CHRISTIAN-ALBRECHTS-UNIVERSITAT zU KIEL

Bachelor Project

Configurations

and Automated Execution
in the KIELER Execution Manager

cand. inform. Soren Hansen

April 7, 2010

Department of Computer Science
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:
Christian Motika

i

Eidesstattliche Erkldarung

Hiermit erklére ich an Eides statt, dass ich die vorliegende Arbeit selbststindig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

v

Abstract

In this thesis two problems concerning the Kiel Integrated Environment for Layout
Eclipse Rich Client Execution Manager will be solved.

The first part of this thesis introduces configuration management to Exe-
cution Manager in order to make managing the different execution files and
their configurations easier. This task consists of two parts. The first part concerns
the storing of configurations with each schedule while the second part concerns the
easy loading of these schedules.

The second part of this thesis presents a solution to the problem of automating
the Execution Manager. This includes finding ways to allow a great number of
simulations to be executed without any additional user interaction.

All parts of this project are contributions to the project. Hence they are
open source extensions to the Eclipse modeling projects.

Key words: automated execution, automated simulation, configurations, [KIELER]
KTEM] preferences

vi

Contents

. Configuration Management|

[2. Used Technologies|
...................................
2.1.1. Plug-ing|
[2.1.2. Preference Pages|
2.2. The [KIELER! Execution Manager|
[2.2.1. DataComponents|
2.2.2. KiemProperty|.o

[2.3.1. Configurations|

3. Problem Statement]
B.1. Configurations| e
[3.1.1. Default Configuration|
[3.2. Easier Schedule Loading|

[4.1. Configurations| e
4.1.1. Default Configuration|
4.2, Easier Schedule Loading|

[5. Code Changes in the Execution Manager|

N

15
15
16
16

17
17
18
19

21
21
21
23
24
26
26
27

vil

Contents

6.

The [KIEMConfig| plug-in|
6.1. Data Classes and Utilities - the Modell
[6.1.1. ConfigDataComponent|.

[6.2. Manager Class - the Controller|
[6.2.1. Abstract Manager|
[6.2.2. Configuration Manager|[.
[6.2.3. Schedule Manager|
6.2.4. Editor Manager|.
[6.2.5. Contribution Manager|
[6.2.6. Property Usage Manager|.

|6.3. Preterence Pages - the View|
[6.3.1. Configuration Pagel
[6.3.2. Scheduling Pagel 0.

(2. Future Workl
[7.2.1. Eclipse Run Configurations|
[7.2.2. Improve Storage Options|.

[7.3. Summary|

[Il.__Automated Executionl

8.

Used Technologies|

B.2. Eclipse Wizards|.
8.3. Related Workl
[8.3.1. |[KEP|/[KREP| Evalbench|

[9. Problem Statement|

viii

9.1. SettingupaRun| o
[9.2. Input for the Automation|

9.4. Output Execution Results|
9.5. Application Examples| L.

31
31
31
33
34
34
36
37
39
39
42
47
47
48
49
49
ol
54

55
55
29
5%)
56
26

57

59
59
29
60
60

Contents

9.5.1. Application in Teaching| 66

[9.5.2. Application in Artificial Intelligence| 67

10. Concepts 69
[10.1. Settingupa Run| oo 69
[10.2. Input tor the Automation| 70
[10.3. Automate the Fxecution| L. 71
[10.4. Output kExecution Results|o 00000, 72
[11.Interaction with the Execution Manager| 73
[12. The Automated Executions Plug-in| 75
[12.1. Automation Setup Wizard|, 75
[12.1.1. FileSelectionPage| oo o 76

[12.1.2. PropertySettingPage| 77

[12.1.3. Information Processing|. 78

[12.2. Automation Input| 78
[12.2.1. Automated Component| 79

[[2.2.2. Automated Producer] 80

[12.3. The Automated Run| 81
[2.3.1. Automation Jobl 81

[12.3.2. Automation Manager|. 83

[12.3.3. Cancel Manager| 89

12.3.4. Modified Frror Handler| 90

[2.4. Automation Viewl. oL 92
1241, Tool barl 93

[12.4.2. Exporting Results| 94

(13. Conclusion| 97
[13.1. Future Worklo o 97
[13.1.1. Scripting] 97

[13.1.2. Configurations| 97

[13.1.3. Exports| 98

[13.2. 5Summary| 98
99

1X

Contents

List of Figures

LI MVCHInIKIELER] o v oo o e 1
[2.1. The Eclipse workbench window{ 6
[2.2. An example for a preference page[. 8
[2.3. The Execution Manager during a simulation| 9
[2.4. An example for a simple SyncChart diagram|. 11
[2.5. Automatically layouting a diagram| 13
4.1. Layout Preterence Page by Miro Sponemann|. 18
4.2. Application of the listener pattern| 19
|b.1. The Execution Managers Tool bar with two contributed ComboBoxes| 23
b.2. The Execution Managers Tool bar without contributions| 23
[6.1. The components of [KIEMConfig[in the [MVC|[pattern. 31
[6.2. Schedule showing the ConfigDataComponent| 32
[6.3. [UML| Diagram of the manager classes| 38
[6.4. Diagram illustrating the loading of a property value|. 40
6.5. Process that follows a load of an execution file in [KTEMI 44
[6.6. The main preference page of the Execution Manager| 49
[6.7. T'he page for defining custom properties| 50
[6.8. Property Usage Dialog| 51
16.9. The page for managing the schedules and editors| 52
[6.10. Editor Selection Dialogf. o 0o 593
6.11. The Schedule Selection ComboBoxesl 54
8.1. The|SVN[commit job| 60
8.2, The Class Creation Wizardl 61
[8.3. The [KREP| Evalbench verity view| 63
(10.1. The basic control flow for the automation| 71
[12.1. The components of [KIEMAuto| in the [MVC|pattern| 75
[12.2. The Wizard Page for selecting the mput files for an automated run| . 76
[12.3. The Wizard Page for setting up user defined properties|. 78
[12.4. 'T'he Automation Job showing the progress ot an automated run| . . . 82
[12.5. The control flow during the automation| 83
112.6. Automation View showing the result of an automated execution|. . . 92

X1

List of Figures

xii

Listings

B.1._The interface for ToolbarContributionProviders 22
[5.2. The intertace of the Configuration Provider| 24
b.3. An implementation example of the Configuration Provider| 25
.4, The mnterface of the kvent [astener 26
b.5. Code example tor the Event Listener| 27
5.6. Example of modified Getter and Setter| 27
5.7. The head of the modified openFile () method|. 28
15.8. Example for the use ot extension point code in the modified creation |

of the Execution Manager’s tool bar| 30
6.1. Example tor a serialized EditorDefinition|. 34
[6.2. Example for a serialized ScheduleData object|] 35
6.3. Example for a configuration saved into the Eclipse preterence store] . 37
[6.4. Example implementation of the Detault Schedule extension point| . . 46
[6.5. Implementation ot the Contribution Manager| 48
8.1. Code generated by the wizard| 62
[10.1. Example for automation input through a text file| 69
[12.1. Implementation example of an Automated Component| 79
[12.2. Implementation example of an Automated Producer| 80
12.3. The mterface for listeners on the FrrorHandlerl 91
[12.4. Example implementation of the ErrorHandler| 92
[12.5. Example of a table exported to|CSV[. 95

xiii

Listings

Xiv

List of Tables

[12.1. kxample of a table exported to IXTEX|

XV

List of Tables

XVl

Abbreviations

Al Artificial Intelligence

ANN Artificial Neural Network

APl Application Programming Interface

CAU Christian-Albrechts-Universitit zu Kiel
Ccsv Comma-Separated Values

GUI Graphical User Interface

IDE Integrated Development Environment

KEP KIEL Esterel Processor

KREP KIEL Reactive Esterel Processor

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client
KIEM Execution Manager

KIEMAuto Automated Executions for the [KIEM
KIEMConfig Configurations for the

KIML Infrastructure for Meta Layout
MVC Model-View-Controller

0S Operating System

RCA Rich-Client Application

SVN Subversion

Ul User Interface

UML Unified Modeling Language

XML Extensible Markup Language

xvil

1. Introduction

The purpose of this thesis consists of two parts. The first part is to find an easier
and more flexible way to deal with execution files in the Execution Manager.
The second part is to find an easy way to automatically do long execution runs inside

[KTEM!

1.1. KIELER Framework

Since the project is part of the framework a short introduction seems in
order.

is an open-source project for model design, simulation and analysis. It is
developed by the Real-Time and Embedded Systems Groupﬂ of the Department of
Computer Science of the Christian-Albrechts-Universitat zu Kiel .

