. As a
second step the textual editor has been synchronized with ThinKCharts, a graphical
SyncCharts editor, which was previously developed for KIELER. Both editors are
Eclipse plug-ins and thus highly extensible. Furthermore we have followed a model-
based development approach and made use of di�erent code generation frameworks.
In particular, we utilize TMF Xtext for the generation of the textual development
environment that provides its users with convenient editing tools like an outline view,
code completion, templates, pretty printing and the like along with an ANTLR like
parser. The synchronization has been realized by taking advantage of the command
and observer pattern implementations within the GMF.
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1 Introduction

What you see in Fig. 1.1 are two di�erent representations of the same: The left one
is a graphical visualization of the Mandelbrot set1 whereas the one on the right hand
side is a textual description of its formula2.
The graphical view of the set enables us to quickly gain an overview, is less formal

and allows an easy orientation while the textual view has its strong point in simplicity
and a �ner granularity. It depicts how the parameters of the building blocks of the
set were con�gured that were not visible in the graphical view, hence details the
internals of the system. Apparent is also that it is easier to load and save, exchange,
compare, print, share and edit [20].
Generally speaking, visual descriptions have a topological character contrary to �at

textual descriptions that lack spacial organization. It is this topological construction
that our minds understand apace, thus we also use graphical representations for de-
bugging simulations for instance. Nonetheless the rapid observations we make with
the aid of diagrams also result equally rapidly in the need of editing, con�guring,
and hence restructuring our models. This is the point where we run up against the
drawbacks of a graphical visualization. Consider the amount of time you would need
merely to create a node in the middle of a highly complex diagram as an example.
How much is the time needed to really add the node and the time needed to �nish the
subsequent tasks like rearranging related nodes? As a result, one of the most perspic-
uous criticisms of graphical views is the amount of resources lost in task-irrelevant
occupations. In their presentation [38], von Hanxleden and Prochnow present a com-
parison of editing speeds and traceability of textual versus graphical models coming
to the same conclusion: Although they model the same system, di�erent views are
cut for di�erent tasks.
The user has a more observant role when using a graphical editor. Thus graphical

editors should be more �active� meaning that they should manage tasks like auto-
layout, zooming, simulation and automate editing in a structure-based manner.
In textual editors, on the other hand, the user takes over a more active role, hence

textual editors should provide help with appropriate orientation aids like highlight-
ing, overview, textual navigation, pretty printing and validation help such as code
completion.
Eventually we think of textual and graphical representations as the two halves of

our brain: Just like using both sides of our brain increases our e�ciency, using both
textual and graphical views will enhance the editing quality. Thus text-based mod-

1http://en.wikipedia.org/wiki/Mandelbrot_set
2Here merely two informal representations of a Mandelbrot set out of many possible are given. We
are not claiming for their correctness or completeness.
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1 Introduction

Figure 1.1: Mandelbrot visualization

eling is not merely an alternative to its graphical counterpart, it also complements
graphical models perfectly.

A direct implication of these considerations is the synchronization of textual and
graphical views. Their integration can be desired in di�erent levels [16]: Text can
serve as the initialization block of the graphical model without allowing a textual
editing of the system. An alternative and more �ne-grained integration is done by
views that update their contents according to changes in other views. The highest
level of integration is achieved by supplying a hybrid view, e.g. textual components
appearing in graphical components, where details can be edited.

The strategies to combine both views can be summed up as follows: Either both
editors work directly on the semantic domain model and the respective views are
updated with respect to the changes, as illustrated in Fig. 1.2 Or the separation of
concrete and abstract syntax is not fully accomplished and we need an intermediate
layer between the concrete representation and the abstract model to transform one
into the other. This approach is visualized in Fig. 1.3. The �rst approach is used by
the so-called structure editors. A textual structure editor projects the abstract syntax
tree directly in the text. As a result the user directly edits the tree while entering
text [43]. Although there are frameworks that successfully follow this approach, such
as JetBrains MPS 3, in Eclipse [9] this infrastructure is not yet implemented [36]. To
be more concrete, in the graphical modeling framework that we will get acquainted
with in the following chapters, diagram-related data are clearly separated from the
underlying semantic model. Unfortunately this is not the case for textual editors in
Eclipse [36]. As a consequence, our synchronization has to follow the second strategy.

3http://www.jetbrains.com/mps/index.html

2
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Figure 1.2: Synchronization of structure editors

Figure 1.3: Synchronization of a textual editor that separates the text model from
the underlying domain model

3



1 Introduction

To conclude this introductory motivation, there is a debate in the literature, led
o� by a 22 years old paper, No Silver Bullet [3], we want to get brie�y into. In
this paper Brooks analyzes the nature of the di�culties in software development
and determines that they are of two di�erent natures: Essential di�culties have an
abstract characterization and address the nature of software. Hence they remain the
same under di�erent representations, which make up the second category �accidents�.
Brooks passionately argues that e�orts in improving software representation or tool
support are not at all able to result in any serious solutions for essential problems:

How much more gain can be expected from the exploding researches into
better programming environments? One's instinctive reaction is that the
big-payo� problems were the �rst attacked, and have been solved.
Language-speci�c smart editors are developments not yet widely used in
practice, but the most they promise is freedom from syntactic errors and
simple semantic errors. . . . Surely this work is worthwhile, and surely it
will bear some fruit in both productivity and reliability. But by its very
nature, the return from now on must be marginal.

Brooks, No Silver Bullet, 1987

He concludes his paper with the result that we should concentrate on how to employ
and grow great designers. A detailed answer to his widely cited article can be found
in [22]. We take position in this discussion as follows: Minds of great designers do
not work somehow or in some mystical ways. Research shows that they make more
use of both sides of their brains which can be supported and even learnt as some
claim. Arguing that investigating in better programming environments is peripheral
and the real solution is to hire great designers is like appreciating the mind of a great
software designer however not appreciating the e�orts that make use of the way these
minds work in order to bring out their full potential. Every great designer will most
probably increase his or her e�ciency and ability to cope with essential di�culties
of software, when supported by better programming environments.
Let us conclude this section by commenting a second citation from the same paper:

Graphical programming. A favorite subject for PhD dissertations in
software engineering is graphical, or visual, programming. . . . Nothing
even convincing, much less exciting, has yet emerged from such e�orts.
I am persuaded that nothing will. . . . Second, the screens of today are
too small, in pixels, to show both the scope and the resolution of any
seriously detailed software diagram. The so-called �desktop metaphor� of
today's workstation is instead an �airplane-seat� metaphor. Anyone who
has shu�ed a lap full of papers while seated between two portly
passengers will recognize the di�erence −− one can see only a very few
things at once.

4



1.1 Contribution of this work

Brooks, No Silver Bullet, 1987

At the end, the pilot of the same airplane is making the plane �y hopefully very
well by the aid of a number of even smaller screens, which are also not attacking
the very essential nature of the problem of �ying an airplane. What we need is not
to see the whole picture with the best resolution in every single part of it. Instead
we rather need environments that provide us a �control panel� with di�erent views
displaying task-relevant parts while supporting task-relevant operations.

1.1 Contribution of this work

This work addresses the problems that arise in the graphical modeling of complex
systems by providing an alternative textual editing environment.
Hence the �rst contribution of this thesis is a concrete syntax for SyncCharts that

aims a compact description of the underlying system along with an editing framework
for this language that supports its users with content assist, textual navigation, a
tree-based outline, semantic validation, syntactical highlighting, templates and a
pretty printer. With the introductory motivations in mind, this textual editor has
been synchronized with an existing graphical editor in a further step.
In addition, a full synchronization of these editors leads to fundamental con�icts

due to their di�erent editing policies. This work solves them by synchronizing con-
tents on �le save.

1.2 Outline

This chapter will introduce the frameworks, concepts and languages that are funda-
mental for our concerns and conclude by de�ning the concrete problems that build
the scope of this study.
In Chap. 4 and Chap. 3 we present our solution approaches to these problems

before unfolding details of their implementation in Chap. 6 and in Chap. 5. Finally,
an evaluation of our results along with suggestions for future work are given in the
concluding Chap. 8.

5
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2 Application Field: SyncCharts in

KIELER

Wir backen kleine Brötchen. . .
dafür aber knackig!

Hauke Fuhrmann

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is the
successor research project of the Kiel Integrated Environment for Layout (KIEL)1 at
the Christian-Albrechts-Universität zu Kiel aiming a convenient modeling of complex
systems. What we mean by �convenient� has hopefully been su�ciently motivated
in the introduction. Let us therefore turn our attention to the systems we want
to model. At this point, let us also make a convention and call these systems the
�System Under Development (SUD)� throughout this work.

If you would take a moment right now and have a look around you, it is quite
possible that you would see some reactive systems around. Reactive means that the
system is able to react to internal and external stimuli, and reactive systems are
everywhere from telephones to avionics systems. In fact, the latter ones even played
a historical role in the making of Statecharts [23].

In 1982 Harel consulted a team developing an avionics system. Surprisingly, he
recalls, did he realize that the engineers had fundamental knowledge in the behavior
of system parts in particular yet could not compute the next step of their SUD in a
deterministic way, when given a set of circumstances. This had its roots in the fully
inadequate system speci�cation. Thus he developed Statecharts at the end of this
project by enhancing Finite-State Machine (FSM)s with visual constructs that were
able to express topological relationships. From this point of view, Statecharts are to
FSMs, what hyper-graphs are to graphs [21].

The �rst of his visual constructs are dashed lines inside a state that express or-
thogonality meaning that we are in both sides of the dashed lines at the same time
(logical AND). The second visual construct is the grouping of states into one super-
state, thus abbreviating a subset of the FSM. This construct introduces hierarchy,
this time meaning that we have a logical XOR.

As can be surmised from the di�culties the aforementioned avionics team experi-
enced, it has proved hard to convey the behavior of reactive systems [21]. Especially
plain automata do not cater for hierarchy, synchronization and concurrency support.
Statecharts can be seen as a (maybe revolutionary) meta-approach to devise this

1http://www.informatik.uni-kiel.de/rtsys/kiel/

7
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2 Application Field: SyncCharts in KIELER

Figure 2.1: ABRO á la KIELER

complex behavior yet it is also fundamental to have a sound semantics in order to
be able to compute the next reaction of our SUD in a deterministic manner.

To this end, Esterel2, a synchronous imperative programming language, has been
developed and is powerful enough to support the necessities of synchronous reactive
systems (synchronicity is explained below). Esterel has the advantages of a textual
language, along with its drawbacks. A visual alternative is given by SyncCharts.
They inherit Statecharts' looks and Esterel's semantics. Their behavior can vary
from that of Statecharts�in particular they do not support inter-level transitions
due to their strict containment policy [1]. Throughout this work, SyncCharts is the
graphical language itself while syncChart refers to a particular model visualized in
SyncCharts.

KIELER has a graphical SyncCharts editor, namely ThinKCharts, that was de-
veloped by Schmeling [39]. In Fig. 2.1 a syncChart is represented that is visualized
with this editor. Let us refer to this syncChart as ABRO and take a closer look at it
to see the main SyncCharts building blocks:
ABRO has three cascaded states, ABRO, ABO and Wait_A_and_B. This is the

visualization of the aforementioned hierarchy concept. States containing other states
are calledmacro-states. If we are in a macro-state, we are instantaneously in its initial
state. Hence every macro-state has to have exactly one initial state. Consequently,
once ABRO is activated, we are instantaneously in Wait_A_and_B.

In Wait_A_and_B we see the aforementioned dashed lines, expressing orthogo-
nality, which means that we split our position at that level in two di�erent branches
and are at the same time in both wA and wB because they are the initial states of

2http://www-sop.inria.fr/meije/esterel/esterel-eng.html

8
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respective regions in Wait_A_and_B.
As can be seen, syncCharts have an almost autonomous behavior due to their

reactive nature. Remarkable is also that our syncCharts has changed its active
state(s) �the state(s) that are reacting� a number of times but we referred to these
changes as being instantly as if these steps did not take any time.
This is indeed true and has its roots in the time notion in SyncCharts: Synchronous

systems are considered to be in�nitely fast therefore react instantaneously. Time is
simulated as continuously reoccurring discrete events, which are realized by an en-
vironment signal called tick. In each tick, our reactive system reacts to stimuli, e.g.
by enabling transitions if their premises were satis�ed. Thus the con�guration of a
reactive system is changed in a number of micro-steps inside of one tick. However
because time only ��ows� from tick to tick, these intermediate computations are con-
sidered to happen all at the same time, with other words, none of the computations
take any time �not very realistic, however deterministic.
A reactive system that conforms to this time notion and ful�lls the �synchrony

hypothesis� is called a synchronous reactive system. The synchronous hypothesis
adds the restriction that the value of each signal and variable has to be known
before computing the next step from the input. In fact this restriction ensures the
deterministic behavior of a reactive system.
The tick signal can be seen as a synchronizer for all computations. The number

of micro-steps computations consist of can vary greatly from each other. Therefore
the length of a tick is set to the duration of the longest computation. This way, all
computations are brought to an end by tick, like a conductor pinching his �nger and
thumb to cut-o� the music.
In our example, if A and B are present while we are in (wA, wB), both their

transitions will be taken. We will move to a �nal state in each region leaving nothing
to do in Wait_A_and_B. This is the premise of a normal termination, indicated by
a green triangle, therefore it will be enabled and let O be emitted immediately.
Hereby O is a signal, the means of communication in SyncCharts. A syncChart

reacts by sending pure or valued signals. Pure signals are either present or not;
valued signals also have a type and hold a value of that type. So far our syncChart
represents a system that wants to write something (O) yet awaits two �things� to
do so (A,B). These could be, e.g. an address and a datum to be written into this
address or sharpening a pencil and �nding a paper, if we want. In Wait_A_and_B
we wait until both have appeared (not necessarily in the same tick). When they
have, we perform the writing immediately.
The transition on ABO adds an additional reset functionality to this system. We

can send the signal R to our system that enables this particular transition. The red
dot at its origin indicates it is a strong abortion. Strong abortions are so strong that
they preempt any further activity in their source state. This e�ectively resets our
system. Think about the situation that our syncChart reads both R and B while in
(dA,wB) : R will trigger the strong abortion, the strong abortion will put the system
back to (wA,wB), and as a side-e�ect set the system status to IDLE, meaning that R
will not have any e�ects in this tick anymore.

