
Christian-Albrechts-Universität zu Kiel

Bachelor Project

Con�gurations

and Automated Execution
in the KIELER Execution Manager

cand. inform. Sören Hansen

April 7, 2010

Department of Computer Science

Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:

Christian Motika

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Abstract

In this thesis two problems concerning the Kiel Integrated Environment for Layout
Eclipse Rich Client (KIELER) Execution Manager will be solved.
The �rst part of this thesis introduces con�guration management to KIELER Exe-

cution Manager (KIEM) in order to make managing the di�erent execution �les and
their con�gurations easier. This task consists of two parts. The �rst part concerns
the storing of con�gurations with each schedule while the second part concerns the
easy loading of these schedules.
The second part of this thesis presents a solution to the problem of automating

the Execution Manager. This includes �nding ways to allow a great number of
simulations to be executed without any additional user interaction.
All parts of this project are contributions to the KIELER project. Hence they are

open source extensions to the Eclipse modeling projects.

Key words: automated execution, automated simulation, con�gurations, KIELER,
KIEM, preferences

vi

Contents

1. Introduction 1

1.1. KIELER Framework . 1
1.2. Outline of this Document . 2

I. Con�guration Management 3

2. Used Technologies 5

2.1. Eclipse . 5
2.1.1. Plug-ins . 7
2.1.2. Preference Pages . 8

2.2. The KIELER Execution Manager . 9
2.2.1. DataComponents . 10
2.2.2. KiemProperty . 10
2.2.3. Execution . 10
2.2.4. Model Files . 11

2.3. Related Work . 12
2.3.1. Con�gurations . 12

3. Problem Statement 15

3.1. Con�gurations . 15
3.1.1. Default Con�guration . 16

3.2. Easier Schedule Loading . 16

4. Concepts 17

4.1. Con�gurations . 17
4.1.1. Default Con�guration . 18

4.2. Easier Schedule Loading . 19

5. Code Changes in the Execution Manager 21

5.1. Schema Files and Interfaces . 21
5.1.1. Toolbar Contribution Provider 21
5.1.2. Con�guration Provider . 23
5.1.3. Event Listener . 24

5.2. KIEMPlugin.java . 26
5.2.1. Listener . 26
5.2.2. Getters and Setters . 27

vii

Contents

5.2.3. Open File . 28

5.3. KIEMView . 28

6. The KIEMCon�g plug-in 31

6.1. Data Classes and Utilities - the Model 31

6.1.1. Con�gDataComponent . 31

6.1.2. EditorDe�nition . 33

6.1.3. ScheduleData . 34

6.1.4. Tools . 34

6.1.5. MostRecentCollection . 36

6.2. Manager Class - the Controller . 37

6.2.1. Abstract Manager . 39

6.2.2. Con�guration Manager . 39

6.2.3. Schedule Manager . 42

6.2.4. Editor Manager . 47

6.2.5. Contribution Manager . 47

6.2.6. Property Usage Manager . 48

6.3. Preference Pages - the View . 49

6.3.1. Con�guration Page . 49

6.3.2. Scheduling Page . 51

6.3.3. ScheduleSelector . 54

7. Conclusion 55

7.1. Results . 55

7.2. Future Work . 55

7.2.1. Eclipse Run Con�gurations 55

7.2.2. Improve Storage Options . 56

7.3. Summary . 56

II. Automated Execution 57

8. Used Technologies 59

8.1. The Job . 59

8.2. Eclipse Wizards . 59

8.3. Related Work . 60

8.3.1. KEP/KREP Evalbench . 60

9. Problem Statement 65

9.1. Setting up a Run . 65

9.2. Input for the Automation . 65

9.3. Automate the Execution . 66

9.4. Output Execution Results . 66

9.5. Application Examples . 66

viii

Contents

9.5.1. Application in Teaching . 66
9.5.2. Application in Arti�cial Intelligence 67

10.Concepts 69

10.1. Setting up a Run . 69
10.2. Input for the Automation . 70
10.3. Automate the Execution . 71
10.4. Output Execution Results . 72