The View

Representing the model

The Model

Synthesis & Editing

« Automatic layout

« Filtering (incl. label management)

« Focus & context, zooming, panning
* Morphing

« Data visualization

« Structure-based editing
« Synthesis

* Dual-modeling / Multi-modeling
« Textual modeling

* Scaling

« Patterns

* Product lines

Pragmatics

The Controller

Interpreting the model

« Interfacing to other modeling tools
« Correctness check, static analysis
« Visual differencing

* Simulation engine

Figure 1.1.: [MVC|in [KIELER| [from [6]]

It contains a host of facilities which enable the user to easily create, edit and simu-
late different forms of synchronous models. The entire project is structured
according to the Model-View-Controller pattern shown in Figure The
Execution Manager which is the focus of this thesis belongs to the controller part.

"http://www.informatik.uni-kiel.de/rtsys/kieler/ Retrieved 2010-03-08
?http://www.informatik.uni-kiel.de/rtsys/ Retrieved 2010-03-08

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://www.informatik.uni-kiel.de/rtsys/

1. Introduction

1.2. Outline of this Document

The first part of this document describes the implementation of the Configurations
for the [KIEM| (KIEMConfig) plug-in.

It starts with an introduction into the technologies that were used to solve the
problem as well as an overview of similar projects. This part continues with a detailed
description of the problem followed by a chapter about a conceptual solution to those
problems. The next chapter is about the modifications that had to be made to the
existing Execution Manager. In the following chapter a detailed description of the
implementation of the new features will be given. The last chapter will summarize
the results of this thesis and outline a few projects that could follow up on it.

The second part discusses the implementation of the Automated Executions for
the [KIEM| (KIEMAuto|) plug-in. It follows the same structure as the first part.

Part I.

Configuration Management

2. Used Technologies

Before the problem can be explained the technologies in question and the terminology
that is used in the rest of this document must first be introduced. This should only
serve as an outline since a full explanation goes beyond the scope of this thesis.

In addition to these technologies a section about some related work is included in
this chapter.

2.1. Eclipse

Since the project and thus the Execution Manager is build upon the Eclipse
framework a short introduction into Eclipse is necessary.

The basic function of Eclipse is as the Integrated Development Environment
for Java. It provides a host of facilities that makes it easier for the user to create
their own Java Applications. A few examples for these facilities are:

e Syntax highlighting to make the source code easier to read.

e Automatic completion of partial commands to ensure correctness and make it
easier to write code.

e Content assist to create better code and remove errors.
e Several wizards for class creation and other tasks.

However since Eclipse is an open-source project there are also modules for a variety
of other things. For example the language isn’t limited to Java. There are also
modules for C++, IEX, Visual Basic and several other programming languages.

Eclipse can also be used as an for through the use of different modeling
frameworks. This makes Eclipse “an for anything, and nothing in particular”|[2].

The terminology used for the different basic parts of Eclipse can be illustrated
based on Figure [2.1

e The main window of Eclipse is called the Workbench. The Workbench consists
of the different editors and views.

e The files that the user operates on are located in the Eclipse Workspace.

e An editor is a component that allows the user to display, enter and modify
information. Editors are used to modify a specific file type. There can usually
be multiple instances of the same editor. An example for an editor would be
the Java Editor which is used to create and edit Java Source Files.

2. Used Technologies

onfig/src/de/cau/cs/kieler; /kiem/config/managers/ScheduleManager.java - Eclipse
File Edit Source Refactor Navigate Search Project Run KIELER Window Help

e s|swe s 0-a|® @m ee | 0-o-= e \Workbench sEe s -

[# Packag & $Plug—inw % Hisrarc} = O/ [g feature.ext soh-bt2.tex (D ScheduleManager.java 22 . {+ de.cau.cs.kieler.core.]‘: O | Bz outline 8 [Task Usq =0

55 ~ T OWS SCIEUUTErLLENLS S LIYEACEPLLUN S
Or Sl !aCeE‘ & 00 * if the location in the schedule is no longer valid
iy Ue-tau. 2 2 01 */
4 de.cau.cs kielerkrep.sim 4728 [KIELE 025 public void [JIENHEIEME (final ScheduleData schedule) .
J : 03 throws ScheduleFileMissingException { . @& getinstance() : ScheduleMal
17 de.cau.cs kielerksbase 4752 [KIELER Ed |‘t0r + recentschedulelds : MostRe
1 > de.cau.cs.kielerksbase.ui 4781 [KI
174 de.cau.cs kielerksbase.viewmanage
574 > de.cau.cs.kielersim.kiem 4635 [KI

®W o oe W

o % instance : ScheduleManage |~

05 KiemEventListener.getInstance().setLoadImminent();
06 try {

07 KiemPlugin.getDefault().openFile(schedule.getLocation(), = © ScheduleManager()

08 schedule.isLocked()); @ addSchedule(EditorDefinitic

09 } catch (I0Exception e@) {
10 // loading failed due to missing .execution file = dEIEtESChE‘.E(DEIHERESO

11 KiemEventListener.getInstance().resetLoadImminent(); o getallschedyles() : List<Sch
12 throw new ScheduleFileMissingException(e@, schedule); o getimportedbchedules() : Li
13 } catch (IllegalArgumentException e®) { . "
14 // file not in workspace @ getMatchingschedules(Edit
15 KiemEventListener.getInstance().resetLoadImminent(); e getRecentSchedulelds() : M
16 throw new ScheduleFileMissingException(e®, schedule); o getRecentschedules() : List
17 }
18 = getSchedulePatalPath) : S
19 // loading successful o getSchedulePata(String) ‘SJ
20 getRecentSchedulelds().add(schedule.getId()); historyNotifiation(Refact:

21 notifylisteners(new KiemConfigEvent(KiemConfigEvent.FILE LOADED, @< historyNotifiation(Refactor

scheduleData : List<Schedt

—

17 de.cau.cs kieler.sim.kiem.automated
17 de.cau.cs kieler.sim.kiem.config 477¢
b =) Plug-in Dependencies
v @src4778
< f de.cau.cs.kieler.sim.kiem.confi¢

b [data 4469

b 3 exception 4279

b g extension 46838

= i managers 4778

P [} AbstractManager.java 441,

e~~~

i f - @ importAllFilgsinworkspace(
E . Z““:igt‘)"ilibxﬂanage?jav g } sehedlegettocation): sAIna:() : void g
B “v" rioution a'nagemava 524 & loadFromExgensionPoint() :
b [1 EditorManagerjava 4778 625 Jf e oososnoeosoooonsoooooooooooooooooioooooooooood
> N f) 626 = loadFromPrafstore() - void
@IKmmCoj gE\:/entLls(ener 6278 ~** = loadMostRedentlyUsedSche
I [}y package-infojava 4279 628 * Notify the manager that the user triggered a save. The manager gather JoadSchedulfs() : void
b [f) PropertyUsageManager.ja 629 * all information needed to create a new schedule and adds that schedul/~ = > <
. < = > >
b [3 ScheduleCs java
» | ScheduleManager.java 47 ©] Error Log | +) Tasks | &l Console £ o B - =0
[managers.jpg 4279 SVN
[5 managers.png 4279 A /home/soh/workspace/workspace/de.cau.cs.kieler.core.examples/icons/sample.gif ~
[5, managers.ucd 4279 A fhome/soh/workspace/workspace/de.cau.cs.kieler.core.exanples/plugin. xml

P preferences 4458 .
b i 4425 [humelsuh[wurkspace[wurkspace[de cau.cs. kieler.core.exanples
b [KiemConfigurationPluginjav| |{AT revision 4795

- N **+ Ok (took ©6:09.971)
P[5 package-info.java 4279

P .
[5) config.jpg 4279 **% 0k (took €0:09.971) - VleWS

cnnﬂg png 4279 D

A /home/soh/workspace, wnrksnace de.cau.cs. kleler core.examples, settmqs
A /h h, e/d: L

> < >

e writable Smart Insert | 602 : 29 J

Figure 2.1.: The Eclipse workbench window

2.1. Eclipse

e An FEclipse view is the other component located on the Workbench. Views are
only used to display content that was created elsewhere. Unlike editors there
is usually only one instance of any view. One of the views shown in the figure
is the class outline view. It shows all methods and attributes of the Java class
in the currently active editor.

For additional information about Eclipse see the official Eclipse WebsiteE] or liter-
ature [3].

2.1.1. Plug-ins

The building blocks of any Eclipse application are called plug-ins. They consist
of any number of Java classes with additional meta information. The Java classes
describe the behavior of a plug-in and define its Application Programming Interface
. The meta information is not written in Java but uses an Extensible Markup
Language EI notation instead. It contains the information necessary to interact
with other plug-ins:

e What other plug-ins does the plug-in depend on? This information is necessary
to determine which other plug-ins have to be loaded or when to refuse loading
the plug-in because of missing dependencies.

e What eztension points does the plug-in offer? These are part of the and
will be described below.

e What functionality does it add to the plug-ins which it extends?

Plug-ins encapsulate their internal behavior and can be accessed through the
and the extension points. They provide a specific functionality that can be reused
as long as the dependencies are met. As such an Eclipse application consists of a
mosaic of different plug-ins that can be exchanged at will.