9



2 Application Field: SyncCharts in KIELER

Although this introduction on SyncCharts is not su�cient for a profound under-
standing of the language, it should be su�cient for our purposes. So far, we have seen
what we want to model. Let us now turn our attention to how we will model Sync-
Charts. In particular, we will follow a model-based development approach, hence
fundamental modeling concepts build the base for understanding the considerations
in this work �as such they will be introduced in the next section. Thereafter we will
proceed with the frameworks we make use of, particularly for the graphical editor in
KIELER and for the KIELER textual editing framework.

2.1 Model Based Software Development

It makes a fundamental di�erence whether we think in terms of functions or objects
when we develop software. Analogously, models taking centre stage in software
design requires a completely new way of thinking and is referred to as Model-Driven
Software Development (MDSD).

A model describes a system in a modeling language, e.g. in Uni�ed Modeling
Language (UML) [33] while its meta-model describes the modeling language. A meta-
meta-model adds another abstraction layer on top of this to de�ne the description
of modeling languages. Hence every model needs to conform to its meta-model as it
is de�ned and described by it.

Roughly, when we follow a model-based development approach, we start from an
abstract model and transform it into more speci�c models through to executable
code.

Model Driven Architecture (MDA) [31] is a speci�cation of this approach, initi-
ated by the Object Management Group (OMG) [32]. First of all, MDA emphasizes
the need for a thorough modeling of the software architecture prior to entering the
implementation phase [26].

Hence software is �rst designed and structured in a Platform Independent Model
(PIM) that is an abstraction of the given problem from any platform speci�cation.
MDA intends to use the PIM to generate executable code. Being an intermediate step
between the PIM and the generated code, a so-called Platform Speci�c Model (PSM)
contains platform-speci�c data yet is not executable.

Since we need to be able to express more abstract artifacts as we increase our
abstraction level, we also need di�erent languages for di�erent modeling layers. UML

is a modeling language that supports the MDA to describe models and the meta-
models they need to conform to. The highest abstraction level can be de�ned by
another OMG language, namely Meta-Object Facility (MOF) [35].

When developing software in a model-based manner we automate the code gen-
eration and concentrate on the transformation de�nitions for our models as well as
their semantic validation.

To this end various di�erent MDA-enabled development tools such as code gen-
eration frameworks, model transformation or model validation languages have been
developed. Let us introduce three such languages that are extensively used by dif-
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Figure 2.2: Overview of the oAW language framework

ferent Eclipse modeling frameworks.

2.1.1 oAW Languages

Open ArchitectureWare (oAW)3 has developed three languages that support MDSD,
namely Xtend, Xpand and Check, that have been included into the umbrella Eclipse
project for modeling4, which we will introduce in the next section.

Xtend is used to de�ne additional functionality on top of our models. Xpand is a
template language that is utilized for code generation from our models, while Check
is designed to validate models.

These three languages share a common base allowing them to operate on the same
(meta-)meta-models to have a very similar syntax. [11] This common base consists
of a type system and an expression sublanguage. The type system provides us with
some built-in types and implementations of registered meta-models. The expression
sublanguage abstracts and uniforms di�erent meta-meta-models like Eclipse Model-
ing Framework (EMF) ECore, and de�nes a statically typed expressions language by
referencing the type-system. Their hierarchy is visualized in Fig. 2.2.

3http://www.openarchitectureware.org/
4http://www.openarchitectureware.org/staticpages/index.php/oaw_eclipse_
letter_of_intent
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Listing 2.1: Validation rules in Check

1 import s y n c c h a r t s ;
2

3 //ERROR example
4 con t e x t S ta t e i f ( type == StateType : : CONDITIONAL) ERROR " Cond i t i o n a l
5 s t a t e s must not c on t a i n a c t i o n s ! " :
6 ( ( e n t r yA c t i o n s == nu l l ) | | ( e n t r yA c t i o n s . s i z e == 0))
7 && (( i n n e rA c t i o n s == nu l l ) | | ( i n n e rA c t i o n s . s i z e == 0))
8 && (( e x i t A c t i o n s == nu l l ) | | ( e x i t A c t i o n s . s i z e == 0 ) ) ;
9

10 //WARNING example
11 con t e x t S i g n a l i f ( type != ValueType : : PURE) WARNING "KLEPTO:
12 Only pure s i g n a l s a r e suppo r t ed i n the s imu l a t i o n ! " :
13 f a l s e ;

Check A meta-model can be seen as a grammar of a language in the sense that it
de�nes the syntactical structure that its models have to conform to. However
we also need to ensure that our models are not just syntactically but also
semantically correct. Check is a language used to this end.

We de�ne our semantic restrictions in the form of Check rules. In Listing 2.1,
examples of validation rules used in KIELER are presented.

A Check rule can de�ne an ERROR or a WARNING. Each Check rules starts
with a context. The context is the scope of the particular rule. The context
can be limited further via an additional query, as was done in the �rst rule
in Listing 2.1: This Check rule is e�ective for conditional states only. The
context de�nition and the rule type,i. e. ERROR or WARNING, are followed
by a string. This string is the message that the user will see if the subsequent
condition does not hold. The condition of a Check rule de�nes what should be
hence the warning, de�ned by the second rule in Listing 2.1, is shown for every
pure signal.

As can be noticed, the Check syntax is intuitive and allows using self-de�ned
types such as State because of the aforementioned EMF ECore integration to
the type system.

Xtend Xtend is used to de�ne extensions on our meta-model in a non-invasive way.
The additionally de�ned functions can then be used as libraries from other
languages are based on the oAW expression framework. We also have the pos-
sibility to escape to Java inside our Xtend extensions.

Xpand If we have developed a Domain Speci�c Language (DSL), like we will do in this
work, in almost every case we will also want to make something executable from
it. The transformation of a DSL to executable code can be done via templates,
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Listing 2.2: Sample extension with Xtend

1 import synccharts;
2

3 List sortTransitionPrios (State transitions ):
4 transitions . outgoingTransitions .sortBy(e|e. priority );

Listing 2.3: Referencing Xtend extensions from an Xpand template

1 import synccharts ;
2 <<EXTENSION template::helper>>
3

4 <<DEFINE state FOR State−>>
5 <<this.id>>:
6 <<EXPAND callJSONState>>
7 <<FOREACH sortTransitionPrios(this) AS outTrans−>>
8 <<IF ((Transition)outTrans).isImmediate−>>
9 <<EXPAND transition FOR (Transition)outTrans−>>

10 <<ENDIF−>>
11 <<ENDFOREACH−>>
12 <<ENDDEFINE>>

written in Xpand. Listing 2.2 and Listing 2.3 show how functions, declared in
Xtend, can be referenced from an Xpand template.

2.2 Modeling in Eclipse � Tool Introduction

Eclipse supports MDSD with various frameworks. In this section we introduce the
Eclipse modeling frameworks, that are relevant to our work.

2.2.1 Eclipse

Thinking of Eclipse [9] as merely a Software Development Kit (SDK) or a Java De-
velopment Environment is like seeing a hair dryer in a power outlet and thinking
that this power outlet is a hair dryer provider. Eclipse is rather like a power outlet
provider and manager than the outlet itself or the machine plugged to it. Thus
the main purpose of the kernel of Eclipse is providing a mechanism that allows tool
developers to develop tools that are perfectly integrable with existing ones.
Eclipse is based on units that provide certain functionality, called plug-ins. Each

plug-in can de�ne extension points which are comparable with a power outlet. Fur-
thermore each plug-in can also de�ne extensions, meaning that they extend the func-
tionality of an extension point, de�ned by another plug-in. Again, this is comparable
with inserting the hair dryer into the power outlet.

13
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Figure 2.3: Eclipse platform overview

Extension points and extensions are the connection points of plug-ins and the
Eclipse runtime manages their cooperation by using the manifest �le of a plug-in
that declares the dependencies of a plug-in. This allows the Eclipse runtime to
gather all needed information to manage the plug-in interconnection without having
to activate them.

Almost everything we see when working with Eclipse is an Eclipse plug-in �the
Java development tools, the workbench, even the workspace. An overview of the
Eclipse Platform can be seen in Fig. 2.3. Eclipse makes extensive use of the Adapter
Pattern [17]. The adaptable workspace resources are an example of this. A workspace
in Eclipse is simply a container for the �les the Eclipse tools are operating on. An
Eclipse workspace comes with an adjustable history and an adjustable marker mech-
anism. It is also possible to track the changes in workspace resources via resource
deltas [8] e�ciently.

An Eclipse workbench has one or more workbench windows, consisting of views
and editors. To read more about the various terms, and di�erences between, e.g.,
views, viewers and editors, please refer to http://www.eclipse.org/eclipse/
faq/eclipse-faq.html.

As for the deployment with Eclipse, the developer is supported with the Eclipse
Rich Client platform that merely loads the chosen plug-ins, thus hiding everything
else the user is not interested in. This allows us to provide our users with a rich
client application that is extensible yet not �lled with unneeded features, allowing
an easier start-up and optimized use.
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Figure 2.4: A minimal subset of the EMF Ecore meta-model

2.2.2 The Eclipse Modeling Framework

EMF [30] models depict well-structured formalizations of our domain, in our case
SyncCharts. Later we are concerned with the concrete graphical or textual notation
elements which we �build our sentences� with, however �rst we have to structure
what we want to model. Hence EMF models build the base of our editors, and EMF

is a framework that provides us with a model-based approach to construct this base.

However a model that cannot be processed is pointless. The strong point of EMF

is its ability to generate Java code from this model. The generated code is organized
in two Eclipse plug-ins respectively to instantiate and edit our model as well as an
additional plug-in that holds further code for a fully functional editor of our model.
The structure of the code, generated by EMF, is designed following patterns [17] that
have proved useful for object oriented design.

From the MDSD perspective, an EMF model can be seen as the PIM because it
does not contain any platform-speci�c data and serves as a base for all further de-
velopment. The so-called genmodel that is generated from the EMF model adds
platform-speci�c con�guration data to setup the code generation process on top of
the PIM [42] thus corresponding to our PSM. From this point of view the generation
of a genmodel from an EMF model or the code generation from the genmodel can
be seen as a Model-To-Model (M2M) transformation. An overview of how EMF is
related to MDA can be found in [10].

The meta-modeling language in EMF is called Ecore. It covers a subset of the
widely known UML meta-model however concentrates only on its essential parts. In
this manner Ecore sometimes refers to essential core meaning that it builds the core
of EMF and contains only essential information making it light-weight in contrast
to the UML meta-model. The Ecore meta-model itself is given in form of an EMF

(meta−)model to which our EMF models has to conform. However our models do not
necessarily have to be written in Ecore at the �rst place for EMF to understand them.
EMF can also synthesize them from annotated Java interfaces, Extensible Markup
Language (XML) documents or Rational Rose models. An abridged version of the
Ecore meta-model is given in Fig. 2.4. The SyncCharts meta-model, the base of our
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Figure 2.5: KIELER SyncCharts meta-model is conform to Ecore

editors in KIELER, that conforms to this meta-model is presented in Fig. 2.5.

A detailed understanding of EMF implementation details or aspects and patterns
used in EMF is beyond the scope of this work. The reader is invited to investigate
the o�cial answers of Eclipse to frequently asked questions [2] and referred to the
EMF book that was written by its developers, Merks et al. [40]. We will limit us to
the concepts which are relevant to our work and which are used for our plug-ins:

The Patterns in Generated Code

When code is generated from an EMF model, for each class in the model, an interface
and an implementation of this interface is generated. This pattern, separating inter-
faces and implementations, has proved helpful for model-based development, e.g., in
the Document Object Model (DOM) [40].

Model instantiations using the model code are strongly encouraged to be made via
generated singleton factories which re�ects another implemented pattern, namely the
Factory pattern.

Additionally each EClass extends a Noti�er enabling it to notify its listeners about
changes in its state. Thus, EMF also uses the Observer pattern [17]. A change
observer (or listener as often referred to in literature) is called an Adapter in EMF

for an Adapter not only listens to changes of an object, it also extends, i.e. adapts,
the behavior of the object it observes.

Finally all editing tasks, e.g. menu actions, are implemented through the Com-
mand pattern as can be seen in Fig. 2.6.
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Figure 2.6: Patterns in EMF

The EMF Persistence API and EMF Resources

EMF enables data integration with an e�cient and con�gurable persistence API. EMF

models are per default serialized with a generic XML Meta-data Interchange (XMI)
serializer yet they can be changed by other parser and serializer implementations as
we will do for our Xtext resources later.

In EMF a Resource represents a physical storage that holds our models, e.g. a �le
in the �le system. The fundamental di�erence between the two main associations in
the Ecore meta-model, references and aggregations in EMF, visualizes itself during
serialization. An aggregation is a compositional reference, meaning that a class is
composite of its aggregated elements, e.g. a book and its pages. Creating a resource
and adding a root object to its contents will result in having its aggregated children
also persistent in the same resource. However other objects, which are only referenced
from the root object, are serialized in separated resources, which is a fundamental
di�erence. Hence aggregation is like being in something and dependent to it. A
pregnant woman �aggregates her child� while for instance this thesis only references
its author, i.e. its author will not die or vanish just because someone deleted this
work. For our concerns the persistence environment of EMF plays a fundamental
role, hence they are further detailed in Chap. 5.

To sum up, EMF, given a model as an input, can generate Java code to instantiate
our model, persist these instances and edit them with a fully functional editor by
just clicking a few buttons. That brings us to the widely discussed question, whether
modeling and programming are rapidly becoming two interchangeable terms.