11.Interaction with the Execution Manager 73

12.The Automated Executions Plug-in 75

12.1. Automation Setup Wizard . 75
12.1.1. FileSelectionPage . 76
12.1.2. PropertySettingPage . 77
12.1.3. Information Processing . 78

12.2. Automation Input . 78
12.2.1. Automated Component . 79
12.2.2. Automated Producer . 80

12.3. The Automated Run . 81
12.3.1. Automation Job . 81
12.3.2. Automation Manager . 83
12.3.3. Cancel Manager . 89
12.3.4. Modi�ed Error Handler . 90

12.4. Automation View . 92
12.4.1. Tool bar . 93
12.4.2. Exporting Results . 94

13.Conclusion 97

13.1. Future Work . 97
13.1.1. Scripting . 97
13.1.2. Con�gurations . 97
13.1.3. Exports . 98

13.2. Summary . 98

Bibliography 99

ix

Contents

x

List of Figures

1.1. MVC in KIELER . 1

2.1. The Eclipse workbench window . 6
2.2. An example for a preference page . 8
2.3. The Execution Manager during a simulation 9
2.4. An example for a simple SyncChart diagram 11
2.5. Automatically layouting a diagram 13

4.1. Layout Preference Page by Miro Spönemann 18
4.2. Application of the listener pattern 19

5.1. The Execution Managers Tool bar with two contributed ComboBoxes 23
5.2. The Execution Managers Tool bar without contributions 23

6.1. The components of KIEMCon�g in the MVC pattern. 31
6.2. Schedule showing the Con�gDataComponent 32
6.3. UML Diagram of the manager classes 38
6.4. Diagram illustrating the loading of a property value 40
6.5. Process that follows a load of an execution �le in KIEM 44
6.6. The main preference page of the Execution Manager 49
6.7. The page for de�ning custom properties 50
6.8. Property Usage Dialog . 51
6.9. The page for managing the schedules and editors 52
6.10. Editor Selection Dialog . 53
6.11. The Schedule Selection ComboBoxes 54

8.1. The SVN commit job . 60
8.2. The Class Creation Wizard . 61
8.3. The KREP Evalbench verify view . 63

10.1. The basic control �ow for the automation 71

12.1. The components of KIEMAuto in the MVC pattern 75
12.2. The Wizard Page for selecting the input �les for an automated run . 76
12.3. The Wizard Page for setting up user de�ned properties 78
12.4. The Automation Job showing the progress of an automated run . . . 82
12.5. The control �ow during the automation 83
12.6. Automation View showing the result of an automated execution . . . 92

xi

List of Figures

12.7. The tool bar in the automation view 94

xii

Listings

5.1. The interface for ToolbarContributionProviders 22
5.2. The interface of the Con�guration Provider 24
5.3. An implementation example of the Con�guration Provider 25
5.4. The interface of the Event Listener 26
5.5. Code example for the Event Listener 27
5.6. Example of modi�ed Getter and Setter 27
5.7. The head of the modi�ed openFile() method 28
5.8. Example for the use of extension point code in the modi�ed creation

of the Execution Manager's tool bar 30

6.1. Example for a serialized EditorDe�nition 34
6.2. Example for a serialized ScheduleData object 35
6.3. Example for a con�guration saved into the Eclipse preference store . 37
6.4. Example implementation of the Default Schedule extension point . . 46
6.5. Implementation of the Contribution Manager 48