Eclipse can not only be used to create plug-ins that can be used in an Eclipse
instance but can also compile a set of plug-ins into a standalone application - the so
called Rich-Client Application EI This contains a minimal set of plug-ins
to provide the Eclipse look-and-feel. The plug-ins created by the user extend that
functionality.

Extension Point Mechanism

The extension point mechanism is one of the key features of plug-in development
in Eclipse. It extends the provided by the public methods of the different Java
classes inside the plug-in. An extension point definition consists of a tree of different
configuration elements. Each configuration element has different attributes some of

Lwww.eclipse.org| Retrieved 2010-03-08
Zhttp://www.w3.orqg/XML/| Retrieved 2010-03-08
3http://wiki.eclipse.org/index.php/Rich_Client_Plat form Retrieved 2010-03-08

www.eclipse.org
http://www.w3.org/XML/
http://wiki.eclipse.org/index.php/Rich_Client_Platform

2. Used Technologies

Editors o~ -
b General - .
b An Source page color settings:
> ATL See "Text Editors' for the general text editor preferences.
Enable folding when opening a new editor
b CDO
D Checkstyle XML Highlighting | Manifest Highlighting

Data Flow Elements:

D Ecore Diagram —_ Color: | I
P Ecore Tools Diagram Constant strings B
Bold

EMF Compare Externalized strings
D Help Processing instructions Italic
P InstalliUpdate Tags
b Java Text
D JET Transformations
P KIELER
> Model Validation 1 Preview:
~ Plug-in Development ?xml version="1.8" encoding="UTF-8"2>

[<7xml ve
API Baselines <plugins>

. <!-- Comment -->
API Errors/Warnings <extension point="some.id">

Compilers <tag name="%externalized">body text</tag>

</plugin>
0sGi Frameworks /plug
Target Platform - ‘
> Run/Debug
e 5 Restore Defaults Apply
@) Cancel oK

Figure 2.2.: An example for a preference page

which can be optional while other are mandatory. These attributes can be anything
from a String or a file to a Java class that has to extend one class and implement
a specific interface.

Plug-ins that want to add extend the functionality of an already existing plug-
in have to provide the mandatory attributes. These attributes are defined in the
extension point specifications. Eclipse itself already provides many extension points
to extend the functionality of the Workbench.

For example, if a plug-in wants to add a new editor to the Workbench it has to
extend the org.eclipse.ui.editors extension point. It then has to provide an identifier
and a name as well as a class that implements the org.eclipse.ui. IEditorPart interface.
It can also specify an icon and a file extension for files which should be opened with
the new editor.

When an Eclipse application is started with this plug-in Eclipse will automatically
make sure that the new editor can be used to open the specified file type. The
programmer only has to concern himself with the area of the editor itself without
worrying about it being added at all the necessary places inside the Eclipse archi-
tecture.

2.1.2. Preference Pages

A special example of plug-in usage within the Eclipse framework itself is the

org.eclipse.ui.preferencePage plug-in. It is used to create new preference pages. An
example of a native Eclipse preference page is shown in Figure This particular
preference page is used to set up the syntax highlighting for the different items. Any
preference page is added to a specific location inside the normal tree of preference

2.2. The Execution Manager

% KIFLER Modeling - KIELER

ol x|
Fle Edt Mavigate Search Project Run SampleMenu Window Help
[project Explorer 53 = O|| B devator.kids 82 " 5] elevator.kits &2 =0
B = =P state Elevator { =]
o e W =
elevator.execution g
- Signal: up, down, error, alarm, doar, 2
| (3] elevatorhuds o D —
2 elevator.kits = REEERERR
T kev view 32N = [al (normal B 7| init nozmal ¢
= = init floorl
B e s

door w N --> up with "up/door”:
— e o
door 2\

--> loor2 with "/door":
state floor2

--> down with "down/dooxr":
state down

--> Iloorl with "/door":

1

init door_open

--> door_closed with "door™;
state door_closed

--» door_open with "door":

| error

sustain_error

Op)
= --> error with "errorn:
down/ deor / door
state error {
init sustain alarm

alarm

f door up / door

alarm

--> sustain_alarm
with "/alarm";

. = @@@ \, 7 --> normal with "error" history:

=gl ;l_l ' ;l_l
[Data Table B3 Bl 1]
& %% 8) Properties | §§} Executon Manager £3 '\ [2: Problems = O[5 Layout 2 & & . ¥ = 0|5 outine rﬁ VM Control 22 =im
P [Key [vale | IEZE |tapl- B - Region WM anjoff
up Component Name 1| Type [master | —_— i Actve | Combination =]
O down Synchrounous Signal Resetter 4 Observer/Producer SR O d kieler . mbinat
O akm [Data Table | Producer o O de.cau.cs.Kieler.vienmanagement.combinat.
o S, B [&] synccharts Ptolemy Simulator & Observer/Producer Layout Direction 00 de.cau.cs.kieler.vienmanagement.combinat
el B smowich Lot o o e R e v
|5 State Name Object Spacing - 2 s
[Viewmanagement SyncCharts Visuslizer | 7] Observer 0 de.cau.cs.kieler ksbase.vienmanagement.c
[T Environment Visualization & Observer de.cau.cs.kieler.synecharts. viewmanageme
1= = -
[pata Tabie [Observer al [Wl { A

Figure 2.3.: The Execution Manager during a simulation [from Motika[I]]

pages accessible through Window->Preferences. The programmer only has to take
care of the contents of the actual page and not worry about additional buttons or
integrating it into the PreferenceDialog. In the Figure the tree view can be seen
on the left side. The area on the right side is created by the programmer. However

the buttons above and below the actual area marked “Editor” are also provided by
Eclipse itself.

Preference Store

The Eclipse preference store is a mechanism for saving the contents of a given pref-
erence page. The preference store basically consists of a set of text files. Each text
file contains the saved information in the form of several key, value pairs. For an
example of the use of the preference store see Listing [6.3

2.2. The Execution Manager

The Execution Manager shown in Figure provides an implementation

of a framework to plug-in DataComponents (see Section [2.2.1)) for various tasks.
Examples for such components are:

e Simulation Engines

2. Used Technologies

Model Visualizers

e Environment Visualizers

Validators

e User Input Facilities
e Trace Recording Facilities

These DataComponents can be executed using a Graphical User Interface .
The execution of components involves asking them to perform a step in a simulation.
During each step of the simulation the components will be called in a specific order.
This scheduling order can also be defined by this as well as other settings like a
step/tick duration and properties of DataComponents. For information about
see the wikil

2.2.1. DataComponents

A DataComponent is an entity that has a specific task during a the course of an exe-
cution. The DataComponents are scheduled in a specific order and can either observe
information, produce information, or both. Every DataComponent contains a list
of KiemProperties that are used to allow some configuration of the components
instance after it has been loaded.

2.2.2. KiemProperty

The basic KiemProperty object holds a key, value pair of type String. It is
used to store information inside the DataComponents. There are also advanced
KiemProperties which provide methods to store integers, booleans or file names.

2.2.3. Execution

The central part of the Execution Manager is the schedule. It contains a list of
DataComponents in a specific order. The schedule is usually saved into an execution
file and is used to start an execution. The execution consists of three steps:

1. Initialization: During initialization the DataComponents get the chance to
perform any operation that is necessary before the execution can start. These
operations may include loading or parsing of necessary files or allocation of
complex data structures.

2. Stepping: In the main phase of the execution the DataComponents will be
asked to perform a number of steps. The order in which the components
will be asked is the order of the scheduling. Each step will be performed by

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIEM Re-
trieved 2010-03-08

10

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIEM

2.2. The Execution Manager

é ABRO)
input A, B, R;
output O;
RO
R
m
é ABO R
RO
@ WaitAB B

>
RV
~
@)

- /

Figure 2.4.: An example for a simple SyncChart diagram

all components before the execution proceeds to the next step. For example
during a step the first component may compute a list of signals. The second
component performs a tick in a simulation with the given input signals. The
third component finally analyses the output and writes it into a file.

3. Wrap-up: After the user stops the execution all components will be given the
chance to perform wrap-up actions. These actions could for example include
closing of streams or disposing of allocated resources.

2.2.4. Model Files

A model file is not a concept of the Execution Manager as such but rather a general
concept. In the context of the Execution Manager model files are used as input for
an execution. Most DataComponents perform actions that are based on a model file.

A model file can be any file that contains the structure and behavior of a semantic
entity. This can be something as simple as a text file containing a list or tree of
elements in a certain order. Most model files that are used in the project
are diagrams that consist of nodes and links. These SyncCharts are build in a tree
structure with nodes being able to contain other nodes. An example for a simple
SyncChart diagram is shown in Figure 2.4 The SyncCharts used in consist
of two files. The actual model file contains the semantic behavior. The diagram
file is responsible for saving the layout information, i.e. the position of the different

11

2. Used Technologies

elements on a canvas.

2.3. Related Work

There are of course a huge amount of other applications and projects that deal with
configuration management. In order to get some idea of similar projects an example

from the project will be used.