2.2.3 The Eclipse Modeling Project

With especially the latest contributions like the Textual Modeling Framework (TMF),
Eclipse is being increasingly used as a DSL toolkit [19]. To this end, di�erent modeling
and code-generation frameworks are utilized that are gathered together in the TMF.
Hence Eclipse Modeling Project (EMP) does not de�ne a separate framework but
serves as an umbrella project for related technologies.
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The EMP frameworks that are relevant for our objective are EMF, TMF and Graph-
ical Modeling Framework (GMF), and they are detailed in di�erent sections of this
work.

2.3 Technologies and Frameworks behind KIELER Editors

This section details the frameworks that are used to develop the SyncCharts editors
in KIELER

2.3.1 The ThinKCharts' Way of Thinking

ThinKCharts was developed using GMF [18]. Thus an introduction in how to develop
graphical editors with GMF can be found in [39]. As our aim is to build a textual
editor that is to be synchronized with ThinKCharts, we will provide an overview
how GMF editors are organized internally to see the big picture. This will allow us
later to explain how the cooperation of both editors is organized.

The editing work�ow in GMF editors is represented in Fig. 2.7. GMF editors are
like orchestras (and we will write the lyrics to their song). On the one hand side
we have the abstract model, developed with EMF, that represents SyncCharts in
an abstract way. What EMF and EMF models are is detailed in Sec. 2.2.2. Let
us think of this model as the notes of the song. On the other hand side we have
Draw2D �gures like nodes and connections that are what we see later in the canvas
of our graphical editor. Hence we will think of them as the performers on the
stage. The Graphical Editing Framework (GEF) [24] supplies EditParts that link
EMF models (Model) to Draw2D �gures (View) and controls the editing mechanism
in GMF editors (Controller). This kind of organization in editors, where the abstract
model, the view and the editing task are separates in well-de�ned layers, is thus called
the Model-View-Controller design and is a useful pattern. From this point of view
the EditParts are the conductors in our orchestra. Yes, we said �conductors� because
this is a very strange orchestra where there is exactly one conductor (EditPart) for
each note (model element) and each performer (�gure). Modifying this bijective
relationship can be desired in case we want to assign two di�erent shapes to a model
element. Although this is not an easy task it was implemented in [39] for instance: In
ThinKCharts the states are able to change their shapes depending on their attributes,
e.g., they have thick borders when they are initial.

Let us for a moment imagine that we are sitting among the audience while a
GMF orchestra is performing Tchaikovsky's Piano Concerto No.1. All of a sudden
we shout out loud: �Remove the pianist!�. What then would happen is that the
conductor would check if this is a valid request. If it is (which I doubt in this case),
he would command the performer and its note to vanish. In other words, if a user
clicks on a button in a GMF editor to remove a node, he or she invokes a request
that is �rst validated by the corresponding EditPart. The EditPart then translates
this request into a command and delegates it to the model element and its �gure.
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Figure 2.7: Editing work�ow in GMF editors

This is where GMF comes into play. In fact, the EditParts do not directly interact
with the model elements. The interaction with model elements takes place via the
notation model. The notation is a persistent model that holds diagram information
like the size and position of �gures. As a result the graphical information is in a
separate model than the semantic information. Due to this separation of graphical
and semantic data, we can use the same notation model for di�erent models. This
modularity is one important added value of using GMF.

The notation de�nition does not contain semantic data however it references our
EMF model. This reference is exactly the point where GMF bridges the two technolo-
gies GEF and EMF, and it is visualized by a dashed yellow arrow in Fig. 2.7.

In fact, the motivation behind GMF was that EMF and GEF were widely used frame-
works, however it was time-consuming to develop GEF editors �manually�. Hence
GMF comes with a development environment to enable a model-based development
of GEF editors. To do so, GMF introduces three intermediate models that depend on
the EMF model: The graphical de�nition model to hold the �gures, the tool de�ni-
tion model to hold the palette elements in the editor, and �nally the mapping model
to map these two and the EMF model. The latter is again an artifact to increase
modularity. Tooling and graphical de�nitions are likely to be similar in di�erent ap-
plications, thus the mapping model is able to map existing tool or graphical de�nition
to di�erent domains hence enabling their re-usability. This is illustrated in Fig. 2.8.
A deeper understanding of GMF can be gained from the detailed tutorial in [6].

2.3.2 Choosing a Textual Modeling Framework

The number of frameworks to develop domain-speci�c textual editors is increasing
along with the quality of generated editors. As we are using Eclipse as our develop-
ment framework we will con�ne us to the alternatives within Eclipse.
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Figure 2.8: GMF map-models increase the modularity in the development process

In Chap. 2 we mentioned the di�culties an avionics team experienced while de-
veloping an avionics systems. One of the origins of this problem was the di�erence
between the backgrounds of the experts that had to work on the same system. They
lacked a simple, common language that concentrates on the aspects of their SUD.
This justi�es the introduction of DSLs which are languages that are cut o� to a spe-
ci�c domain hence are e�ective to express domain-speci�c problems however cannot
be used for other aims in contrary to their general purpose counterparts like Java. In
this manner SyncCharts can be seen as a graphical DSL. DSLs can be categorized in
di�erent ways: Graphical DSLs use graphical notation elements (�gures) while textual
DSLs have a textual �alphabet�. We can use an existing general purpose language
(called host language) and narrow it down to a DSL in which case we have an internal
DSL. An example is GoogleGuice5 with Java as its host language. We will get ac-
quainted with this internal DSL in Sec. 2.3.2. In contrary, external DSLs are de�ned
with a custom syntax and need their own parsers, of which our textual SyncCharts
language will be an example of.

At this point we need to distinguish between the so-called abstract syntax and
the concrete syntax of a DSL. The concrete syntax of a language determines the
structure of the user input. Models, entered as text or diagrams by the user have to
conform to the concrete syntax. The abstract syntax, however, depicts the internal
structure of how models are persisted. Models that are persisted by the parser have
to conform to the abstract syntax.

The concrete syntax of a language is not necessarily a textual syntax �it can also
be graphical. SyncCharts, for instance, has a graphical concrete syntax consisting of
circles and arrows. The abstract syntax of SyncCharts in KIELER is modeled in EMF

and can be seen in Fig. 2.5.

When we develop textual editing frameworks we can either derive the abstract
syntax from the concrete syntax or we can start with an existing abstract syntax and
derive our concrete syntax from it. These two di�erent strategies are implemented
respectively by the two frameworks Textual Concrete Syntax (TCS) and Xtext within
the umbrella project TMF in Eclipse.

5http://code.google.com/p/google-guice/
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Textual Concrete Syntax

TCS annotates meta-models with syntactic elements and synthesizes a grammar �le
from the annotated meta-model. This approach allows the quick transformation from
model to text as well as text to model.

Since however TCS lacks the extensibility and modularity of Xtext we will utilize
Xtext in this work. Therefore we will introduce it in greater detail.

TMF Xtext

Xtext takes the concrete syntax as its starting point that is speci�ed in a grammar.
This grammar language is a DSL itself and as a proof-of-concept it was developed
in itself [7]. The probably most fundamental characteristic of an Xtext grammar is
that it combines both abstract and concrete syntax de�nitions in the same �le.

An Xtext grammar roughly consists of a list of parser rules and terminal rules
(also referred to as lexer rules). These rules are given in an Extended Backus-Naur-
Form (EBNF) [45]. An example of parser rules is seen in 2.9(a).

In an Xtext grammar, the �rst parser rule is set as the entry rule, and depicts
the root element of the abstract syntax. For instance, the entry rule in 2.9(a) is the
Region rule and corresponds to a Region element in KIELER SyncCharts meta-model.
This is an example of how the aforementioned combination of domain and concrete
model is de�ned. Let us have a closer look at the derivation of an abstract models
from an Xtext grammar.

Parsing and EMF model inference Parsing in Xtext can be divided in two main
steps: lexing and parsing. In the lexing phase a sequence of tokens are derived from
the input text using the terminal rules. Tokens are typed atomic parts of the input,
de�ned by the terminal rules. Keywords, ID, STRING, INT or WS (white-space)
are examples. The latter one is called hidden terminal in Xtext. They may occur
between tokens in any number; the parser skips them when seen. It is possible to
de�ne which terminals to hide per parser rule. When the token stream has been
derived, the parser goes through the parser rules in the grammar and searches for
matching patterns in the token stream. It does so by looking at as many number of
tokens as it needs to decide which rule it should try. Once it has chosen a rule, it
reads from the token stream and tries to consume tokens until it reaches the end of
a rule. If it does not succeed �because for instance the grammar rule prescribed a
mandatory keyword that cannot be found in the text at that point �it detects that
it has reached a dead end and rolls back to its last point to try another rule.

When a sequence of parser rules has been found that consumes the whole token
stream, the Xtext parser creates the so-called parse tree consisting of terminals and
non-terminals. In Xtext this tree is also called the node model because it has been
implemented with a tree structure consisting of composite and leaf nodes. The root
of this node model is a so-called NodeAdapter and references its according EObject6.

6An EObject is the EMF class for an Object
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Hence our semantic model is connected to the parse tree with the NodeAdapter.
We have said that the nodes in the parse tree reference EObjects. So when have

objects been created? This is the characteristic of Xtext: While the parser is creating
a parse tree, it also creates objects at some points and connects them to the parse
nodes. What we mean by �some points� is explained below. The so created objects
are then added to a so-called XtextResource by the parser before they are linked in
a further step. According to E�tinge and Völter [12] the separation of linking from
the parsing phase enables the implementation of more complicated linking semantics
independent from the concrete textual syntax.
Let us now turn to how and when Xtext creates our objects: We mentioned that

the parser rules might contain some additional constructs like actions or assignments.
These are used to in�uence the instantiation of our abstract EMFmodel. A parser rule
in Xtext has a name and a return type followed by a colon and semicolon. Between
the latter two a number of keywords, assignments or actions can be declared.
Keywords represent non-semantic concrete syntax elements that are not matched

by our abstract syntax, namely our EMF meta-model. In 2.9(a) region, init, �nal and
state are keywords.
The semantically relevant parts are the assignments, actions and the return type

of a parser rule. Every parser rule has a return type even if not explicitly declared.
In that case the parser assumes that the name of the parser rule is to be taken as
the return type. Roughly for each parser rule that has at least one assignment in
its body an EClass with the corresponding return type will be created. In case we
already have a meta-model and we do not want Xtext to create new classes but to
instantiate existing ones instead, we have to import this meta-model at the beginning
of our grammar. Thereafter we will be able to reference existing classes as return
types of our parser rules.
When the parser enters a parser rule it does not immediately create a new object.

As a matter of fact it does so only after it has entered the �rst assignment in a parser
rule. This is why parser rules that do not contain any assignments are marked as
abstract parser rules and serve as super-classes in our models.
An assignment, as the name predicts, assigns a value, read by the parser, to the

corresponding feature of our object. The two di�erent features types in EMF, namely
single-valued or multi-valued, are matched by two di�erent assignment rules in Xtext:
The assignment operator �=� holds single values whereas the add operator �+ =�
allows multiple values to be written in the same feature. If there is a terminal on
the right hand side of an assignment, then we have an EAttribute else the right hand
side is the name of another rule in which case we have an EReference to its class.
In case we want to cross-reference existing objects we need to put the EReference
type on the right hand side of our assignment between brackets. In2.9(a) name is an
attribute of State whereas innerStates declares a containment reference from Region
to State that can hold an arbitrary number of states but must contain at least one.
The non-containment reference parentRegion cross-links an existing Region. The so-
called �Region action� makes the parser create a Region object as soon as it enters
the Region rule instead of waiting until the �rst assignment and is given in curly
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(a) An example of Xtext parser rules

(b) The model inferred from the
parser rules

Figure 2.9: Model inference in Xtext

brackets.
In 2.9(a) we see the EMF model that was generated from this small grammar. We

have set the lower bound of the innerStates reference to 1 in our grammar however
Xtext has generated an EReference with the lower bound 0. This is a convention
to relax the generated meta-model from restrictions as much as possible7. Another
change the model inference algorithm of Xtext makes is lifting common attributes
to superstates. If A and B both extend S and have an attribute name, for instance,
then in our generated meta-model, the name attribute would be added as to S.
The structure of the parse model in Xtext is presented in Fig. 2.10.
So far we have seen how the generated parser processes text and instantiates our

models. How do we generate this artifact in Xtext? Let us overview the main Xtext
infrastructure before concluding this section.

Generation and Con�guration in Xtext The Xtext generator is a so-called Mod-
eling Work�ow Engine (MWE) �le that roughly is a list of fragments and is written
in a declarative XML-like language.
After the Xtext generator is con�gured, e.g. by declaring some paths, where code

is to be generated in, an arbitrary number of language con�gurations follow. These
again consist of a number of fragments for tasks like loading an ePackage, model

7This discussion is still open and can be followed from https://bugs.eclipse.org/bugs/
show_bug.cgi?id=266830
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Figure 2.10: Xtext runtime: NodeAdapters bridge parse tree to the AST (from [4])

parsing, validation, code generation and the like. After triggering the work�ow,
Xtext goes through these steps and provides us with the �rst (untainted) version
of a fully functional editor with content assist, an outline view, pretty printer, tem-
plates, syntactical highlighting and source navigation. If there are two language
con�gurations in our work�ow then two parsers will be generated and so on. Nev-
ertheless there is still need to modify and change some of the generated parts of the
resulting Integrated Development Environment (IDE) in most cases.

Xtext utilizes a dependency injection framework called Google Guice to allow an
convenient modi�cation of generated code. This framework introduces bindings and
modules to manage the dependency injection in Java.