8.1. Code generated by the wizard . 62

10.1. Example for automation input through a text �le 69

12.1. Implementation example of an Automated Component 79
12.2. Implementation example of an Automated Producer 80
12.3. The interface for listeners on the ErrorHandler 91
12.4. Example implementation of the ErrorHandler 92
12.5. Example of a table exported to CSV 95

xiii

Listings

xiv

List of Tables

12.1. Example of a table exported to LATEX 96

xv

List of Tables

xvi

Abbreviations

AI Arti�cial Intelligence

ANN Arti�cial Neural Network

API Application Programming Interface

CAU Christian-Albrechts-Universität zu Kiel

CSV Comma-Separated Values

GUI Graphical User Interface

IDE Integrated Development Environment

KEP KIEL Esterel Processor

KREP KIEL Reactive Esterel Processor

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEM KIELER Execution Manager

KIEMAuto Automated Executions for the KIEM

KIEMCon�g Con�gurations for the KIEM

KIML KIELER Infrastructure for Meta Layout

MVC Model-View-Controller

OS Operating System

RCA Rich-Client Application

SVN Subversion

UI User Interface

UML Uni�ed Modeling Language

XML Extensible Markup Language

xvii

1. Introduction

The purpose of this thesis consists of two parts. The �rst part is to �nd an easier
and more �exible way to deal with execution �les in the KIELER Execution Manager.
The second part is to �nd an easy way to automatically do long execution runs inside
KIEM.

1.1. KIELER Framework

Since the project is part of the KIELER1 framework a short introduction seems in
order.

KIELER is an open-source project for model design, simulation and analysis. It is
developed by the Real-Time and Embedded Systems Group2 of the Department of
Computer Science of the Christian-Albrechts-Universität zu Kiel (CAU).

Figure 1.1.: MVC in KIELER [from [6]]

It contains a host of facilities which enable the user to easily create, edit and simu-
late di�erent forms of synchronous models. The entire KIELER project is structured
according to the Model-View-Controller (MVC) pattern shown in Figure 1.1. The
Execution Manager which is the focus of this thesis belongs to the controller part.

1http://www.informatik.uni-kiel.de/rtsys/kieler/ Retrieved 2010-03-08
2http://www.informatik.uni-kiel.de/rtsys/ Retrieved 2010-03-08

1

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://www.informatik.uni-kiel.de/rtsys/

1. Introduction

1.2. Outline of this Document

The �rst part of this document describes the implementation of the Con�gurations
for the KIEM (KIEMCon�g) plug-in.
It starts with an introduction into the technologies that were used to solve the

problem as well as an overview of similar projects. This part continues with a detailed
description of the problem followed by a chapter about a conceptual solution to those
problems. The next chapter is about the modi�cations that had to be made to the
existing Execution Manager. In the following chapter a detailed description of the
implementation of the new features will be given. The last chapter will summarize
the results of this thesis and outline a few projects that could follow up on it.
The second part discusses the implementation of the Automated Executions for

the KIEM (KIEMAuto) plug-in. It follows the same structure as the �rst part.

2

Part I.

Con�guration Management

3

2. Used Technologies

Before the problem can be explained the technologies in question and the terminology
that is used in the rest of this document must �rst be introduced. This should only
serve as an outline since a full explanation goes beyond the scope of this thesis.
In addition to these technologies a section about some related work is included in

this chapter.

2.1. Eclipse

Since the KIELER project and thus the Execution Manager is build upon the Eclipse
framework a short introduction into Eclipse is necessary.
The basic function of Eclipse is as the Integrated Development Environment (IDE)

for Java. It provides a host of facilities that makes it easier for the user to create
their own Java Applications. A few examples for these facilities are:

� Syntax highlighting to make the source code easier to read.

� Automatic completion of partial commands to ensure correctness and make it
easier to write code.

� Content assist to create better code and remove errors.

� Several wizards for class creation and other tasks.

However since Eclipse is an open-source project there are also modules for a variety
of other things. For example the language isn't limited to Java. There are also
modules for C++, LATEX, Visual Basic and several other programming languages.
Eclipse can also be used as an IDE for IDEs through the use of di�erent modeling

frameworks. This makes Eclipse �an IDE for anything, and nothing in particular�[2].
The terminology used for the di�erent basic parts of Eclipse can be illustrated

based on Figure 2.1:

� The main window of Eclipse is called the Workbench. The Workbench consists
of the di�erent editors and views.