2.3.1. Configurations

One of the tasks that will be explained in Section is to add new configuration
information to existing execution files. This task can be compared to the
Infrastructure for Meta Layout E] project by Miro Spénemann.

is used to automatically layout existing diagrams. Since diagrams basically
consist of nodes and connections, generic algorithms can be used to layout almost
any type of diagram. An example for the application of the automatic layouter can
be seen in Figure [2.5] The top part of the figure shows a diagram that was created
manually without the use of the layouter. After the application of the layouter
provided by the diagram is in a much more compact form as shown in the
lower part of the figure.

However the user still has some control over the details of the automatic layout
process. The user can configure details like the distance between different elements,
the direction of the layout or the layouter that should be used.

This meta-information has to be stored somewhere. The approach used in
was to place the information into the diagram file. Using this approach means that
the information can be easily reset by deleting the diagram file.

Shttp://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML Re-
trieved 2010-03-08

12

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML

2.3. Related Work

4 SyncChart \
|
|

[Initial A :
|
|

4 S2 N |

|

0 | |

= |

Coo) | |

1| e s T T T ———n — 1 |

S0] ' :

s3 SO Initial | |
| s4

| |

__ ____________ 5 [

) . y I

\ |

< 2 F 14 |

51 ~ o L Initial) :

|

_______________________________________ |

_ J |

. J

4 SyncChart)
RC
[Initial)

1
PO =0
C)
2

1_)®

Initial

Figure 2.5.: Automatically layouting a diagram

13

2. Used Technologies

14

3. Problem Statement

The objective of this project is to improve the customizability of the Execution
Manager. The basic approach for these improvements was outlined in the diploma-
thesis by Christian Motika[I]:

currently does not have a preference page to save additional set-
tings like DataComponent timeouts. Also execution schedulings might
be similar for a common diagram type.

It may improve the usability further to allow the user to customize exe-
cution schedulings for specific diagram types. An interface for these kind
of settings could be realized as an Eclipse preference page.

This task will be explained in more detail in this chapter. It will start by intro-
ducing solutions to the problem of how to save the new configuration properties into
the existing execution files. In addition the chapter will explain ways to enable the
user to set up a series of default configurations. The last section of this chapter will
explore possibilities of how to make it easier to load previously saved schedules.

3.1. Configurations

Currently every property in the Execution Manager has a hard coded default value.
For example there is a text box for setting the aimed step duration for the currently
loaded execution file but that value is lost once a new execution file is loaded. The
only properties that are stored are those contained in the KiemProperties located
in the execution files.

To solve this problem an extension to the Execution Manager should attempt to
provide the following:

1. Find a way that execution files can store values like the aimed step duration
and the timeout. This mechanism should be implemented in a way that ensures
that old files can be upgraded and new files are still valid in instances of the
Execution Manager that don’t use the configuration plug-in.

2. Find a way to load the configurations into the different parts of the Execution
Manager as soon as an execution file is loaded from the file system.

3. Ensure that the user can edit all properties and maybe even create his own
custom properties. This should be implemented in a way that doesn’t clutter
up the current user interface too much.

15

3. Problem Statement

3.1.1. Default Configuration

The different properties stored in each execution file might sometimes not suit the
users current needs. He might also want to use a default value for some properties
without having to manually set them in each new configuration. The solution could
be implemented using the preference mechanism provided by Eclipse.

1. There should be a way to set the default properties for all Execution Manager
properties and possibly for user defined properties as well.

2. It should be possible for the user to set up which of these properties should
override the value stored in the execution file and which should only be used
if the execution file doesn’t contain one.

3.2. Easier Schedule Loading

The last objective of this part of the thesis is to make it easier to load execution
files. Currently all execution files are stored in the Workspace at a place of the user’s
choice. In a very large Workspace it can be very hard to find the execution file that
is needed for the current simulation. The list of recently used documents provided by
Eclipse is of little use since all opened documents are placed there, not just execution
files. This problem leads to the following tasks:

1. Finding a way to track recently used execution files and make it easier for the
user to load them without the need to locate them inside his Workspace.

2. In addition to tracking recently used execution files the user might want to
have a way to get a list of execution files that work for the currently active
editor. This list should show the most likely candidates at the top to allow less
experienced users to select an execution file that will most likely work.

16

4. Concepts

The solution to the problems outlined in Chapter [3| can be achieved with the help of
the Eclipse plug-in technology described in Chapter

This chapter explains the solutions in the same structure as Chapter That
means that it will start by introducing solutions to the problem of how save the new
configuration properties into the existing execution files. In addition the chapter
will explain ways to enable the user to set up a series of default configurations. The
last section of this chapter will explore possibilities of how to make it easier to load
previously saved schedules.

4.1. Configurations

The first approach to save additional configuration information in the execution files
would be to actually modify the format of those files by appending the configuration
information. This would most likely be the easiest approach but would destroy
backward compatibility of those files. This means that an instance of the Execution
Manager without the plug-in could not open the modified files.

The approach taken in this thesis is based on the list of DataComponents (see
Section 2.2.1)). Each execution file carries a list of its own DataComponents and
their properties to ensure that the components are properly initialized the next time
the execution file is loaded. That list can be loaded even if there are DataCompo-
nents contained in it that are not present in the current runtime configuration. The
Execution Manager will show a warning indicating that it doesn’t know the given
component but proceed to load the rest of the execution.

These DataComponents basically carry a list of the KiemProperties described
in Section [2.2.2] The properties can carry a list of key, value pairs which means they
are suited well for storing simple information like the value of a text field.

To solve the problem a new type of DataComponent was constructed and regis-
tered through the extension point in the Execution Manager. This ensures that the
component can be added to any execution file. The Execution Manager makes sure
that all properties contained in the component will be saved with the execution file
and loaded the next time the file is opened. After that the configuration plug-in
has to find the component inside the DataComponent list, get the properties saved
inside it and set them inside the Execution Manager.

This approach ensures that the execution files modified by the plug-in
are backward compatible. An instance of the Execution Manager that doesn’t have
the plug-in will show a warning but still be able to load the rest of the schedule.

17

4. Concepts

e hiterenes

type filter text Layout = -
P General
b Hel Preferences for the KIELER Infrastructure for Meta Layout.
el I
p" g Priorities of Layouters
SR e e Configure which diagram types are supported by each
b Java layouter. The Layouter with highest priority for a diagram
< KIELER type is highlighted with a blue circle. No priority value
b Dataflow Diagram means the diagram type is not supported by that layouter.
b Execution Manager | Layouter General SM | DFD | CD UCD| UB
KLoDD Hierarchical @ 10
Data Flow Box Layout @10
Graphviz Draw2D Layout 1 1
Zest Spring Layout 5
b Structure based edi Grid Layout 9
b Synccharts Diagrar Radial Layout 4
b Run/Debug Dot ®10 @10
b Team Neato 7 @ 10
b Xtext Languages FDP 6 6
Twopi 6
Circo 6
I 5 Restore Defaults Apply
@j Cancel | OK

Figure 4.1.: Layout Preference Page by Miro Spénemann

4.1.1. Default Configuration

In order to provide a place to manage the default configurations the Eclipse preference
page mechanism (see Section will be used.

The root page for the Execution Manager contains the basic settings for
itself. This includes default value for the aimed step duration and timeout as well as
ways to customize the different view elements of

The next page is used for managing the different schedules and their editors.
For that the LayoutPreferencePage by Miro Spénemann (see Figure was
slightly adapted. The original preference page displays a table where different lay-
outers can receive priorities for different diagram types. This is similar to the problem
that needs to be solved in this thesis. The diagram types can be directly mapped
to the list of editors and the layouters are replaced by the list of saved schedules.
That way the modified preference page can be used to assign priorities to schedules
for different editors. The priorities can then be used to sort the schedules matching
the currently opened editor.

The last page is used to allow the user to set up his own properties and give them
default values.

18

4.2. Easier Schedule Loading

User Execution Manager KIEMConfig

Open execution
file through

1
I
I
I
I
Workspace view 1

Load schedule from
execution file

Notify listeners :
Receive notify

|
I
|
1' Track execution file
I
1
I
1

Figure 4.2.: Application of the listener pattern

The values entered in those pages are stored inside the Eclipse preference store

(see Section [2.1.2)).

4.2. Easier Schedule Loading

To allow the user to easily load previously saved files there are several options avail-
able.

The first option would be to use one of the existing menu or create a popup menu
inside the Execution Manager. This option was rejected because it would mean
additional mouse clicks for the user. Furthermore the menus should only contain
items that are globally valid and not just for the Execution Manager.

The approach chosen in this thesis is the use of ComboBoxes on the tool bar of
the Execution Manager. This has the advantage of providing a one-click loading
mechanism. Furthermore the ComboBoxes can be used to display the name of the
currently loaded execution file. One of these ComboBoxes displays the list of recently
used schedules. The other one shows the list of schedules that work for the currently
active editor.