Google Guice bindings map implementations to interfaces. For instance if we
have an interface called IClass and an implementing class ClassImpl, the binding
bind(IClass.class).to(ClassImpl) will mark the particular implementation class in or-
der to refer to it whenever an IClass implementation is needed. Everywhere where we
need an instance of type IClass, instead of creating an IClass object with new calls
or factories, we can tell Google Guice to supply us one. This is done by inserting
annotation @inject. GoogleGuice then instantiates the bound implementation class
and �injects� it into our code, e.g. in a class �eld Fig. 2.11. Such implementation
classes are called services. Furthermore special Java classes that have a list of bind-
ings are called modules. In Xtext almost everything is a service hence replaceable
and modi�able. Hence Google Guice makes an very �ne-granulated con�guration
within Xtext manageable and even easy. In Listing 2.4 we see how the Xtext service,
responsible for accessing the grammar is bound and injected. IGrammarAccess is the
Xtext interface for classes that provide a grammar access. When we generate code an
implementation of this interface, called KitsGrammarAccess, is generated along with
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Figure 2.11: A very simpli�ed look at dependency injection with Google Guice

a module that holds a list of bindings. One of them, the bindGrammarAccess, maps
IGrammarAccess to KitsGrammarAccess. Furthermore KitsParser has a private �eld,
annotated with @inject. When a KitsParser is created, Google Guice will instantiate
a KitsGrammarAccess and inject it into this �eld. If we want to change the behavior
of grammar accessing in Xtext, we write our own grammar access service, i.e. extend
KitsGrammar and change the corresponding binding in our module. We can be sure
that at all points where an IGrammarAccess was injected our implementation will
be used without having to change anything else.

In this work we will utilize TMF Xtext. This has several reasons:
In [15] Fowler suggests that there are two fundamental trade-o�s of using external

DSLs. The time needed to implement a translator, that will parse and make something
executable from DSL �les is the �rst one. A possible solution to this is using a parser
generator, of which Xtext is one.

The second main drawback is that external DSLs lacks the (semantic) integration
into the language environment, utilised. Thus many features that have become
widely common � because most of the IDEs support them� are missing and have
to be manually implemented if we work with an external DSL. This is the second
main advantage of Xtext. By generating not only a parser or serializer but also
an IDE it closes this very important gap that, again according to Fowler, was why
language oriented programming has not been caught on so much.

Finally just like EMF balances its model-based generative nature with the possibil-
ity to modify the generated code on very di�erent levels, with GoogleGuice Xtext also
has become a highly con�gurable framework. The separation of generated code from
manually written parts is successfully managed by clearly de�ning the modi�cation
hooks in separate modules for runtime or User Interface (UI) con�guration.

Hence the concepts, patterns and technologies used to build the infrastructure of
Xtext are likely to increase the use of external DSLs and e�ectively become the new
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Listing 2.4: A service binding in Xtext

1 public abstract class AbstractKitsRuntimeModule
2 extends DefaultRuntimeModule {
3

4 public Class<? extends org. eclipse . xtext .IGrammarAccess>
5 bindIGrammarAccess() {
6 return de.cau.cs . kieler . synccharts . dsl .
7 services .KitsGrammarAccess.class;
8 }
9 }

10

11 public class KitsParser extends AbstractAntlrParser {
12

13 @Inject
14 private KitsGrammarAccess grammarAccess;
15 ...
16 }

state-of-the-art for employing external DSLs, cut well to the needs of our domains.

2.4 Framing the Scope of this Thesis

In this section we will state the concrete problems that frame the scope of this thesis:
What are our expectations from a textual description language for SyncCharts, and
what are the problems that arise when we try to synchronize an Xtext editor with a
GMF editor?

2.4.1 On the Need for a New SyncCharts Description Language

KIEL, the predecessor of KIELER, supports a textual language for describing State-
charts, namely the KIel statechart extension of doT (KIT) [46]. In this section, this
language is introduced and its design is analyzed. The result justi�es the need for a
new descriptive textual language.

KIT is designed to support Statecharts in general, however this thesis concentrates
on SyncCharts which is a dialect of Statecharts. Hence this particular discussion cov-
ers describing Statecharts in general while we limit us to SyncCharts in the following
chapters.

KIT is the �rst descriptive language used for Statecharts synthesis along with a
language called RSML [37, page 25]. The advantage of KIT in relation to RSML
is a clear separation of the textual syntax from graphical information. Listing 2.5
represents the ABRO example in KIT.

As can be seen, a statechart in KIT is introduced by the keyword statechart.
Next, optional statechart arguments provide some meta-information. Then, the
Input/Output (I/O)-declaration as well as the state and transition declarations take
place between a pair of braces. Hereby, an I/O-declaration is an optional set of input
signals, output signals and variables.

States in KIT are declared by simply typing their names, which is convenient. All
state arguments follow in a pair of brackets, with preceding tags such as type or label.
Marking states as initial can alternatively be done by an initiating �→�.
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Listing 2.5: ABRO in KIT

1 statechart abro[model="Esterel Studio";version="5.0"]{
2 input A;
3 input B;
4 input R;
5 output O;
6 {
7 −>ABO;
8 ABO{
9 Wait_A_and_B{

10 −>wB;
11 wB−>dB[type=sa;label="wB"];
12 dB[type=�nal];
13 ||
14 −>wA;
15 wA−>dA[type=sa;label="wA"];
16 dA[type=�nal];
17 };
18 −>Wait_A_and_B;
19 Wait_A_and_B−>done[type=nt;label="/ O"];
20 done[type=�nal];
21 };
22 ABO−>ABO[type=sa;label="R"];
23 };
24 };
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Figure 2.12: The simpli�ed structure of Statecharts in KIT

Analogously transition triggers and e�ects are surrounded by brackets. The prior-
ity of a transition and transition arguments are also given in brackets. The simpli�ed
overall structure of a statechart in KIT is given in Fig. 2.12.

Assessment of KITs Language Design

The state done in Listing 2.5 is only referenced once as a target state of a transition.
However we need a second assignment to mark it as �nal. The need for such additional
assignments hampers the quick description of a statechart�especially as it grows
more complex. Remarkable is also that every assignment ends with a delimiter.

In KIT, arguments are embraced by brackets; state contents by curly braces and
regions by square brackets. Having to change between various parenthesis is confus-
ing.

Again, in Listing 2.5, the type and label arguments in wB->dB[type=sa;label=�wB�];
follow a state although they describe a transition. In the next line, however, the
same state is succeeded by another very similar argument ([type=�nal]) that this
time describes a state. This is not intuitive.

Additionally, all state and transition types could be abbreviated by initiating key-
word such as initial, �nal, conditional or symbols such as �o->�.

Finally, transition declarations require a source state thus the user has to reference
the same source state multiple times in case there is more than one transition, going
out from the state.

Discussion of Existing Textual SyncCharts Languages

These shortcomings motivate us to investigate how the problem of representing Stat-
echarts is addressed by other textual languages. Generally speaking, existing State-
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charts textual languages are grouped regarding to their application �elds, which are
data persistence, data exchange, description and �nally the execution of Statecharts:

Data Exchange Languages These languages are used to integrate Statecharts
in di�erent programs. XMI [34], UXF [41] and SCXML [47] are examples of
languages that are used to exchange statecharts.

Data Persistence Languages Di�erent commercial tools o�er di�erent serializa-
tion formats for persisting statecharts. Most of these formats are proprietary.
StateFlow [28] and the scg format of Esterel Studio [13] are examples of persis-
tence languages.

Description Languages Languages that concentrate on describing statecharts
aim to ease the development process. We have already seen an instance: KIT
is a Statecharts description language that inherits some concepts from other
languages such as Dot8 and ARGOS [27] [37, page 25]. Further examples of
description languages are SVM [14] and UMC [29]. Both employ explicit dec-
larations, i.e. the declaration of statechart elements may occur at di�erent
positions in the text. As a result, the textual structure di�ers from the topol-
ogy of the statechart. Furthermore the latter is used for validation of stat-
echarts. Descriptive languages are generally used as an intermediate format
that is synthesized from a statechart. According to Prochnow [37, page 25] a
direct synthesis of Statecharts from a descriptive language has not been done
often. In this sense, KIT and the approach followed in this work to synthesize
a syncChart from a descriptive language are novel.

Programming Languages Programming languages such as Esterel aim to execute
Statecharts. An Esterel program can be transformed to a syncChart [25] and
vice versa hence they are equivalent in expressiveness. Also, a transformation
between SyncCharts and C has been developed by von Hanxleden [44].

The evaluation of di�erent aspects of these languages yield to di�erent criteria and
questions:

Usability Ideally, an additional IDE support should not be enforced or fundamental
when using a language. The syntax should be intuitive enough to enable the
employment of plain text editors. However recent developments in language-
sensitive editors or structure-editors [43] may change the importance of this
criterion.

Text length Various criteria such as the number of words can quantify the amount
of needed resources for textually describing a statechart, that can be a relevant
factor in di�erent cases.

8http://www.graphviz.org/doc/info/lang.html
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User Base The user base that is addressed by a language is another fundamental
factor that e�ects the language design. Also whether or not the language is
widely spread is relevant for the learning curve, which is the next criterion:

Learning Curve For the evaluation or design of a language, the time needed by an
inexperienced user to get acquainted with the language should be considered.
This time, referred to as the learning curve, is a fundamental factor.

Type of Information A textual Statecharts description can allow the speci�cation
of additional data like graphical notations, layout parameters, modeling tool
de�nitions and version numbers. Whether or not such meta-information is
enforced and clearly separated from the base language is another important
point.

Structural Similarity We have seen that declarations of statechart elements can
occur in di�erent positions in the text. The alternative approach is using
implicit declarations which results in a textual structure that is reminiscent
of the topology of a statechart. Explicit declarations can prove useful for
complex statecharts while implicit declarations are more intuitive. Generally,
description Statechart languages should have a clear structure allowing a quick
perception of the overall organization. However not every language is designed
to be read by human:

Naturally the criteria are not equally weighted for every application �eld. For
instance structural similarity and usability are not the most fundamental criteria for
persistence languages.

An overview of existing textual Statecharts languages, categorized after the appli-
cation �elds that were listed above, is given in Fig. 2.13.

The presented considerations yield to the need of a textual SyncCharts description
language that avoids the drawbacks of KIT. However the attempt to design a new
concrete syntax invokes various di�culties such as the introduction of abbreviating
symbols without overloading them or supporting states without explicitly declared
identi�ers.

Establishing conclusive decisions regarding these questions is not easy. Although
it seems like there is a lot maneuvering room and freedom, the problem of design-
ing a language according to the aforementioned criteria brings its own restrictions
along. The discussions during the design process9 were made by reference to several
(informal) syntax proposals, some of which can be found in App. A.

In Chap. 3 we will present our solutions to the questions above while the imple-
mentation of the parser and the IDE is detailed in Chap. 5.

We will go on with the main problems in the synchronization of GMF and Xtext
editors in the following section.

9http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Meetings
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Figure 2.13: An overview of the existing textual SyncCharts languages
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Figure 2.14: Type hierarchy of an Xtext Resource

2.4.2 On the Synchronization of Xtext and GMF Editors

We can recall from Sec. 2.3.1 and Fig. 2.7 that GMF editors need two persistent
models, namely a GMF notation model and an EMF semantic model. The model
representation in a GMF editor is done at runtime using merely these two persistent
models. From the point of view of GMF, how the EMF model was serialized or
synthesized is a black-box. Hence if an Xtext resource can be stored as an EMF

resource, then it can serve as a serialization back-end for a GMF model.

The good news is that every Xtext resource indeed is an EMF resource. This is
visible in the type hierarchy of an XtextResource, and can be seen in Fig. 2.14. Here,
ResourceImpl is the superclass of EMF resources.

E�ectively, not only GMF, but also any EMF-based framework can use Xtext to
serialize their models. The EMF integration of Xtext is pictured in Fig. 2.15. Xtext
components such as the linker, parser or the serializer use the XtextResource to
create an EMF model from its textual content. For their concerns, the upper half of
the �gure is a black-box. The XtextResource is then serialized in a domain-speci�c-
language of choice.

Furthermore the XtextResource can be processed by other frameworks, e.g. to
generate code�or synthesize a diagram.

As an implication of these considerations, the GMF editor should be able to use
the domain model instance that has been parsed by the Xtext parser as its �input.�
According to this strategy, which is visualized in Fig. 2.16, the Xtext parser will
instantiate the EMF model when the user enters text. Since they share the same
domain model instance, GMF is aware of these changes and adapts its contents ac-
cordingly. Adapting of the textual content to changes in diagram follows the same
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Figure 2.15: EMF integration of Xtext (from [7])

path. This approach requires one model instance at runtime that is then read and
written by both editors. It is a common way to combine pure EMF editors with GMF

editors for a full synchronization, as detailed in [5]. Unfortunately, it quickly yields
to con�icts when applied to an Xtext and GMF editor.

The origin of con�icts in this approach is that GMF editors have a canonical edit
policy. The canonical edit policy means that every �gure that does not have a se-
mantic element is deleted from the diagram. Recall that �gures are saved in notation
model, and semantic elements are saved in the domain model. E�ectively, this policy
means that the notation model is synchronized with the underlying domain model
at all times.

On the other hand side, Xtext has a partial parsing strategy. The partial parsing
policy means that, after a change in the text, Xtext calculates the a�ected subtree
of the parse model, removes the nodes in this �eld, and parses the subtree again.
E�ectively, new model elements are created.

So sharing a model instance between Xtext and GMF results in many invalid in-
termediate models that are visible in the GMF editor due to its canonical edit policy.
The arising con�ict is presented in Fig. 2.17:
For instance if we make changes in our GMF editor, the corresponding part of

the EMF tree adapts to changes and noti�es Xtext about the modi�cation 2.17(a).
Xtext, due to its partial parsing policy, calculates the �e�ected� area in the model,
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Figure 2.16: Architecture of a full synchronization between Xtext and GMF

removes the elements to re-parse the corresponding �eld again. As a result, the ref-
erence between the notation elements and the deleted domain model is broken. The
corresponding notation elements do not have any semantic model elements anymore.
As such they are also removed from the GMF editor due to its canonical edit pol-
icy 2.17(b). In the next step, the Xtext parser parses the text and instantiates the
model again. However our domain �le now has new model elements in the changed
area. E�ectively GMF does recognize that the new nodes are identical to the old
nodes. Hence all manually changed diagram information, such as position or size,
gets lost with the deleted �gures 2.17(c). This is the �rst problem we have to solve.