� The �les that the user operates on are located in the Eclipse Workspace.

� An editor is a component that allows the user to display, enter and modify
information. Editors are used to modify a speci�c �le type. There can usually
be multiple instances of the same editor. An example for an editor would be
the Java Editor which is used to create and edit Java Source Files.

5

2. Used Technologies

Figure 2.1.: The Eclipse workbench window

6

2.1. Eclipse

� An Eclipse view is the other component located on the Workbench. Views are
only used to display content that was created elsewhere. Unlike editors there
is usually only one instance of any view. One of the views shown in the �gure
is the class outline view. It shows all methods and attributes of the Java class
in the currently active editor.

For additional information about Eclipse see the o�cial Eclipse website1 or liter-
ature [3].

2.1.1. Plug-ins

The building blocks of any Eclipse application are called plug-ins. They consist
of any number of Java classes with additional meta information. The Java classes
describe the behavior of a plug-in and de�ne its Application Programming Interface
(API). The meta information is not written in Java but uses an Extensible Markup
Language (XML)2 notation instead. It contains the information necessary to interact
with other plug-ins:

� What other plug-ins does the plug-in depend on? This information is necessary
to determine which other plug-ins have to be loaded or when to refuse loading
the plug-in because of missing dependencies.

� What extension points does the plug-in o�er? These are part of the API and
will be described below.

� What functionality does it add to the plug-ins which it extends?

Plug-ins encapsulate their internal behavior and can be accessed through the API

and the extension points. They provide a speci�c functionality that can be reused
as long as the dependencies are met. As such an Eclipse application consists of a
mosaic of di�erent plug-ins that can be exchanged at will.
Eclipse can not only be used to create plug-ins that can be used in an Eclipse

instance but can also compile a set of plug-ins into a standalone application - the so
called Rich-Client Application (RCA)3. This RCA contains a minimal set of plug-ins
to provide the Eclipse look-and-feel. The plug-ins created by the user extend that
functionality.

Extension Point Mechanism

The extension point mechanism is one of the key features of plug-in development
in Eclipse. It extends the API provided by the public methods of the di�erent Java
classes inside the plug-in. An extension point de�nition consists of a tree of di�erent
con�guration elements. Each con�guration element has di�erent attributes some of

1www.eclipse.org Retrieved 2010-03-08
2http://www.w3.org/XML/ Retrieved 2010-03-08
3http://wiki.eclipse.org/index.php/Rich_Client_Platform Retrieved 2010-03-08

7

www.eclipse.org
http://www.w3.org/XML/
http://wiki.eclipse.org/index.php/Rich_Client_Platform

2. Used Technologies

Figure 2.2.: An example for a preference page

which can be optional while other are mandatory. These attributes can be anything
from a String or a �le to a Java class that has to extend one class and implement
a speci�c interface.

Plug-ins that want to add extend the functionality of an already existing plug-
in have to provide the mandatory attributes. These attributes are de�ned in the
extension point speci�cations. Eclipse itself already provides many extension points
to extend the functionality of the Workbench.

For example, if a plug-in wants to add a new editor to the Workbench it has to
extend the org.eclipse.ui.editors extension point. It then has to provide an identi�er
and a name as well as a class that implements the org.eclipse.ui.IEditorPart interface.
It can also specify an icon and a �le extension for �les which should be opened with
the new editor.

When an Eclipse application is started with this plug-in Eclipse will automatically
make sure that the new editor can be used to open the speci�ed �le type. The
programmer only has to concern himself with the area of the editor itself without
worrying about it being added at all the necessary places inside the Eclipse archi-
tecture.