As soon as the user opens a new execution file through the normal Workspace view
the plug-in will be notified of that event by the Execution Manager (see
Figure . A new object will then be created which represents the execution file
and contains its path. This schedule object will also be added to the list of recently
used schedules that is maintained through the use of the Eclipse preference store.

When the user selects one of the previously saved schedules in one of the Com-
boBoxes the saved path will be retrieved and relayed to the Execution Manager to
load it.

19

4. Concepts

20

5. Code Changes in the Execution
Manager

Although the project attempts to realize most of the objectives without changing
the Execution Manager itself, minimal adaptations were necessary. This mostly
involves adding new methods to the in order to gain access to previously hidden
properties.

Also some changes had to be performed where properties were loaded from hard-
coded default values. These were refined and will now only be used if the
plug-in is not registered to supply previously saved properties.

However all changes that were made to the plug-in were merely additions
and won’t break any plug-ins relying on the old implementation.

5.1. Schema Files and Interfaces

In order to provide additional functionality for other plug-ins the extension point
mechanism described in Section R.1.1] was chosen. The reason for this choice is to
retain the old functionality of the plug-in while on the other hand giving options to
ask extending plug-ins for their contributions.

The extension points are described in more details in the next sections. They
consist of a schema file for defining the extension point and an interface that contains
the methods that extending components have to supply.

5.1.1. Toolbar Contribution Provider

The purpose of the tool bar contribution provider is to allow other plug-ins to put
items onto the tool bar of the Execution Manager. There are two reasons for using
the extension point mechanism rather than making the tool bar available and have
other plug-ins put their contributions directly on it:

1. At the moment the tool bar and all contributions are created dynamically.
Switching the entire native tool bar of the Execution Manager to adding the
actions to the tool bar through a predefined Eclipse extension point would
require major code changes and have major drawbacks. For example that the
tool bar could not be dynamically refreshed.

2. A programmatic approach gives control over the contributions to the Execution
Manager. This means that the order of the native Execution Manager buttons
is always the same and in the same place. It also has the added benefit that

21

0 N Dot W N

e e T e e
0 N O Uk W= O ©

5. Code Changes in the Execution Manager

Listing 5.1: The interface for ToolbarContributionProviders

public interface IKiemToolbarContributor {

/ %%
* @param info
* may hold some information.
* @return the list of controls that should be contributed.
*
/

ControlContribution[] provideToolbarContributions (Object info);

Jesss
* @param info
may hold some information.
* @return the list of actions that should be contributed.
*/
Action[] provideToolbarActions (Object info);

the Execution Manager can choose to ignore contributions if the tool bar gets
too crowded.

The schema file for components that want to add contributions to the tool bar is
quite simple. It only requires them to implement the interface shown in Listing
The implementing class provides an array with all ControlContributions they
want to add to the tool bar. A ControlContribution for a tool bar can be almost
any widget like for example Labels, Buttons or ComboBoxes. Instead or in addition
it can also provide an array of Actions. Actions are of a more simple nature
than ControlContributions. An Action can only be some kind of Button
which either has an icon or a text label. However unlike ControlContributions,
Actions can also be added to menus.

The plug-in will add the components from left to right in the order that the
contributors are stored in the extension registry. [KIEM[s own controls will be added
after the contributed components have been added. The components will be added
from left to right in the order they are stored in the array.

When the Execution Manager starts to build the views tool bar it will perform
the following steps:

1. The contributors will be asked for the list of controls that they want to con-
tribute.

2. That list will be added to the Execution Manager’s tool bar.
3. After that the Execution Manager will add its own controls to the tool bar.

This order causes the tool bar to have the native elements always in the same order.
The contributed elements will be added from left to right in the order that they
occur in the array.

22

5.1. Schema Files and Interfaces

The plug-ins will be asked in the order they appear inside the internal list of plug-
ins maintained by Eclipse. However that list may vary during each new start of the
application due to changes in the plug-ins. This means that there is no guarantee
that the plug-ins will be asked for their contributions in the same order on every new
launch of the application.

The only solution to this problems would be to store the list of plug-ins that have
contributed to the tool bar inside the Eclipse Preference Store. On the next start
of the application the Execution Manager can then ensure that the plug-ins will be
asked in the same order as before. However this would involve maintaining a list of
all plug-ins that have ever contributed any items to the tool bar. Since this list can
grow quite large over time the option was rejected.

Figure p.1] shows the Execution Manager tool bar with the two ComboBoxes be-
longing to contributed through the extension point. Figure[5.2]shows the
same tool bar without the contributions.

£ Properties | [2: Problems | & Console | 52 Layout | § Execution Manager &2 . £ VM Control | €] Error Log =0
example[de.cau.cs.kieler.sim.kiem] |+ | Matching schedules ~ | 4p 4L [300ms B~ B~ 00
Component Name Type Master

Figure 5.1.: The Execution Managers Tool bar with two contributed ComboBoxes

= Properties | [£. Problems | E Console |52 Layout % Execution Manager 2 .] VM Contrel €] Error Log =
i 4k |500ms B0~ B~ 00

Component Name Type Master

Figure 5.2.: The Execution Managers Tool bar without contributions

5.1.2. Configuration Provider

The purpose of the configuration provider is to allow internal attributes of the Exe-
cution Manager to be stored in another plug-in.

This is achieved by another extension point to allow any plug-in to listen to changes
in the Execution Manager’s attributes. It also means that there may be multiple
plug-ins that provide values for properties and not all plug-ins may have the value
for a property needed by the Execution Manager. Through the plug-in mechanism
can ask all providers for values and choose the one he would like to use.

The two methods from the interface shown in Listing work in the following
way:

e String changeProperty(String key) throws KiemPropertyException:
This method will be called by the Execution Manager whenever a property has
to be loaded where other plug-ins are encouraged to provide their value. When
a plug-in is asked for a value it can respond in one of two ways:

23

© 0 N O U A W N

I I T N N o B S S
TR WM R O © 0 NO O W = O

5. Code Changes in the Execution Manager

Listing 5.2: The interface of the Configuration Provider

public interface IKiemConfigurationProvider {

/%%
* Ask the component to give a new value for the property specified by the
* key.

* @param key

* the key of the property to change.
* @return the new value of the property.

* @throws KiemPropertyException

* if the propertyId was not found.
x/
String changeProperty (String key) throws KiemPropertyException;
/ *
x Notify the listener that the user changed the property specified by the
* key.
* @param key

* the key of the property.
* (@param value
* the new value of the property.
*/
void propertyChanged(String key, String value);

1. It can either provide a value for the property. Any value is acceptable
here, even null. If one plug-in provides any value at all, the other plug-
ins will not be asked. The reason behind this arrangement is that the
Execution Manager can’t decide which value has more validity if more
than one plug-in gives a valid answer.

2. If it can not provide a value the declared Exception should be thrown
in which case the Execution Manager will move to the next plug-in. It
would also be possible to encode a non-existing value as null. However this
arrangement was not chosen because null might be the intended value.

¢ void propertyChanged(String key, String value):
Notifies the listener that a property was changed somewhere in the Execution
Manager. This will be called for example when the user changes the aimed
step duration through the input field on the Execution Managers tool bar.

An example for a simple implementation that just stores the aimed step duration
can be seen in Listing
5.1.3. Event Listener

The main function of the EventManager is to inform DataComponents of events
happening in the Execution Manager during execution. This behavior has been mod-
ified to include events that occur while the execution isn’t running. This modification

24

_
H O © ® N O Ut A W N

T T T S Sy
= O © N DU A W N

5.1. Schema Files and Interfaces

Listing 5.3: An implementation example of the Configuration Provider

public class ExampleConfigurationProvider implements IKiemConfigurationProvider {
private String stepDuration = null;

public String changeProperty (final String key) throws KiemPropertyException {
String result = null;
if (key.equals (KiemPlugin.AIMED_STEP_DURATION_ID)) {
result = stepDuration;
}
if (result == null) {
throw new KiemPropertyException ("Property " + key + " not found.");
}
return result;

}

public void propertyChanged (final String key, final String value) {
if (key.equals (KiemPlugin.AIMED_STEP_DURATION_ID)) {
stepDuration = value;

}

has lead to the creation of another extension point in order to allow other plug-ins
to be notified on any of these events as well. The classes implementing the interface
(see Listing required by this extension point will be notified on any event that
happens inside the Execution Manager.

e int provideEventOfInterest(): This method is directly derived from the
method with the same name in the AbstractDataComponent class of the
[KIEM]plug-in. It is called by the EventManager to determine which events the
implementing class is interested in. This improves efficiency since components
are not flooded with events they are not interested in anyway.

¢ void notifyEvent(KiemEvent event): This method is called by the

EventManager when something happens inside the Execution Manager that
the implementing classes might be interested in. An implementation example
is shown in Listing [5.5] The example checks which type of event was received.
If the type of event was either a load or a save the method delegates the
information contained in the event to the appropriate methods. In these two
cases the information contains the path to the execution file that was loaded or
saved. If the event indicates that the Execution Manager has finished building
his view another method will be called that performs some actions that need
a complete view.