There are further considerations when synchronizing Xtext and GMF editors: At
di�erent points in this work we have mentioned that Xtext generates an EMF model
merely from a grammar �le. This is not entirely correct. Xtext eventually creates an
EMF model but it needs more than the grammar to do so. The main concentration
of the grammar is to de�ne an Abstract Syntax Tree (AST) along with the transfor-
mation from text to AST (parsing) and backwards (serialization). The AST-to-model
transformation is later made by the linker in the linking phase. Also other semantic
aspects like validation of constraints or model-to-model transformations are either
added on top of the AST by other fragments of the Xtext framework or have to be
manually implemented at appropriate docking points. Only after these subsequent
steps do we have a model that is not only grammatically correct but also correct
according to our EMF meta-model. Hence the Xtext grammar has its strong point
more in the lexical aspects of a language than the semantic ones. E�ectively it is not
powerful enough to cover all features of an EMF model. As a result a grammar that
parses as much as possible and leaving semantics to the subsequent steps should be
preferred as this approach will at least ease the serialization phase. This e�ectively
will produce a set of grammatically correct models that is greater than the set of
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(a) Semantic model adapts to changes in GMF editor

(b) Xtext reacts to changes in semantic model by reparsing the entire a�ected area

(c) Loss of notational information after reparsing of the model by Xtext

Figure 2.17: Con�icts arising from di�erent edit policies of Xtext and GMF
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semantically valid models but the elimination can be done in a separate validation
step so that we still will not allow the users to enter invalid models in the editor even
if they would conform to our grammar.
Another issue that arises from the di�erences in the expressiveness of Xtext and

GMF are �elds that are mandatory in our model but not integrable in our grammar.
For instance, we have bi-directional references in our grammar like the relationship
between a state and its region. When a state contains a region, the opposite reference
in a region, called parentState, is set automatically to the container state by EMF. In
the Xtext grammar however we cannot introduce a rule to set the opposite of this bi-
directional relationship without further ado as this would be part of a left-recursive
call: We would have to call a state rule from our region rule and a region rule from
our state. Furthermore, the value of the parent region is derived from the state, and
�a particular region� cannot be expressed merely with an Xtext grammar rule. As a
result we only have a rule for setting the inner state of a region but not for setting
the parent region of a state. When the Xtext editor is synchronized with the GMF

editor, the parent region of each state will automatically be set. However the Xtext
serializer will fail to serialize a feature for which there is no grammar rule.
The last con�ict arises from the index-based URIfragments that are used within

EMF to reference cross-document objects. We introduce fragments in Chap. 5. Mainly,
the problem is that we need a way to reference our model elements, that are serialized
in KIELER Textual Language for SyncCharts (KITS) from GMF's notation �le. By
default each EMF model is assigned a fragment that de�nes it in its resource �le. This
fragment is created by numbering the elements in a containment reference according
to the order of their appearance. When an element is removed from a containment
list, indices of remaining elements change accordingly, and the mapping from the
notation �le to the domain elements changes. Hence we have to de�ne a new policy
to provide fragments.
A further need for the synchronization is implementing a formatter for our serial-

izer. To enable a good user experience, actions to navigate between both editors, e.g.
selecting a node in a diagram and opening it in the text, should also be implemented.
So far we have stated main problems that arise in both de�ning a textual syn-

tax and synchronizing ThinKCharts with a textual editor. Let us now turn to our
solution approaches to these problems.
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Editor

In Sec. 2.4.1 we have presented our considerations regarding textual SyncCharts
languages and concluded with the need of a new textual language, namely KITS. In
this section, we will have a closer look at our conclusions behind the design of this
new language.

3.1 Language Design Concepts

KITS is a descriptive language, and hence it will not merely be read and written by
machines. Therefore its syntax is similar to the topology of a graphical syncChart.
Also KITS' syntax does not contain any meta-data information such as version num-
bers or graphical data.

KITS does not employ white-space semantics, which would make a rapid develop-
ment without speci�c tool support virtually impossible.

One of the di�culties we have seen when analyzing KIT was the deployment of
di�erent parentheses. KITS deploys only curly braces for inner states of a macro-state.
The only delimiters used other than this are semicolons to end a transition.

SyncCharts in KITS conform to the following overall structure: Every syncChart
starts with a region that contains variables and states. Furthermore each state can
declare signals, entry-, inner- or exit-actions as well as an arbitrary number of regions
to hold its inner states. Suspension triggers have been included to states to obtain
a compact structure. The structure of SyncCharts in KITS is presented in 3.1(a).

As the SyncCharts meta-model used in KIELER de�nes that every state has to
have a parent region, KITS has to enforce a region declaration before each state
declaration. However, our editor implicitly creates needed regions, hence they do
not have to be explicitly introduced. Users can optionally declare and name regions
with the keyword region. This is illustrated in 3.2(a) and 3.2(b).

KITS abbreviates state modi�ers and transition types by keywords or symbols. As
a concept, we have avoided a syntax that is mainly symbolic or uses merely keywords
as this will overload symbols or keywords and hamper the readability. Furthermore
we have enhanced the expressiveness of KIT by adding local signal declarations to
states.
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(a) SyncCharts building blocks in KITS

(b) SyncCharts building blocks in KIT

Figure 3.1: Changes in the overall structure and delimiter usage
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(a) Region initialization in KITS

(b) Explicit region declaration in KITS

Figure 3.2: Simple syncCharts in KITS

Figure 3.3: Content assist example in KITS editor
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Figure 3.4: Sample state with actions, label and identi�er in KITS

3.2 SyncCharts in KITS

A concept in KITS is to make state declarations, being the common use-case, as
comfortable as possible. To this end the order of the state modi�ers init and �nal
is not �xed. State types can also be omitted. In this case the state will have the
default type normal. State types in KITS are conditional, reference or textual. The
types reference and textual have been included into the language speci�cation in
order to support further enhancements such as de�ning states that are described in
a speci�c program code. Alternatively, the keyword state will also be su�cient to
declare a state.

A further concept is the support for anonymous states. Mandatory state names
can hamper a convenient development�especially of larger syncCharts. Generally,
naming states is redundant in case a state is needed only once, e.g. as the �nal or
initial state of a region. Hence KITS supports anonymous state declarations.

An anonymous state would not be referable, e.g. by other tools that operate on
the same model. Therefore they are automatically assigned an identi�er of the form
Sn where n is an index that is unique in the corresponding region. Consequently the
scope of a state in KITS is framed by its region.

A state also has an optional label. Labels are what the user �normally� enters to
name his or her state. As we will later see in the synchronized version of our editor,
labels are also shown in the diagram nodes whereas identi�ers can be seen in an extra
properties view. In Fig. 3.4 a state with both a label and identi�er is presented. In
order to distinguish labels from identi�ers, the latter are noted between quotes. The
outline view is con�gured to show both.

KITS enables transition declarations without explicit source states. In this case
the last declared source state is assigned as the source of the transition as illustrated
in Fig. 3.5.
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Figure 3.5: Omitted source state in KITS

Transition types are denoted by symbols: �> means weak abortion, o-> indicates
a strong abortion and �nally >-> stands for a normal termination. A transition
conforms to the form sourceState <n> targetState �with� # delay trigger e�ect �history�
where

• sourceState is the optional source state reference,

• <n> is an optional priority where n is at least 1,

• targetState is the mandatory target state reference,

• with is a keyword that precedes the transition label,

• # is an optional tag for immediate transitions,

• delay is an integer that de�ned the transition delay,

• trigger, e�ect are the triggers and e�ects of the transition, and �nally

• the keyword history marks a history transition.

A more complete sample can be found in Fig. 3.6.

Scopes

The visibility of SyncCharts elements is fundamental for a sound semantics. To this
end, KITS assigns so-called scopes to every element that can be referenced. We have
implemented a ScopeProvider that is used by our content assist and linker to �nd
the objects that can be referenced from a given context. State, signal and variable
scopes were de�ned to prevent the input of incorrect models.
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Figure 3.6: Sample syncChart in KITS
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Figure 3.7: Validation in KIELER textual SyncCharts editor - 1

Figure 3.8: Validation in KIELER textual SyncCharts editor - 2

Validation

As we have discussed in Sec. 2.4.2, the grammar language deployed by Xtext is ex-
pressive with regards to the lexical aspects of a language, yet the models it accepts
should further be restricted to those that are also semantically correct. As KIELER

integrates a number of tools that operate on the same model, the semantic valida-
tion of the underlying system should be tool-independent. Therefore the semantic
restriction rules are attached directly to the meta-model in KIELER. The validation
language used is Check, which has been introduced in Sec. 2.1.1. As an XtextResource
�listens� to the EMF meta-model, it is able to give visual warnings in case a rule has
been violated. Examples are presented in Fig. 3.7 and in Fig. 3.8.

KITS2XMI

As we recall from Sec. 2.2.2, EMF provides a default XMI parser and serializer for its
models. By deploying an Xtext parser and serializer we have �disabled� the default
XMI serialization. However in some cases a serialization to XMI might be desirable.
To this end, an action has been introduced that can be triggered by a right-click on
a �le that has the .kits extension as seen in Fig. 3.9. This action then serializes the
model in the default XMI syntax and saves it in a resource with the same name but
this time with the extension .kixs.

3.3 IDE Support for KITS

As can be seen in the �gures, the editing of syncCharts is supported by an outline
view. The outline view has been con�gured to show a detailed tree-based overview
of the syncChart that is being developed. As such, it shows the source and target
states of transitions, if set, triggers and e�ects of actions, both labels and identi�ers
of states among details of transition e�ects and triggers. A further assistance is
given by the outline view by highlighting selected elements in the text as can be seen
in Fig. 3.4.
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Figure 3.9: The alternative XMI serialization of a model in KITS
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Another editing help is the content assist. This is shown in Fig. 3.3. Further aid
is provided by textual navigation that highlights the declaration of an element when
the user hits the F3 key while hovering with the mouse over it.
Finally, pre-de�ned templates and a project wizard aim to ease and fasten the

development process.
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4 A Semi-Full Synchronization

Approach for Xtext and GMF

In Sec. 2.4.2 we have seen the di�culties that arise when an Xtext editor shares
the same model instance with a GMF editor. This short section summarizes our
approaches that address these problems.

As visualized in 2.17(b), the main problem in the synchronization of Xtext and
GMF editors is that the Xtext parser makes constant changes to the model that
are also visible to the GMF editor when they share the same model instance. The
GMF editor, due to its canonical edit policy, immediately re�ects these changes in
the diagram. This result is a diagram that re-iteratively changes its contents and
displays wrong models.

The consequently arising question is: When can we be sure that the model is valid,
and hence can be visualized? The answer is shown in Fig. 4.1: On �le save.

The Xtext editor operates on its own copy of the model, and hence the changes it
applies to the model are invisible to the GMF editor at this point. When the textual
�le has been changed, the model instance that is used by the GMF editor is also
updated.

Again, due to its canonical policy, the GMF editor immediately re�ects the changes
and displays the model�this time, a correct one.

To sum up the idea in this �semi-full synchronization�, Xtext and GMF should share
the same model�not, however, the same model instance. As a result, the editors
do not adapt their contents against a �volatile� runtime model, instead they refer to
persistent, valid models.

An immediate result of this strategy is that there can be more than one �dirty�

Figure 4.1: Separated editing domains for Xtext and GMF editors
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editor that operates on SyncCharts at the same time. A dirty editor is an editor
that has unsaved modi�cations. Since both Xtext and GMF have their own model
instances, they can apply changes to their model independent from each other.
When their contents are saved, the default Eclipse policy overwrites changes in

the unsaved editors. Consequently, we need a concurrent modi�cation policy.
We handle concurrent modi�cation by registering listeners to Xtext and ThinKChart

EditorParts at workbench start. At well-de�ned points,e. g. when the ThinKCharts
editor has been opened or when the resource set has been changed, we can make
queries and and react to changes in the KITS editor or ThinKCharts.
Among other things, we listen to the event, that is created before saving an editor.

At this point, we detect a concurrent modi�cation by simply iterating over the dirty
editors and checking if there is more than one. If so, we prompt a user inter-action
and let the user decide whether or not to save the �le.
A further problem, we have pointed to in Sec. 2.4.2, was caused by index-based

fragments. This con�ict is solved by overwriting the so-called fragment provider to
generate name-based fragments instead of index-based fragments in order to correctly
cross-reference objects in the domain model from a GMF editor.
Finally, the action to open selected diagram elements in the KITS editor makes use

of the fact that Xtext parser nodes reference their corresponding model elements.
When the user selects a node in ThinKCharts, for instance, its parser node can be
determined. This parser node contains, among other things, the o�set and the length
of our model. Hence we can easily use the selection provider of our textual editor to
highlight the selection given by the particular o�set and length.
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5 The Development of the SyncCharts

Editor with Xtext

We �rst have to write the Xtext grammar for our language. As we have seen
in Sec. 2.3.2 our Xtext grammar will both de�ne the syntactical structure of our
language and specify how the Xtext parser will later instantiate EMF models. To
this end, we either have to tell Xtext to generate a new EMF model or import an
existing one.

A SyncCharts EMFmeta-model already exists in KIELER and can be seen in Fig. 2.5.
Hence we want to import this meta-model rather than generating a new one.

Importing meta-models can be done in two di�erent ways in Xtext: Using their
nsURI or their platformURI. URI s are used to uniquely identify resources �or objects
within resources as we will see in Chap. 6� and extensively utilized in the persistence
framework of EMF.