2.1.2. Preference Pages

A special example of plug-in usage within the Eclipse framework itself is the
org.eclipse.ui.preferencePage plug-in. It is used to create new preference pages. An
example of a native Eclipse preference page is shown in Figure 2.2. This particular
preference page is used to set up the syntax highlighting for the di�erent items. Any
preference page is added to a speci�c location inside the normal tree of preference

8

2.2. The KIELER Execution Manager

Figure 2.3.: The Execution Manager during a simulation [from Motika[1]]

pages accessible through Window->Preferences. The programmer only has to take
care of the contents of the actual page and not worry about additional buttons or
integrating it into the PreferenceDialog. In the Figure the tree view can be seen
on the left side. The area on the right side is created by the programmer. However
the buttons above and below the actual area marked �Editor� are also provided by
Eclipse itself.

Preference Store

The Eclipse preference store is a mechanism for saving the contents of a given pref-
erence page. The preference store basically consists of a set of text �les. Each text
�le contains the saved information in the form of several key, value pairs. For an
example of the use of the preference store see Listing 6.3.

2.2. The KIELER Execution Manager

The KIELER Execution Manager shown in Figure 2.3 provides an implementation
of a framework to plug-in DataComponents (see Section 2.2.1) for various tasks.
Examples for such components are:

� Simulation Engines

9

2. Used Technologies

� Model Visualizers

� Environment Visualizers

� Validators

� User Input Facilities

� Trace Recording Facilities

These DataComponents can be executed using a Graphical User Interface (GUI).
The execution of components involves asking them to perform a step in a simulation.
During each step of the simulation the components will be called in a speci�c order.
This scheduling order can also be de�ned by this GUI as well as other settings like a
step/tick duration and properties of DataComponents. For information about KIEM
see the wiki4.

2.2.1. DataComponents

A DataComponent is an entity that has a speci�c task during a the course of an exe-
cution. The DataComponents are scheduled in a speci�c order and can either observe
information, produce information, or both. Every DataComponent contains a list
of KiemProperties that are used to allow some con�guration of the components
instance after it has been loaded.

2.2.2. KiemProperty

The basic KiemProperty object holds a key, value pair of type String. It is
used to store information inside the DataComponents. There are also advanced
KiemProperties which provide methods to store integers, booleans or �le names.

2.2.3. Execution

The central part of the Execution Manager is the schedule. It contains a list of
DataComponents in a speci�c order. The schedule is usually saved into an execution

�le and is used to start an execution. The execution consists of three steps:

1. Initialization: During initialization the DataComponents get the chance to
perform any operation that is necessary before the execution can start. These
operations may include loading or parsing of necessary �les or allocation of
complex data structures.

2. Stepping: In the main phase of the execution the DataComponents will be
asked to perform a number of steps. The order in which the components
will be asked is the order of the scheduling. Each step will be performed by

4http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIEM Re-

trieved 2010-03-08

10

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIEM

2.2. The KIELER Execution Manager

Figure 2.4.: An example for a simple SyncChart diagram

all components before the execution proceeds to the next step. For example
during a step the �rst component may compute a list of signals. The second
component performs a tick in a simulation with the given input signals. The
third component �nally analyses the output and writes it into a �le.

3. Wrap-up: After the user stops the execution all components will be given the
chance to perform wrap-up actions. These actions could for example include
closing of streams or disposing of allocated resources.

2.2.4. Model Files

A model �le is not a concept of the Execution Manager as such but rather a general
concept. In the context of the Execution Manager model �les are used as input for
an execution. Most DataComponents perform actions that are based on a model �le.

A model �le can be any �le that contains the structure and behavior of a semantic
entity. This can be something as simple as a text �le containing a list or tree of
elements in a certain order. Most model �les that are used in the KIELER project
are diagrams that consist of nodes and links. These SyncCharts are build in a tree
structure with nodes being able to contain other nodes. An example for a simple
SyncChart diagram is shown in Figure 2.4. The SyncCharts used in KIELER consist
of two �les. The actual model �le contains the semantic behavior. The diagram
�le is responsible for saving the layout information, i.e. the position of the di�erent

11

2. Used Technologies

elements on a canvas.