25

© 0 N O U A W N

W ON NN NN NN RN NN B = e e e e e e e
O © 00 N O U R WN = O © N0 W NN = O

5. Code Changes in the Execution Manager

Listing 5.4: The interface of the Event Listener

public interface IKiemEventListener {

* This is the basic notify method that is called by KIEM whenever an event
* occurs for which this EventlListener is registered (see
* {@link #provideEventOfInterest()}).

* @param event

* the KiemEvent with additional attached information, depending
* on the specific event
*/
void notifyEvent (final KiemEvent event);
/ * %
* Return a KiemEvent type (integer value) that represents a number of

x events this component wants to listen to.

* A KiemEvent can be a combination of several events. The simplest way to
* register for two events that e.g., indicate a step-command and the
* removal of the component is to have the following code:

* public KiemEvent provideEventOfInterest () {
x int[] events = {CMD_STEP, DELETED}
* return new KiemEvent (events);

* }

* @return the KiemEvent type indicating the events of interest
x/
KiemEvent provideEventOfInterest ();

5.2. KIEMPlugin.java

KIEMPlugin.java serves as the root class of the Execution Manager and contains
almost the entire [APIL Therefore all additions to [KIEME [APT were made here.

5.2.1. Listener

The following methods were added to communicate with the plug-ins registered
through the ConfigurationProvider extension point (see Section |5.1.2)).

¢ notifyConfigurationProviders(String propertyld, String value):
This method can be called by any class inside the Execution Manager itself.
It should be called when the user changes a property through any of the ele-
ments on the The method will then inform all listeners that the property
identified by the given identifier was changed to the new value.

e String getPropertyValueFromProviders(String propertyld):
This method allows the Execution Manager to retrieve a previously saved value.
[KIEM] will ask all plug-ins registered on the extension point if they can provide a
value for the given identifier. Plug-ins that can’t provide the value will indicate

26

_
H O © ® N O Ut A W N

© 00 N O U A W N

O e N e e
S © XN UA W N = O

5.2. KIEMPlugin.java

Listing 5.5: Code example for the Event Listener

public void notifyEvent (final KiemEvent event) {

if (event.isEvent (KiemEvent.LOAD)) {
handleLoad (event.getInfo());

}

if (event.isEvent (KiemEvent.SAVE)) {
handleSave (event.getInfo());

}

if (event.isEvent (KiemEvent.VIEW_DONE)) {
openLastUsedSchedule () ;

Listing 5.6: Example of modified Getter and Setter

public int getAimedStepDuration() {

int result = this.aimedStepDuration;

Integer value = getlIntegerValueFromProviders
(AIMED_STEP_DURATION_ID) ;

if (value != null) {
result = value;

}

return result;

}

public void setAimedStepDuration (final int stepParam) {

this.aimedStepDuration = stepParam;
// 1f executing, also update current delay
if (execution != null) {

this.execution.setAimedStepDuration (stepParam) ;
}
this.getKIEMViewInstance () .updateViewAsync () ;
notifyConfigurationProviders
(AIMED_STEP_DURATION_ID, stepParam + "");

this by throwing an Exception. [KIEM|will then take the first value he receives
without getting an Exception and assign it to the internal property.

e Integer getIntegerValueFromProviders(final String propertylId):
This method is a convenience method for the one described above. It will try
to parse an integer from the retrieved String. If successful the value will be
returned otherwise the method will return null.

5.2.2. Getters and Setters

An example for the use of the methods described in the last section can be found
in the getter and setter methods (see Figure for the different properties in the
Execution Manager. These were changed in order to use the new methods but are
still able to fall back on hard-coded default values if no configuration plug-in is
registered.

27

-

© 00 N O Os W N

O R
= O © N U A WN RO

5. Code Changes in the Execution Manager

Listing 5.7: The head of the modified openFile () method

public void openFile (final IPath executionFile, final boolean readOnly) throws
IOException {
String fileString = executionFile.toOSString();
final InputStream inputStream;

if (fileString.startsWith ("bundleentry:/")) {
// code for loading execution files added through an extension point
String urlPath = fileString.replaceFirst
("bundleentry:/", "bundleentry://");
URL pathUrl = new URL (urlPath);
inputStream = pathUrl.openStream() ;
} else {
// normal load
URI fileURI =
URI.createPlatformResourceURI (fileString, true);
// resolve relative workspace paths
URIConverter uriConverter = new ExtensibleURIConverterImpl () ;
// throws IOException if the file is missing
inputStream = uriConverter.createInputStream(fileURI) ;

[oool

5.2.3. Open File

The openFile () method inside the Execution Manager is responsible for loading
a schedule from an execution file. The old implementation of the method accessed
the information about the file that needs to be loaded in way that was unsuitable for
Therefore the method was split into two parts. This was done to allow
other plug-ins to pass an IPath object directly to the method and perform a load of
that file without having to go through the User Interface . This method was also
slightly restructured in order to detect missing execution files before the load enters
the[ur]Thread. This was necessary to make it possible for the callers of the method
to catch the resulting Exception. The method also had to be modified in order to
be able to take files that are not inside the Workspace but were added through an
extension point. The changed part of the openFile method is shown in Listing
The last change to that method concerns the event listener. When the user opens a
file through the Eclipse Workspace without using the plug-in still has to
be informed. This happens through the use of the EventManager that notifies all
listeners upon the successful completion of the loading operation.

5.3. KIEMView

The changes described in Section were mostly concerned with the configuration
management and loading of new execution files. This section will mostly deal with
the changes that were necessary to enable the adding of new items to the tool bar.

The tool bar of the Execution Manager is created in a programmatic way instead

28

5.3. KIEMView

of using the corresponding FEclipse extension point. This means that the only way
to place additional controls onto the tool bar is to modify the code in order to make
use of the Toolbar Contribution Provider extension point described in Section

For the full code of the modified method see Listing

29

© 00 N O U A W N

R I I R R R R S e
IO O AR W N R O © KN DA W RO

28
29
30

31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

5. Code Changes in the Execution Manager

Listing 5.8: Example for the use of extension point code in the modified creation of
the Execution Manager’s tool bar

/ * %
* Builds the local tool bar for the KiemView part.
x/
private void buildLocalToolBar () {
IActionBars bars = getViewSite () .getActionBars();

IToolBarManager manager = bars.getToolBarManager () ;
// first remove all entries

manager.removeAll () ;

// call soh’s extension point
addExternalContributions (manager) ;

manager.add (getActionUp());

manager.add (getActionDown ()) ;
manager.add (new Separator());

manager.add (getAimedStepDurationTextField());
[...]

/ * %
* Add components contributed by other plugins through the
* ToolBarContributor extension point.
*

* @param manager the manager where to add the components

*/
private void addExternalContributions (final IToolBarManager manager) {
IConfigurationElement [] contributors = Platform.getExtensionRegistry ()
.getConfigurationElementsFor ("de.cau.cs.kieler.sim.kiem.
toolbarContributor") ;
for (IConfigurationElement element : contributors) ({
try {
IKiemToolbarContributor contributor = (IKiemToolbarContributor) (
element
.createExecutableExtension ("class"));
ControlContribution[] contributions = contributor.
provideToolbarContributions (null) ;
if (contributions != null) {
for (ControlContribution contribution : contributions) {
if (contribution != null) {
manager.add (contribution);
}
}
}
Action[] actions = contributor.provideToolbarActions (null);
if (actions != null) {
for (Action contribution : actions) {
if (contribution != null) {

manager.add (contribution);

}
} catch (CoreException e0) {
el0.printStackTrace () ;

30

6. The KIEMConfig| plug-in

This chapter describes the contents and functionality of the newly created plug-in
to solve the problems described in Chapter] A new plug-in was created in order
to ensure modularity within the [KIELER] framework. Putting the code into the [KIEM]
plug-in itself would have meant that there’s no way to separate the two projects which
is something that should be avoided in order to allow projects to be exchanged.

The sections in this chapter deal with the different parts of the [KIEMConfig] plug-in.
The whole plug-in is structured according to the pattern shown in Figure [6.1}
The first section will describe the data storing classes which constitute the model.
The second section will describe the different manager classes which are essentially
the controller of the entire plug-in. This section will also look at the that the
plug-in provides to other plug-ins. The last section will describe the
classes that render the preference pages and other view elements.

6.1. Data Classes and Utilities - the Model

This section will describe the different classes that are responsible for storing all data
that the plug-in needs at runtime.

6.1.1. ConfigDataComponent

This extension to the AbstractDataComponent of [KIEM]is responsible for solving
the problem described in Section [3.1] This means that it provides the facilities for
storing the configuration of the Execution Manager inside an execution file.

The Controller
- Manager classes

Figure 6.1.: The components of in the pattern.