EMF has a pattern for building any kind of URI. Every URI consists of three main
parts, called scheme, scheme-speci�c part and an optional fragment.
The scheme speci�es the type of the URI, e.g. �le or platform. The scheme-speci�c

part is further detailed in di�erent parts but they are not relevant for our concerns.
Roughly, we can say that it gives a hierarchical path to our resource starting from a
so-called authority, e.g. a host in a network system, or device, e.g. C as the preceding
drive in a �le path. The last part of a URI, the fragment, is used to identify a part
of the resource hence has to be unique in this resource. We will need a deeper
introduction to URI fragments in Chap. 6.

Every EMF model resides in an EPackage that can be addressed by it nsURI or plat-
formURI. The platformURI of our meta-model is, according to the pattern above, plat-
form:/resource/de.cau.cs.kieler.synccharts/model/synccharts.ecore and speci�es a rela-
tive path of the meta-model in our workspace. We utilize this URI to import our
SyncCharts meta-model.

Imported meta-models can optionally be assigned an alias to ease their reference
in the grammar. We set sync as our alias and are thereafter able to use existing types
as return types of our parser rules as can be seen in the Region rule in Listing 5.1.

Our rule returns an instance of the existing model element Region, accepts an op-
tional keyword region as well as an optional identi�er. It also has three assignments.
The �rst two are grouped together by the alternative operator |. The add operator
+ = means that we have a multi-valued attribute on the left hand side of our assign-
ment, i.e. lists. These lists are called variables and signals according to the features
of a Region in our meta-model. The right hand side of the assignments are calls to
other rules in our grammar. The cardinality operator of a rule determines how many
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5 The Development of the SyncCharts Editor with Xtext

Listing 5.1: Importing existing meta-models in Xtext

1 import "platform:/ resource/de.cau.cs . kieler . synccharts/model/synccharts.ecore"
2 as sync
3

4 Region returns sync :: Region:
5 {sync ::Region}
6 ( ' region ')? ( id=ID)?
7 ( variables +=Variable | signals +=Signal)(innerStates+=State)+;

Figure 5.1: Restrictions caused by importing meta-models in an Xtext gramar

times it can be or at least has to be called. �∗� means zero-or-more hence we can
add an arbitrary number of elements to both variables and signals by calling these
assignments as much as we need but we can also omit it. This is di�erent for the
last assignment: Its cardinality operator is �+� meaning that we will need at least
one State in our list but then we can add as many as we need to.

Importing and referencing an existing meta-model is a great convenience in case
the meta-model is given as in our case however it also brings fundamental restrictions
along. We have to stay conform to the existing structure hence we cannot change
the meta-model, e.g. by creating other elements or changing reference types.

For instance, in a transition, we want to be able reference existing states as the
target state. However we also want to be able to create a new state if no identi�er is
speci�ed in the target. The input A �> �nal; should create a new �nal state and set
it as the target. To do so we would need a containment reference to a state from our
transition which does not exist in our meta-model. The resulting con�ict is shown
in Fig. 5.1 We present our approach to solve this below.

After having completed our grammar we will con�gure our MWE work�ow. We
specify what we want to generate, such as an ANTLR parser or a project wizard, and
remove pre-de�ned fragments, we do not need, such as the fragment for generating an
EMF model. After the work�ow is con�gured, we trigger it to generate our artifacts.

Xtext generates a main plug-in that holds the runtime code along with a second
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5.1 Scoping with Xtext

plug-in that holds UI relevant artifacts. A third plug-in can optionally be generated
that holds helpers for source code generation from our DSL. It is important to clearly
separate manually written code from generated code hence Xtext divides the code
in each of these plug-ins in two folders, calls src and src-gen.

During the entire development process, the code in any src-gen folder must remain
unchanged as it will be overwritten during every code generation. In order to enable a
�ne-grained manipulation Xtext utilizes Google Guice and provides us with a module
for both runtime and UI plug-ins in their src folder. We know from Sec. 2.3.2 that a
module declares a list of bindings hence every modi�cation we need to make is done
in two steps:

Service Implement a new service or extend and overwrite an existing one

Binding Bind it in the corresponding module to be used instead of the default im-
plementation

Let us elucidate this with an example runtime problem that needs to be solved:
The scoping.

5.1 Scoping with Xtext

Any cross-reference, we have in our model, needs to be resolved. In case we want
to emit a signal in our transitions, we need to cross-reference existing signals. If we
try to emit a signal that either has not been declared anywhere or that was declared
beyond our scope we should catch this mistake and return a linking error.

Hence a scope in Xtext de�nes the set of elements that can be �reached� from
the context of a cross-reference. When the linker tries to resolve cross-references, it
iterates only the elements in the given scope and returns an error if nothing that
matches the user input has been found.

Consequently, there are two fundamental questions according to cross-reference:

Candidates How do we collect the elements that are in our scope?

Matching How do we decide if the input is in the scope?

The default linking semantic, pre-de�ned by Xtext, builds scopes in a nested man-
ner that is comparable with the scoping in, e.g. Java1.

According to this scoping policy every signal, de�ned in a region, would be visible
to every transition in all inner states of this particular region. However we would
not be able to reference them from a second region in the same hierarchy level.

We might want to change this in order to di�erentiate between input and output
signals: In the e�ects of a transition, we want to �see� only the input signals of our
default scope while in the e�ect of a transition we merely consider the output signals.

1http://www.eclipse.org/Xtext/documentation/0_7_2/xtext.html
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5 The Development of the SyncCharts Editor with Xtext

Xtext supplies a hook to alter the default scoping. The default scoping is given
by the SimpleNameBasedScopeProvider and is bound by to the framework by our
runtime module, namely DefaultRuntimeModule.

On top of a Google Guice module that manages the dependency injection �alone�
Xtext additionally introduces a hierarchical structure of modules. Thus we have �ve
modules that are nested and may override the binding in their superclasses.

The AbstractRuntimeModule extends our DefaultRuntimeModule and overrides the
binding for scoping and returns another implementation that is generated and named
after the name of our DSL: KitsScopeProvider.
The result is that we have a generated scope provider implementation that is left

blank and is intended to be modi�ed. In case, we do not carry out any modi�cations
to KitsScopeProvider, the implementation will fall back to the default semantic in
SimpleNameBasedScopeProvider.

Hence we merely need to specify our intended scope implementation for signals in
transitions and Xtext will organize the dependency injection in the background.

Since we want to de�ne the scope for merely signal emissions in triggers and signal
references in e�ects we would need to go through a lot of elements in our meta-model
and �nd the correct references. This would result in a code that needs to introduces
many nests if . . . else queries. Xtext supports us here by introducing a declarative
support.

5.1.1 Polymorphic Dispatcher

KitsScopeProvider extends a class, called AbstractDeclarativeScopeProvider, that pro-
vides a polymorphic dispatch mechanism to accordingly delegate functions depending
on their names. We can implement a method with the name scope_Emission_signal.
The declarative support, then, applies it only to signal references in emissions.

So far we have seen how to in�uence the building of scopes. How does Xtext
decide whether or not the input elements is in the calculated scope? The default
matching policy is made by comparing the names of elements. Thus we need to have
a attribute name in our Signal class. Since signals in our meta-model indeed have a
name attribute, this policy satis�es our needs.

The State elements in KIELER, however, lack a name attribute. Instead they have
an id and a label. Therefore, the default scoping will not be able to �see� existing
states, and hence this will result in linking errors. We need a way to �tell� Xtext to
take our scope_Emission_signal implementation for emissions and compare names of
elements. Yet delegate to another implementation in case of target states to compare
the candidates in our scope with the input using their id or label attributes.

5.1.2 Delegation of dependencies

Xtext supplies an AbstractDelegatingScopeProvider that is annotated with a speci�c
name and has methods to set and return a ScopeProvider. Our custom implemen-
tation KitsScopeProvider is a subclass of this class. Hence whenever Xtext has to
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Listing 5.2: From input to linked model - 1

1 init A
2 −−> B;
3 �nal B

calculate a scope for a reference that was not explicitly de�ned by our implemen-
tation it will consult AbstractDelegatingScopeProvider to get a scope. AbstractDele-
gatingScopeProvider will return ScopeProvider that then calculates the needed scope.
This is another point where we can in�uence the scoping. Google Guice allows us to
bind implementations dependent to annotations therefore we can use the annotation
of AbstractDelegatingScopeProvider to specify which ScopeProvider it returns. By
default it returns a SimpleNameBasedScopeProvider that resolves cross-references by
comparing name attributes. Hence we extend this class so that if Xtext comes across
a State element, the matching will be done by the label2 attribute. As a last step we
bind it using named binding in our module. In Fig. 5.2 we illustrate the scoping and
dependency injection work�ow.

We have mentioned the linker and that it uses the calculated scopes to resolve
cross-references. Let us now have a closer look at what happens behind the scenes
when a user input is parsed and how the path from the input to resolved references
look like.

5.2 Parsing and linking with Xtext

What happens when a KITS �le is loaded? First the tokenizer builds a token stream,
then our parser goes through the grammar rules and creates a parse tree (or node
model in other words) and instantiates our meta-model at the same time. The
resulting model instance is hereby connected to the parse tree. Thereafter the parse
result is added to the contents of an XtextResource before the linking is triggered.
The linker �rst clears all cross-references �if there are any� and installs proxies
for objects that are cross-referenced. Hence only then when we know that we have
created all objects and installed all proxies the cross-references will be solved.

Consider that our input is the (not very useful) snycChart in Listing 5.2.

The token stream that the tokenizer will create from this input is shown in List-
ing 5.3. Their corresponding node model and AST are given in Fig. 5.3 and in Fig. 5.4.

Hence the parser registers nodes that represent cross-reference by setting their
grammar element to CrossReferenceImpl. These nodes are represented as proxy ele-
ments until they are resolved. By default they will only be resolved on demand as
Xtext follows the lazy linking pattern. Whether or not to lazily resolve the cross-
references is speci�ed by the LazyLinkingResource that represents our �le. Hence

2We will see that the id of a state is an internal attribute that is set automatically. The user has
the option to explicitly specify it however it is not enforced.
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Figure 5.2: Dependency injection work�ow on the example of scoping

Listing 5.3: From input to linked model - 2

1 The token stream ...
2 [ init , ' ' ,A,\n,−−>,B,;,\n,�nal, ' ' ,B]
3

4 ... is synthesized from the terminal rules :
5 [KEYWORD,WS,ID,WS,KEYWORD,ID,KEYWORD,WS,KEYWORD,WS,ID]
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Figure 5.3: From input to linked model - 3

Figure 5.4: From input to linked model - 4
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the resolving policy can also be changed to an eager resolving extending this class
and binding it with the aforementioned Google Guice dependency injection.
When the object for our proxy is asked (for instance by our outline view to adapt

its labels according to the object properties) its uriFragment will reveal that it is
a cross-reference because the it starts with the string xtextLink_ and this denotes
cross-references in Xtext. As the next step the linker will try to link the proxy to
the correct object.
This is the point where our linker utilizes the scope provider: It will ask the scope

provider to calculate the scope for target state elements and decide whether B points
to an existing state.
Consequently we will be confronted with a linking error if our input is, e.g. init A

�> �nal;. Can we prevent this and make our parser or linker create a state instead
of creating errors when �nal is read?

5.3 Anonymous States in KITS

One di�culty, we have pointed out when analyzing KIT in Sec. 2.4.1, was that state
modi�ers and state type had to be set in an extra assignment even if we needed a
particular state only once as the target of a transition. However, as we have seen
our meta-model prede�nes the targetState reference to be a cross-reference hence we
can only reference existing states at this point.
To change this behavior, we need to

1. �nd the point where our linker fails to resolve the targetState reference and
provokes an error,

2. remove the linking error,

3. create a new state instead,

4. remove also the syntax error,

5. extract the speci�ed state type and

6. set the type of the newly created state.

Merely removing the linking error and creating a new state will not be su�cient
since another error will arise at that point �a syntax error� as our grammar does
not allow for anything else than an ID after the transition type, i.e. after �−− >� in
our example. Hence we also need to remove the syntax error. If we leave it here, the
users still will have to assign the types of states in an extra assignment thus we will
read the token that causes the syntax ��nal in this case� error and set the state
type or modi�er of the state according to it.
To this end we extend the default resource implementation in Xtext, namely the

LazyLinkingResource, and override its getEObject method. This method is respon-
sible for managing the scoping-linking work�ow and invokes errors in case the re-
turned linkedObjects list for the object to be resolved is empty. Fig. 5.5 is a simpli�ed
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Figure 5.5: Simpli�ed overview of scoping-linking work�ow

overview of the getEObject method and intends to summarize this work�ow. We ex-
tract the transition from a �triple� that holds the context of our cross-reference, the
reference itself and the parse node for it. After creating a new state and adding it as
the target of our transition, we remove the linking error for this reference and read
the text of the leaf node that causes the syntax error. We then remove the syntax
error as well and set the state type as desired by the user. The result is presented
in Fig. 5.6 and Fig. 5.7
As we can see, our example model in Fig. 5.6 and Fig. 5.7 are only grammatically

correct yet they contain semantic errors. In a correct syncChart every region should
have exactly one initial state and there must be an outgoing transition from an initial
state. Furthermore we cannot have �isolated� states meaning that every state needs
at least one incoming transitions. In Sec. 2.1.1 we have got acquainted with the
validation language Check. Let us now see how we utilize this language to manage
runtime validation.

5.4 Validation of SyncCharts

It is possible to check our constraints at di�erent levels: We can register our Check
rules directly at the meta-model level independent from our textual editor. This
has the advantage that any diagram that operates on our meta-model will re�ect the
results of our validation. We have followed this approach in KIELER and attached our
validation rules to our meta-model. Listing 5.4 and Fig. 5.8 show how this validation
is done.
A second approach would be to de�ne our constraints in Xtext. Xtext provides us

with convenient helpers that allow to validate our models at runtime. We can either
use the generated Check �les to hold our Check rules or extend AbstractKitsJavaVal-
idator to implement our validation in Java while making use of the declarative support
that is provided by this class. In this case we have to ensure that our implementation
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Figure 5.6: Creating new states in transition targets in KITS

Figure 5.7: Setting modi�ers and the type of target states in KITS
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Listing 5.4: Validation rules for SyncCharts in KIELER

1 context State if

2 (parentRegion != null

3 && parentRegion.parentState != null

4 && isInitial == false)
5 ERROR "Not reachable state!
6 Every state needs at least one incoming transition !" :
7 (parentRegion. innerStates . exists
8 (e|e. outgoingTransitions . exists (t | t . targetState == this)));
9

10 context Region if (parentState != null)
11 ERROR "Every region should have exactly one initial state !" :
12 ( innerStates . select (s | s . isInitial ). size == 1);

Figure 5.8: Runtime validation in KITS
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Listing 5.5: Declarative label provider in Xtext

1 public class KitsLabelProvider extends DefaultLabelProvider {
2 String image(State s) {
3 String myStateLabelImage = "State.gif";
4 if (s . isIsInitial ()) {
5 myStateLabelImage = "InitialState . gif ";
6 }
7 if (s . isIsFinal ()) {
8 myStateLabelImage = "FinalState.gif";
9 }

10 return myStateLabelImage;
11 }

is injected as we have seen in the aforementioned examples.
We have seen in the �gures that the IDE supports us with various editing aids such

as a content assist or outline view. Let us see how these re�nements were done.

5.5 UI Re�nement and Editing Support for KITS

We can re�ne the generated IDE in various ways and Xtext o�ers the same con-
venience mechanisms, we have seen, like the declarative support or a module for
bindings regarding the UI.
An example for declarative support is the Xtext LabelProvider that holds modi�ca-

tions for labels in our views. We specify our icons in a declarative manner and Xtext
utilizes them in view nodes such as the outline or the content assist. The results can
be seen in the �gures while an example label declaration can be found in Listing 5.5.

Furthermore we can modify the outline view using a so-called SemanticModel-
Transformer. Again we are provided with declarative support and can transform
the hierarchical outline structure as well as the labels that are shown. An example
declaration can be found in Listing 5.6.
We conclude this section by giving another example of an IDE help, templates. We

can de�ne templates for our language that are shown in the content assist as can be
seen in Fig. 5.9
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Listing 5.6: Declarative semantic model transformer in Xtext

1 public ContentOutlineNode createNode
2 ( Transition semanticTransition ,
3 ContentOutlineNode parentNode) {
4 ContentOutlineNode node = super.
5 newOutlineNode(semanticTransition,
6 parentNode);
7 // Example: A −−> B; note: each transition has a type
8 String transitionLabel = semanticTransition .getType(). toString ();
9

10 // from A
11 if ( semanticTransition .getSourceState() != null) {
12 State semanticSource = semanticTransition.getSourceState ();
13 if (semanticSource.getLabel() != null

14 && !(semanticSource.getLabel().trim (). equals("")))
15

16 {
17 transitionLabel = transitionLabel + " from "
18 + semanticTransition .getSourceState (). getLabel ();
19 }
20 }
21 ...
22 node.setLabel( transitionLabel );
23 return node;
24 }
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Figure 5.9: Template support in KITS
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6 Sharing the Same Model with GMF

Sec. 2.4.2 described our approaches to address the problems, caused by synchronizing
a graphical GMF editor with a textual Xtext editor. This section presents the details
of the implementation of this solutions.

6.1 The Synchronization Infrastructure

As discussed in Sec. 2.4.2, the �rst di�culty in synchronizing ThinKCharts with a
textual Xtext editor is caused by the con�icting edit policies of Xtext and GMF, and
eliminates a full-synchronization of both editors. In Fig. 4.1 our solution to this
approach is presented. Brie�y, both, Xtext and GMF, editors work on their own copy
of the model and �send� their changes on saving.

To be more concrete, all EMF based editors, along with Xtext and GMF, have an
EditingDomain. The EditingDomain is the �workplace� of an Xtext or GMF editor.

Among other things1, the EditingDomain holds the domain �le.

Hence we do not need to change anything to create separate model instances for
Xtext and GMF, they work on their own copies by default. Hence, our editors operate
on the same model, but are in di�erent EditingDomains.

We want to be able to �listen� to model changes in other editing domains, syn-
thesize syncCharts from KITS �les and serialize a syncChart in KITS. Hence adding
merely an action to ThinKCharts that allows the initialization of a syncChart from
a KITS �le will not be su�cient as this will only cover SyncCharts synthesis and not
the serialization of a syncChart in KITS.

Tho this end, we have to set the domain �le extension of ThinKCharts to .kits.
This modi�cation results in the needed initialization and serialization.

6.2 Referencing Xtext Models from a GMF Editor

In Sec. 2.4.2 we have already seen how objects are reference in EMF: Every EMF re-
source is referenced via a unique URI, and every EMF model in a resource is identi�ed
by a fragment that is unique in its resource. Listing 6.1 shows a sample EMF model
reference. The presented reference is taken from the notation model of the ABRO
syncChart.

1An EditingDomain also holds a CommandStack to manage editing commands. Hence sharing the
same editing domain e�ectively means sharing also the same CommandStack. Although it has
some important implications [5] it is not relevant to our concerns.
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Listing 6.1: Sample EMF object URI

1 <element xmi:type="synccharts:Signal"
2 href="ABRO.kixs#//@innerStates.0/
3 @regions.0/
4 @innerStates.0/
5 @signals .0"/>

The notation model holds the �gures in our diagrams as well as a reference to
the elements that are visualized by the particular �gure. In this case our �gure
represents a model element that is the ��rst region of the �rst inner state in a �le
called ABRO.kixs�. In EMF, href precedes inter-documentary references. In this case,
we have an inter-documentary reference because the notation and domain �les are
saved separately in KIELER. The extension .kixs depicts that our model was serialized
using the default XMI serializer provided by EMF.
As can be seen, the default URIfragments in EMF are index-based thus not very

permanent: If an element in a containment list is removed, all following elements are
�moved up�, and hence update their indices.
When we save our model in KITS, we need to ensure permanent URIfragments as

they are the connection between the notation and the semantic model.
Generally speaking this is a fundamental di�erence between a serialization in the

abstract syntax, e.g. in XMI and a serialization in the form of a concrete syntax,
e.g. in KITS. Concrete syntax references are made by name whereas abstract syntax
references are directly pointing to an object.
Xtext internally handles object references in a di�erent way that is not relevant for

our concernes. However, a FragmentProvider can be implemented to return fragments
that are used by non-Xtext documents to reference objects, created by Xtext. The
default implementation of the FragmentProvider does nothing, and hence returns
index-based fragments of EMF.
Our approach to providing permanent object references is to overwrite the Frag-

mentProvider that returns name-based fragments that conform to the pattern <eCon-
tainer.object>.

6.3 Interaction Code for Xtext and GMF

As our editors are only synchronized on saving �le contents, there can be concurrent
modi�cations on the same model, made in di�erent editors. Furthermore, after
initializing a syncChart from KITS an auto-layout should be triggered.
These adaptations are made by registering a KitsConcurrentModi�cationAdapter to

both Xtext and ThinKChart editors as can be seen in Listing 6.2. The KitsConcur-
rentModi�cationAdapter is added to the active page of the Eclipse workbench, after
the workbench has been initialized. Then the KitsConcurrentModi�cationAdapter it-
erates over the open editors and registers itself as a listener by ThinKCharts and
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Listing 6.2: Sample EMF object URI

1 public KitsConcurrentModi�cationAdapter( �nal IWorkbenchPage activePage) {
2 this .page = activePage;
3 IEditorReference [] editorReferences = activePage. getEditorReferences ();
4

5 for ( IEditorReference editorReference : editorReferences ) {
6 IEditorPart editor = editorReference . getEditor ( false );
7 if ( editor instanceof SyncchartsDiagramEditor) {
8 ((DiagramEditor) editor ).getEditingDomain()
9 .addResourceSetListener(this );

10 }
11 if ( editor instanceof XtextEditor) {
12

13 ISourceViewer sourceViewer = ((XtextEditor) editor )
14 . getInternalSourceViewer ();
15 if (sourceViewer instanceof ITextViewerExtension) {
16 ((ITextViewerExtension) sourceViewer)
17 .appendVerifyKeyListener(this );
18 }
19 }
20 }
21

22 }

the KITS editor. Consequently, it is able to react to changes in both editors at some
well-de�ned points .

In particular, KitsConcurrentModi�cationAdapter implements three di�erent listen-
ers, namely a PartListener, a ResourceSetChangedListener and a VerifyKeyListener, as
can be seen in Fig. 6.1.

Registering the KitsConcurrentModi�cationAdapter as a listener to resource set
changes enables us to trigger an auto-layout at this point. The resourceSetChanged
is �red after changes to the resource set have been committed, and hence this is a
well-de�ned point for layouting our diagram.

Furthermore, KitsConcurrentModi�cationAdapter listens to workbench parts. Work-
bench parts are visible components of a workbench, i. e. editors or views. The
KitsConcurrentModi�cationAdapter is thus able to trigger an initial auto-layout when
a ThinKCharts editor is opened, as this is also a workbench part. This is seen
in Listing 6.3.

When more than one SyncCharts editor is �dirty� at the same time, saving a
(KITSor ThinKCharts ) �le overwrites changes in the other editor(s). To prevent
this, KitsConcurrentModi�cationAdapter lets the user decide and asks whether the
changes should be saved or not. To this end, it registers itself as a VerifyKeyListener
to the Xtext editor, as can be also seen in Listing 6.3.

When the editors are closed, the registered adapters are removed as is shown
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Figure 6.1: Concurrent Modi�cation Listener in KITS

Listing 6.3: Reactions of the KitsConcurrentModi�cationAdapter to partOpened

1 public void partOpened(�nal IWorkbenchPart part) {
2 if (part instanceof DiagramEditor) {
3 TransactionalEditingDomain editingDomain = ((DiagramEditor) part)
4 .getEditingDomain();
5 editingDomain.addResourceSetListener(this );
6 manualLayoutTrigger(part);
7 }
8 if (part instanceof XtextEditor) {
9 ISourceViewer sourceViewer = ((XtextEditor) part)

10 . getInternalSourceViewer ();
11 if (sourceViewer instanceof ITextViewerExtension) {
12 ((ITextViewerExtension) sourceViewer)
13 .appendVerifyKeyListener(this );
14 }
15 }
16 }
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Listing 6.4: Removing the KitsConcurrentModi�cationAdapter

1 public void partClosed( �nal IWorkbenchPart part) {
2 if (part instanceof DiagramEditor) {
3 TransactionalEditingDomain editingDomain = ((DiagramEditor) part)
4 .getEditingDomain();
5 editingDomain.removeResourceSetListener(this );
6 }
7 if (part instanceof XtextEditor) {
8 ISourceViewer sourceViewer = ((XtextEditor) part)
9 . getInternalSourceViewer ();

10 if (sourceViewer instanceof ITextViewerExtension) {
11 ((ITextViewerExtension) sourceViewer)
12 . removeVerifyKeyListener(this );
13 }
14 }
15 }

in Listing 6.4.

6.4 Inter-documentary Navigation

The support of navigation between editors is partly supported. The navigation from
ThinKCharts to KITS is implemented by making use of the NodeAdapter in Xtext
while a navigation from KITS to ThinKCharts would need a query language to �nd
the objects in the GMF editor. Sec. 9.1 refers to this as a future work.

Listing 6.5 shows the path from a diagram element in ThinKCharts to its selection
in the KITS editor. The openInKitsEditor takes two arguments: The semanticElement
is the object that has been selected in ThinKCharts. The targetPart is the KITS

editor.
As we know from previous chapters, a parser node in Xtext references the object

it represents. Furthermore, a parser node also holds the o�set and length that its
object needs in �le. This data is used to �nd the scope that is to be highlighted in
the KITS editor.
Since Xtext still is in development, the source code is under the sway of constant

modi�cation. To this end we give an overview of the Eclipse con�guration, used for
the latest version of this work, in App. B.
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6 Sharing the Same Model with GMF

Listing 6.5: Opening ThinKCharts' diagram elements in KITS

1 public static void openInKitsEditor (EObject semanticElement,
2 IWorkbenchPart targetPart) {
3 try {
4 String uri = semanticElement.eResource().getURI().toString ();
5 if ( uri . startsWith(PLATFORM_RESOURCE)) {
6 String �leString = uri . substring (PLATFORM_RESOURCE.length());
7 IFile �le = ResourcesPlugin.getWorkspace().getRoot(). getFile (
8 new Path( �leString ));
9

10 if ( �le != null && �le . exists ()) {
11 NodeAdapter nodeAdapter = NodeUtil
12 .getNodeAdapter(semanticElement);
13 if (nodeAdapter != null) {
14 CompositeNode parserNode = nodeAdapter.getParserNode();
15 if (parserNode != null) {
16 ITextEditor editor = (ITextEditor) targetPart
17 . getSite (). getPage().openEditor(
18 new FileEditorInput ( �le ),
19 EDITOR_ID);
20 editor . getSelectionProvider (). setSelection (
21 new TextSelection(parserNode.getO�set (),
22 parserNode.getLength ()));
23 }
24 }
25 }
26 }
27 } catch ( PartInitException e) {
28 e. printStackTrace ();
29 }
30 }
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7 Evaluation

This work has been motivated by the need to combine textual and graphical represen-
tations of complex systems for a convenient modeling. An example of such systems,
SyncCharts in KIELER has served as the application �eld. The graphical concrete
syntax of SyncCharts has been complemented with a textual concrete syntax. The
resulting need of synchronizing both views has been addressed by developing a syn-
chronization at a well-de�ned point, i.e. �le save.

By default, EMF models are serialized in XMI. The XMI format of a persistent
syncCharts is saved as plain-text. In contrary to the plain-text XMI editor, the
language-speci�c Xtext editor allows a validation at runtime that prevents the user
from �breaking� the model. Hence the default serialization language XMI can be
de�ned as a set of strings whereas the domain-speci�c-language KITS is a set of valid
syncCharts models.