31

6. The plug-in
o

5 Execution Manager 3

demol[i | Matching schedules ~ | &% <; |500ms | Bl~ b~ 00
Component Name / Key Value Type Master
[# Trace Compare Observer/Producer
~ @& Current Configuration ' ‘= Initializer
[AIMED_STEP_DURATION 500
[TIMEOUT | 5000

Figure 6.2.: Schedule showing the ConfigDataComponent(“Current Configuration”)

The component is a DataComponent like all others used in the Execution Man-
ager. It is registered through the extension point that allows new DataComponents
to appear in the list of available components. However unlike the usual DataCom-
ponent that is responsible for simulating a model during an execution run its main
function is to store the configuration of Since the user should not be con-
fused by a DataComponent in the list that doesn’t do anything during simulation
the ConfigDataComponent is only visible in the advanced user mode described
in Section [6.3.1] Figure[6.2] shows the ConfigDataComponent in the list of Data-
Components when it’s visible.

Like all other DataComponents the ConfigDataComponent containg an array
of KIEMProperties. These properties contain a String key which should be non-
null and unique as well as a value which can be of various types. However for the
purpose of storing configuration elements only the String value will be used.

The new DataComponent also provides additional methods in order to make ac-
cessing and manipulating the array more convenient:

¢ KiemProperty findProperty(String key): This method iterates through
the array and attempts to find the KIEMProperty that contains the provided
key. Since the keys are assumed to be unique the first match is returned by
this method. If there is no property with the given key the method will throw
an Exception.

¢ void removeProperty(String key): This method attempts to remove the
property identified by the given key from the array. This is accomplished by
converting the array to a list, locating and removing the specified property and
then converting the list back to an array. This procedure may not be as efficient
as manually constructing the new array but it still performs the operation in
linear time. Furthermore it makes the method easier to understand than the
alternative.

¢ KiemProperty updateProperty(String key, String value): This method
updates the property identified by the key with a new value. It first checks if
the property already exists. If a property was found the value is updated. If

32

6.1. Data Classes and Utilities - the Model

a property with the specified key doesn’t exist a new one is created and the
provided value stored inside.

The ConfigbhataComponent is not only used to store the properties of the cur-
rently active configuration that each execution file carries. It is also used to store
the default configuration that is saved in the Eclipse preference store. This is done
because both instances are closely linked and have the same requirements (see Sec-
tion .

The default behavior of the Configuration Manager is to add a new
ConfigDataComponent to each execution file that it encounters and that doesn’t
already have one. However as this feature can be turned off the user also has can
upgrade old files or downgrade new ones by manually adding and removing the
ConfigDataComponent.

This newly created DataComponent implements the behavior described in Sec-
tion[£.1] This means that any new execution file can be upgraded by adding the new
component to it. Upgraded execution files can still be loaded in an instance of the
Execution Manager that doesn’t have the plug-in. will only show
a warning that an unknown DataComponent is present but will load the rest of the
file anyway.

6.1.2. EditorDefinition

The EditorDefinition class is responsible for storing information about the ed-
itors that are known to the [KIEMConfig. Each instance of this class stores the infor-
mation about a single editor. This is necessary in order to successfully operate a list
of execution files that work for the currently active editor.

e String editorld: The identifier for the given editor. This attribute is a unique
non-null String by which any editor can be identified. For example the
standard Java editor has the ID org.eclipse.jdt.ui. Compilation UnitEditor.

e String name: The name of the editor. This is the human readable name
given to the editor by the plug-in that defines the editor. Storing this attribute
may seem redundant since the names of the editors can be retrieved through
an Eclipse mechanism if the editor ID is known. However there is no guarantee
that a previously saved editor ID exists in the currently active application in
which case the name of the editor can’t be retrieved.

e boolean isLocked: This attribute is responsible for showing that the editor
can not be removed. The reason that an editor might become read only will

be explained in Section

An example for an EditorDefinition is shown in Listing The example
shows the EditorDefinition in its serialized form. This particular definition
contains the editor ID and name for the SyncCharts editor.

33

0 N Dot W N

6. The plug-in

Listing 6.1: Example for a serialized EditorDefinition

<EDITOR>

<EDITOR_NAME>
Synccharts Diagram Editing

</EDITOR_NAME>

<EDITOR_ID>
de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID
</EDITOR_ID>

</EDITOR>

6.1.3. ScheduleData

The ScheduleData class is responsible for tracking the different execution files
that are known to the [KIEMConfigd A ScheduleData object is the representation
of a single execution file. It contains the following attributes:

o The most important attribute is the path at which the corresponding execu-
tion file is located. The path is used to trigger the loading of the file inside
the Execution Manager. It is also used to determine whether a newly loaded
execution file is already known. The path also doubles as the unique identifier
for the schedule since there can’t be two files at the same physical location.

e The ScheduleData object also stores a list of priorities for all known editors.
This is necessary in order to determine whether or not a given schedule can
be used with the currently opened editor and which position it should have in
an ordered list. To make accessing and manipulating this list easier it simply
uses an instance of the ConfigDataComponent. The component already has
methods for accessing the array inside and can be easily stored and loaded.

e Like the EditorDescription a ScheduleData also contains a boolean
isLocked. ScheduleData object with that attribute set to true can’t be
modified or removed (see Section [6.2.3)).

The ScheduleData objects are used to maintain the list of recently used sched-
ules and of those that match the currently opened editor.

An example for a ScheduleData object is shown in Listing The example
shows the ScheduleData object in its serialized form. The listing shows the lo-
cation of the managed execution file as well as two editors assigned to the schedule
contained in the file. In this particular example the editors are the SyncCharts editor
and the Esterel editor. The ScheduleData also contains the priorities to each of
the editors. In this example the priorities indicate that the schedule is more likely
to work for the SyncCharts editor than for the Esterel editor.

6.1.4. Tools

The Tools class holds a host of useful methods and attributes that are used in
various parts of the plug-in.

34

[B S A

e
W v = O ©

6.1. Data Classes and Utilities - the Model

Listing 6.2: Example for a serialized ScheduleData object

<SCHEDULE_DATA>
<LOCATION>/test/demo.execution</LOCATION>
<CONFIG_DATA_COMP>
<KIEM_PROPERTY>
<Key>de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID</Key>
<Value>10</Value>
</KIEM_PROPERTY>
<KIEM_PROPERTY>
<Key>de.cau.cs.kieler.esterel.Esterel</Key>
<Value>4</Value>
</KIEM_PROPERTY>
</CONFIG_DATA_COMP>
</SCHEDULE_DATA>

Attributes

First of all it contains messages and tool tips that are used in more than one class.
This ensures that the appearance of the different messages is unified across the entire
plug-in. It also makes it easy to change these messages or combine different partial
messages to new ones.

The class also holds the different identifiers for the properties that are used in the
plug-in. This is done to avoid bugs due to mistyping an identifier which is likely to
happen if it is stored in two different places.

Methods for Parsing and Serialization

All of the manager classes in the need to save their properties into the
Eclipse preference store. In order to have the information stored in a structured way
an [XML] like format was chosen. As this requires the keys and values to be formatted
in a certain way the Tools class provides methods to format the Strings in the
required way.

e String putValue(String key, String value): Converts the key, value pair
into a formatted String for saving into the Eclipse preference store. The
resulting String has the following format: <[key]>[value]</[key]>.

e String putProperty(KiemProperty property): Convenience method for
transforming a KiemProperty object into a formatted St ring. This method
exists because most of the items serialized in this way have that type. The
resulting String has the following format:
<KIEM_PROPERTY>
<Key> [property.key]</Key><Value> |[property.value]</Value>
</KIEM_PROPERTY>.

The methods described above provide all the necessary facilities for the
to save its preferences into the Eclipse preference store. In order to retrieve these

35

6. The plug-in

properties the Tools class provides another set of methods. These methods take an
input String and try to parse the saved properties.

e String getValue(String key, String input): This method retrieves the
value enclosed by tags with the given key. The retrieved value can either be an
atomic String that can directly be assigned to a property or another series of
values enclosed in their tags. The method will always look for the outermost
tags inside the input String. The method returns null if there are no tags
with the provided key inside the input String.

¢ KiemProperty getKiemProperty(String input): Tries to retrieve the
key, value pair that constitutes a KiemProperty object from an input String.

e String[] getValueList(String key, String input): Since there sometimes
is the need to store an entire list of entities the Tools class provides a method
to convert an entire list back to the individual Strings. The method iterates
over the input String and extracts all elements that are enclosed in tags with
the specified key.

Listing shows a configuration that was saved using the methods described
above.

Methods for Dialogs

The Tools class also contains methods for easily displaying error and warning di-
alogs. These methods take the information, add the own plug-in ID and forward the
information to the error handling facilities inside the Execution Manager itself.

6.1.5. MostRecentCollection

The MostRecentCollection is a new collection type that is used for simulating
the behavior found in ’Open recent’ menu item of almost any text editing application.
To avoid the list growing too long it can be given a maximum capacity. After this
capacity is reached the oldest entry will be deleted when a new one enters the list.
The default implementation of the collection uses an ArrayList to store the data
but it also contains facilities to provide the same functionality to any other list.
Most operations are directly delegating to the operations of the underlying List.
The only exception is the add (item : T) method which works in a different way:

1. It checks if the item is already in the list and if that is the case removes it.
This is necessary to ensure that already added items don’t appear twice in the
list. Since recently used files need to be tracked it would be misleading to have
the same file in the list two times.

2. It adds the item at the highest index to the end of the list and increments the
index of all other items.

36

© 0 N O Ut A W N

I T T Sy
WO o N®UA XN~ O

23
24
25
26
27
28
29
30
31
32
33
34
35

6.2. Manager Class - the Controller

Listing 6.3: Example for a configuration saved into the Eclipse preference store

#Wed Feb 10 16:18:38 CET 2010
eclipse.preferences.version=1
SCHEDULE__CONFIGURATION=
<SCHEDULE_DATA>
<LOCATION>/de.cau.cs.kieler.sim.kiem/example.execution</LOCATION>
<CONFIG_DATA_COMP>
<KIEM_PROPERTY>
<Key>de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID</Key>
<Value>5</Value>
</KIEM_PROPERTY>
</CONFIG_DATA_COMP>
</SCHEDULE_DATA>
<SCHEDULE_DATA>
<LOCATION>/test/noname?2.execution</LOCATION>
<CONFIG_DATA_COMP>
<KIEM_PROPERTY>
<Key>de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID</Key>
<Value>2</Value>
</KIEM_PROPERTY>
</CONFIG_DATA_COMP>
</SCHEDULE_DATA>
DEFAULT_CONFIGURATION=
<KIEM_PROPERTY>
<Key>AIMED_STEP_DURATION</Key><Value>500</Value>
</KIEM_PROPERTY>
<KIEM_PROPERTY>
<Key>TIMEOUT</Key><Value>5000</Value>
</KIEM_PROPERTY>
EDITOR_IDS=
<EDITOR>
<EDITOR_NAME>Synccharts Diagram Editing</EDITOR_NAME>
<EDITOR_ID>
de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID
</EDITOR_ID>
</EDITOR>

3. The element at the head of the list is overwritten by the new item.
4. Optionally the last item is removed if the list has grown beyond the capacity.

The collection also provides an additional method that is used to replace an item in
the list by another one. This routine is necessary when files are renamed and the
name of the ScheduleData inside the list has to be updated.

This collection is used to track the most recently used schedules and display them
in the corresponding ComboBox.

6.2. Manager Class - the Controller

The manager classes are responsible for the control flow inside the plug-in. They
gather information from the view, the Eclipse preference store and the Execution
Manager and create and update a model using the classes described in Section
There are multiple managers each with a different task:

37

6. The plug-in

<<interface>> AbstractManager
IKiemConfigEventListener

listeners : List

eventDispatched(event : KiemConfigEvent) : void

saveAll() ; void

addEventListener(listener : IKiemConfigEventListener) : void
removeEventListener(listener : IKiemConfigEventListener) : void
notifyListeners(event : KiemConfigEvent) : void

load(key : String,defaultValue : String) : String

remove(key : String) : void

save(key : String,value : String) : void

findEditorByName(name : String) : EditorDefinition
removeEditor(editor : EditorDefinition) : void

getDefaultEditor() : EditorDefinition " et P « wnl
setDefaultEditor(defaultEditor : EditorDefinition) : void updateCurrentProperty(key : String,value : String) : void

getEditors() : List

load() : void
save() : void
4 NN Q
EditorManager ConfigurationManager
editors : List defaultConfiguration : ConfigDataComponent
addEditor(newDefinition : EditorDefinition) : EditorDefinition getcurrentConfigl) : ConfighataComponent
findEditorByld(editorld : String) : EditorDefinition getDefaultConfig() : ConfighataComponent

addProperty(prop : KiemProperty) : void
findProperty(propertyKey : String) : String
removeProperty(key : String) : void

updateDefaultProperty(key : String,value : String) : void
initWithDefaults(dataComponent : AbstractDataComponent) : void

ContributionManager ScheduleManager
matchingCombo : ScheduleSelector recentSchedulelds : MostRecentCollection
recentCombo : ScheduleSelector scheduleData : List
getContributions() : ControlContribution[] ; . ; , 3 .
getMatchingCombo() : ScheduleSelector getMatchingSchedules(editoriD : String,editorName : String) : List
getRecentCombo() : ScheduleSelector getRecentSchedules() : List
isinAdvancedMode() : boolean getAllSchedules() : List L .
setinAdvancedMode(isinAdvancedModeParam : boolean) : void historyNotification(event : RefactoringHistoryEvent) : void

importAllFilesinWorkspace() : void

addSchedule(editor : EditorDefinition,location : IPath,priority : int) : ScheduleData
PropertyUsageManager removeSchedule(schedule : ScheduleData) : void

removeSchedule(scheduleld : String) : void

updateSchedule(location : IPath) : void

getlgnoredKeys() : List openSchedule(schedule : ScheduleData) : void

setlgnoredKeys(keysParam : List) : void

ignoredKeys : List

Figure 6.3.: Diagram of the manager classes

The Configuration Manager is responsible for maintaining the configura-
tion saved in each execution file and the default configuration saved in the
preferences store.

The Schedule Manager is responsible for keeping track of the different exe-
cution files and updating the information inside the ScheduleData objects.

The task of the Editor Manager is to keep track of the different known
editors.

The ContributionManager is used to manage the controls that are placed
on the tool bar in the Execution Manager.

The PropertyUsageManager is responsible for managing the keys of those
properties where the default configuration is used rather than the current con-
figuration.

Figure [6.3| shows the overall structure of all manager classes as well as the most

important methods they provide.

38

6.2. Manager Class - the Controller

6.2.1. Abstract Manager

All of the managers share some common features that each of them must provide.
Some of those features are handled almost the same or exactly the same in each
manager. This lead to the creation of an abstract super class for all managers that
takes care of the basic tasks.

The first task is to allow other classes to register as a listener to the manager.
Some of the classes in have to perform updates when a value inside the
model changes. It is the managers responsibility to inform the listeners when such a
change was completed successfully.

The second task is to provide the subclasses with facilities to easily access the
Eclipse Preference Store. Whenever a value is requested by any part of the controller
or another plug-in and a manager didn’t access the preference store yet it has to gain
access to the store and retrieve the information belonging to it. Furthermore when
the user explicitly wants to save the preferences or the Workbench is shutting down
the data contained in the model has to be saved into the Eclipse Preference Store.
For an example of a saved configuration see Listing

6.2.2. Configuration Manager

The Configuration Manager basically handles all the problems described in Sec-
tion This means that the Configuration Manager has two responsibilities:

1. It manages the configuration contained in the currently opened execution file
and all properties contained in it. It is also responsible for deciding whether or
not the preferences stored in that configuration should be used or the default
preferences instead.

2. It manages the default configuration that the user can access and modify
through the preference pages (see Section . For all of the predefined prop-
erties it also has to hold and manage the hard-coded default values.

Currently Loaded Configuration

The main function of the Configuration Manager is to store and retrieve properties.
Figure illustrates the process of loading a property. The first thing the Config-
uration Manager has to do when a request for the value of a property is made is to
locate the ConfigDataComponent that contains the property.

It first takes a look at the list of keys where the default configuration should be
used. If this is the case the task is quite simple and the default configuration is
loaded from the preference store and used.

If the current configuration should be used the task is a little more difficult. The
Configuration Manager then has to look at the list of DataComponents inside the
Execution Manager. The list holds all components for the currently opened execution
file. If the list already contains a ConfigDataComponent that component is used.

39

6. The plug-in

a LoadPropertyValue

(Determine where to retrieve value)

Use value from current configuration

(Look at DataComponentList) ConfigDataComponent found

ConfigDataComponent not found

(Create new ConﬁgDataComponent)

Use value from default configuration

Initialize with defaults

(Add to list in the Execution Manager)

(Look for requested value)

Value not foun
Value found

(Load default conﬁguration)

Value found W not found

(User supplied default vaIue?)

g

(Add value to current conﬁguration) ((Throw Exception))

\

Return value

Figure 6.4.: Diagram illustrating the loading of a property value

40

6.2. Manager Class - the Controller

Otherwise a new ConfigDataComponent is created, initialized with the default
values from the default configuration and then added to the list of the current exe-
cution file. Since this feature can be disabled by the user the Configuration Manager
can encounter execution files that have no ConfigDataComponent or where the
component simply doesn’t contain the requested value. In this case the default con-
figuration has to be used.

If the default configuration couldn’t supply a value the last possibility is that the
caller passed a non-null default value for the given property. In this case the default
value is returned to the caller.

If no value could be retrieved in the way described above there is no way to get
a valid value for the requested key. In this case the Configuration Manager notifies
the caller through an Exception of these circumstances.

However if the value was expected in the current configuration but not found the
Configuration Manager assumes that it should have been in there. To remedy that
situation the Configuration Manager will try to add a new property to the current
configuration with the value that