Further added values of serializing the syncChart model in a domain-speci�c lan-
guage are as follows: The editing of a syncChart in a language that is more �human-
friendly� structured than XMI increases the editing speed and the readability of the
model. Additional IDE support, such as content assist, a tree-based outline view,
textual navigation and the like, enables a quick orientation in the model �le. Fur-
thermore, version controlling is done in a �familiar� format.

Xtext is a very powerful framework. The Xtext grammar holds not only the
information to generate a parser for the textual input; it also de�nes the text-to-AST
transformation. The resulting AST is transformed (linked) to the EMF model by a
linker.

KIELER already has a SyncCharts EMFmodel, and hence our resulting model is pre-
de�ned. This restricts us when designing the grammar. Also, as the expressiveness
of the Xtext grammar language and the EMF Ecore language is di�erent, we can only
cover a subset of our model de�nition in the grammar.

The results are the need for validation�to meet the expressiveness of the pre-
de�ned meta-model�and the need to alter the default linking semantic�to meet
the pre-de�ned meta-model structure.

Without the modular infrastructure for dependency injection in Xtext, especially
the latter task would be di�cult to solve. Possibly, an intermediate meta-model
would be needed, which had to be transformed to the SyncCharts meta-model. Hence
Xtext is a generative framework with a lot of implicit conventions, however it also
supports a �ne-granulated modi�cation of this default semantics by utilizing a pow-
erful dependency injection framework.

The de�nite shortcoming of using Xtext is that it is still in development and not
thoroughly documented. As a result, a considerable amount of time is needed to get
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acquainted with the internals of Xtext.
The synchronization of editors requires a deeper understanding of both Xtext and

GMF. Especially GMF is a mature framework with a complex underlying structure.
The con�icts between the foundational strategies of Xtext and GMF can be solved at
the end of a longer research by possibly adding a semi-canonical edit policy to GMF.
Hence for the textual editing framework we had to alter the default semantics in

Xtext to meet our requirements�whereas to implement the synchronization, we had
to alter our requirements.
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8 Conclusion

This work has followed a model-based approach to enhance the graphical modeling
of SyncCharts in KIELER with a textual editing framework. To this end, we have
�rst designed a new concrete syntax for SyncCharts and developed a textual editing
environment using TMF Xtext.
The attempt to fully synchronize the resulting Xtext editor with the existing GMF

editor, namely ThinKCharts, has resulted in several problems.
In particular, GMF editors follow a canonical edit policy. This means that their

graphical content is synchronized with the underlying domain model at all times.
Xtext, on the other hand, follows a partial parsing strategy, and hence constantly
restructures the parse tree.
A solution to this con�ict has to either change the behavior of GMF or Xtext or

relax the requirements. A modi�cation of the architecture of Xtext or GMF, e. g.
by introducing a semi-canonical policy for GMF editors, is beyond the scope of this
work. Hence the synchronization is triggered on �le saving where we can be sure
that the model is ��nal� and valid.
Both Xtext and GMF are modular, powerful frameworks. However internally they

make various conventions and have a complex underlying structure. While using
these promising frameworks generally yields in ever so quick results that are pre-
sentable, the more specialized the requirements are, such as their full synchroniza-
tion, the closer we are likely to run up against their limits.

71



8 Conclusion

72



9 Future Work

9.1 Textual Editor

Serializing Meta-data As a future work, the syntax can be enhanced to hold meta-
information such as diagram layout speci�cation. This enhancement is useful
as it would enable the persistence of layout information, speci�c to a syncChart.
However a clean separation of the base language and the meta-data should be
maintained and the meta-information should not be enforced by the grammar.
Furthermore, the meta-data could contain model and version speci�cations, as
was done in KIT. KIT is designed to support di�erent Statechart dialects, and
contains header-like state arguments that specify the dialect of the Statechart.

Inter-level Transitions The current naming convention speci�es that states have
identi�ers that are unique in their region. This e�ectively sets the scope of
a state to its region, hence inter-level transitions are not supported by acKITS.
Hence inter-level transitions are already supported by ThinKCharts, altering
the current naming conventions would be su�cient to add this feature.

Structuring via External Components The structuring of a snycChart via refer-
ences to external states�states that were declared in external resources�is
a conceivable enhancement to the current grammar. In the current version of
Xtext, an external object can be referenced by using a String value that has
been assigned to its importURI attribute. The prede�ned name, importURI, of
the attribute is an Xtext convention. In this work, we have seen another such
convention: The cross-referencing of objects can be done via a name attribute
that has to be a String. Although such conventions provide a convenient way to
add new language features, they also require an adaptation of the underlying
meta-model. An alternative approach can be to alter the linking semantic to
support inter-document references.

Further Syntax Enhancements Additional to the features that have been detailed
in this work, the grammar of KITS supports renamings of typed values, declara-
tion of textual states and integration of host code in actions. As a future work,
it can be enhanced to support various language features such as subsequent
variable declarations in a single assignment�as done in Esterel.

Outline Menu Actions A late enhancement of the outline view implementation in
Xtext supports adding menu actions to the outline. Enhancing the outline view
to provide model editing actions, such as removing or renaming SyncCharts
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9 Future Work

elements, will result in an additional editor that enables a structure-based
editing of the underlying model. As this new feature is not investigated in the
scope of this work, the scope and amount of time needed to accomplish this
objective cannot be estimated.

9.2 Synchronization

Semi-canonical Edit Policy for GMF The synchronization infrastructure depends
on the limits of both Xtext and GMF. However, especially GMF has grown
highly complex hence its core implementation patterns are not extensible in
the scope of this work. The canonical edit policy is such a pattern. This policy
interferes with a full-synchronization of Xtext and GMF. There is research to
add a semi-canonical editing behavior to GMF but at this point this is still an
open question.

Xtext Parser Wrapper The parser that is generated by Xtext does not have to be
used in an Xtext environment. It is easily possible to utilize it in di�erent
contexts, such as a GMF editor. However to utilize other Hence a possible
enhancement could be to provide an adapter for the Xtext parser that enables
its integration into other editors.

EMF Index Roughly, EMF Index is a new project that aims to provide means to
query EMF objects that are de�ned �anywhere�, e.g. also in a GMF editor.
Depending on this project, the Xtext editor in this work can be enhanced
to reference objects in ThinKCharts, e.g. in an action that opens a diagram
element from its textual description in the KITS �le.
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A Textual Syntax Proposals

Here we present few informal proposals of how textual SyncCharts representations
could look like. First the representation in KIT is given. The same syncChart that is
presented in Fig. A.1 is used in all instances in order to allow a quick comparison.

Figure A.1: Sample syncChart
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A Textual Syntax Proposals

Listing A.1: Sample syncChart in KIT

1 statechart Thread[model="Esterel Studio";version="5.0";]{
2 input forked ;
3 input joined ;
4 input instrClk ;
5 input schedule ;
6 input startTick ;
7 input delay ;
8 {
9 disabled−>enabled[label="forked";];

10 −>disabled;
11 enabled{
12 active{
13 running−>preempted[label="instrClk and not schedule";];
14 preempted−>running[type=wa;label="instrClk and schedule";];
15 −>preempted;
16 };
17 active−>inactive[type=wa;label="startTick";];
18 inactive−>active[type=wa;label="delay";];
19 −>active;
20 };
21 enabled−>disabled[type=wa;label="joined";];
22 };
23 };
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Listing A.2: Proposal: JiTTY

1 Thread :
2 sub: −> disabled
3 sub: enabled
4 −> (disabled)forked(enabled)
5 >−> (enabled)joined(disabled)
6 ;
7 enabled :
8 sub: active
9 ||

10 sub: <new>
11 ;
12 active :
13 sub: −> preempted
14 sub: running
15 o−> (preempted)instrClk & NOT schedule(running)
16 >−> (running)instrClk & schedule(preempted)
17 ;
18 <new> :
19 sub: −> inactive
20 sub: ((semiEnd ))
21 −> (inactive)(semiEnd)
22 ;

Listing A.3: Proposal: KITTY

1 [Thread
2 |−>(disabled)−forked−>[enabled
3 |[ active
4 |−>(preempted)o−[instrClk & NOT schedule]−>(running),
5 (running)−[ instrClk & schedule]−>preempted]
6 |−>(inactive)−>((semiEnd))],
7 (enabled)>−joined−>disabled]
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A Textual Syntax Proposals

Listing A.4: Proposal: DIRKIT

1 Thread:
2 disabled . ini −forked−> enabled;
3 enabled >−joined−> disabled;
4 Thread\enabled:
5 active ;
6 ||
7 inactive . ini −> semiEnd.�n;
8 Thread\enabled\active:
9 preepmtd. ini o−instrClk & NOT schedule−> running;

10 running −instrClk & schedule−> preepmt

Listing A.5: Proposal: M@ILK->T

1 Thread|>
2 −>o FROM:disabled
3 [ forked ] X [ joined ]
4 TO: enabled
5 Thread\enabled\active|>
6 −>o FROM: preempted
7 [ instrClk & NOT schedule] X [instrClk & schedule]
8 TO: running
9 Thread\enabled\<newstate>|>

10 −>o FROM: inactive
11 [] X −
12 TO: ((semiEnd)) <−
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Listing A.6: Proposal: KITeX

1 \begin{state}{Thread}
2 \state [ initial ]{ disbld }
3 \begin{state}{enabled}
4 \begin{state}{active}
5 \state [ initial ]{preempted}
6 \state [ �nal ]{running}
7 \trans [ s]{preempted}[ instrClk & schedule]{running}
8 \trans{running}[ instrClk & not schedule]{preempted}
9 \end{state}

10 \||
11 \state [ initial ]{ inactive }
12 \state [ �nal ]{semiEnd}
13 \trans{ inactive }{semiEnd}
14 \end{state}
15 \trans{disbld }[ frk ]{enabled}
16 \trans [nt]{enabled}[ joined ]{ disbld }
17 \end{state}
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B Eclipse Con�guration

Listing B.1: Eclipse con�guration

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 EMF, GMF, GEF
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 "EMF − Eclipse Modeling Framework Runtime and Tools"
5 org. eclipse .emf (2.5.0. v200906151043)
6 "Graphical Editing Framework GEF"
7 org. eclipse . gef (3.5.0. v20090528−1511)
8 "Graphical Modeling Framework"
9 org. eclipse .gmf (1.2.0. v20090615−0700)

10 "GMF Models Bridging Plug−in"
11 org. eclipse .gmf.bridge (1.1.0. v20090528−1000)
12 "Trace Model"
13 org. eclipse .gmf.bridge . trace (1.0.200. v20090520−1343)
14 "GMF Tooling UI"
15 org. eclipse .gmf.bridge . ui (1.2.1. v20090812−1620)
16 "GMF Dashboard"
17 org. eclipse .gmf.bridge . ui .dashboard (2.0.0. v20090114−0940)
18 "GMF GenModel and Code Generation"
19 org. eclipse .gmf.codegen (2.2.1.v20090812−1620)
20 "GMF Tooling Commons Plug−in"
21 org. eclipse .gmf.common (1.1.100.v20090420−1925)
22 "GMF Common Core"
23 org. eclipse .gmf.runtime.common.core (1.2.0.v20090403−1720)
24 "GMF Diagram Core"
25 org. eclipse .gmf.runtime.diagram.core (1.2.1. v20090729−2029)
26 "GMF Draw2d Additions"
27 org. eclipse .gmf.runtime.draw2d.ui (1.2.1. v20090825−1800)
28 "GMF Commands"
29 org. eclipse .gmf.runtime.emf.commands.core (1.2.0.v20090403−1720)
30 "GMF GEF Additions"
31 org. eclipse .gmf.runtime.gef . ui (1.2.0. v20090520−1343)
32 "GMF Notation Model Support"
33 org. eclipse .gmf.runtime.notation (1.2.0. v20090521−1925)
34 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 TMF, Google Guice, KIELER
36 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 Id : org. eclipse .xpand, Version : 0.8.0. v200911101353,
38 Id : org. eclipse .xpand.ui , Version : 0.8.0. v200911101353,
39 Id : org. eclipse .xtend, Version : 0.8.0. v200911101353,
40 Id : org. eclipse .xtend.check.ui , Version : 0.8.0. v200911101353,
41 Id : org. eclipse .xtend.typesystem.emf, Version : 0.8.0. v200911101353,
42 Id : org. eclipse .xtend.typesystem.emf.ui , Version : 0.8.0. v200911101353,
43 Id : org. eclipse . xtext , Version : 0.7.2, (Action grammar)
44 Id : org. eclipse . xtext , Version : 0.8.0. v200911101539, (KITS grammar)
45 Id : org. eclipse . xtext . activities , Version : 0.8.0. v200911101539,
46 Id : org. eclipse . xtext .common.types, Version: 0.8.0. v200911101539,
47 Id : org. eclipse . xtext .common.types.ui, Version : 0.8.0. v200911101539,
48 Id : org. eclipse . xtext . generator , Version : 0.8.0. v200911101539,
49 Id : org. eclipse . xtext . junit , Version : 0.8.0. v200911101539,
50 Id : org. eclipse . xtext . logging , Version : 1.2.15,
51 Id : org. eclipse . xtext . ui .common, Version: 0.8.0.v200911101539,
52 Id : org. eclipse . xtext . ui . core , Version : 0.8.0. v200911101539,
53 Id : org. eclipse . xtext . util , Version : 0.8.0. v200911101539,
54 Id : org. eclipse . xtext .xtend, Version : 0.8.0. v200911101539,
55 Id : org. eclipse . xtext . xtext . ui , Version : 0.8.0. v200911101539,
56 Id : com.google.guice , Version : 1.0.1. v200911101451,
57 Id : de. itemis . xtext . antlr , Version : 0.7.2.200908121408, (Action parser )
58 Id : de. itemis . xtext . antlr , Version : 0.8.0. v200911110853, (KITS parser)
59 Id : de.cau.cs . kieler . synccharts , Version : 0.1.0
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