2.3. Related Work

There are of course a huge amount of other applications and projects that deal with
con�guration management. In order to get some idea of similar projects an example
from the KIELER project will be used.

2.3.1. Con�gurations

One of the tasks that will be explained in Section 3.1 is to add new con�guration
information to existing execution �les. This task can be compared to the KIELER

Infrastructure for Meta Layout (KIML)5 project by Miro Spönemann.
KIML is used to automatically layout existing diagrams. Since diagrams basically

consist of nodes and connections, generic algorithms can be used to layout almost
any type of diagram. An example for the application of the automatic layouter can
be seen in Figure 2.5. The top part of the �gure shows a diagram that was created
manually without the use of the layouter. After the application of the layouter
provided by KIML the diagram is in a much more compact form as shown in the
lower part of the �gure.
However the user still has some control over the details of the automatic layout

process. The user can con�gure details like the distance between di�erent elements,
the direction of the layout or the layouter that should be used.
This meta-information has to be stored somewhere. The approach used in KIML

was to place the information into the diagram �le. Using this approach means that
the information can be easily reset by deleting the diagram �le.

5http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML Re-

trieved 2010-03-08

12

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML

2.3. Related Work

Figure 2.5.: Automatically layouting a diagram

13

2. Used Technologies

14

3. Problem Statement

The objective of this project is to improve the customizability of the Execution
Manager. The basic approach for these improvements was outlined in the diploma-
thesis by Christian Motika[1]:

KIEM currently does not have a preference page to save additional set-
tings like DataComponent timeouts. Also execution schedulings might
be similar for a common diagram type.

It may improve the usability further to allow the user to customize exe-
cution schedulings for speci�c diagram types. An interface for these kind
of settings could be realized as an Eclipse preference page.

This task will be explained in more detail in this chapter. It will start by intro-
ducing solutions to the problem of how to save the new con�guration properties into
the existing execution �les. In addition the chapter will explain ways to enable the
user to set up a series of default con�gurations. The last section of this chapter will
explore possibilities of how to make it easier to load previously saved schedules.

3.1. Con�gurations

Currently every property in the Execution Manager has a hard coded default value.
For example there is a text box for setting the aimed step duration for the currently
loaded execution �le but that value is lost once a new execution �le is loaded. The
only properties that are stored are those contained in the KiemProperties located
in the execution �les.
To solve this problem an extension to the Execution Manager should attempt to

provide the following:

1. Find a way that execution �les can store values like the aimed step duration
and the timeout. This mechanism should be implemented in a way that ensures
that old �les can be upgraded and new �les are still valid in instances of the
Execution Manager that don't use the con�guration plug-in.

2. Find a way to load the con�gurations into the di�erent parts of the Execution
Manager as soon as an execution �le is loaded from the �le system.

3. Ensure that the user can edit all properties and maybe even create his own
custom properties. This should be implemented in a way that doesn't clutter
up the current user interface too much.

15

3. Problem Statement

3.1.1. Default Con�guration

The di�erent properties stored in each execution �le might sometimes not suit the
users current needs. He might also want to use a default value for some properties
without having to manually set them in each new con�guration. The solution could
be implemented using the preference mechanism provided by Eclipse.

1. There should be a way to set the default properties for all Execution Manager
properties and possibly for user de�ned properties as well.

2. It should be possible for the user to set up which of these properties should
override the value stored in the execution �le and which should only be used
if the execution �le doesn't contain one.

3.2. Easier Schedule Loading

The last objective of this part of the thesis is to make it easier to load execution
�les. Currently all execution �les are stored in the Workspace at a place of the user's
choice. In a very large Workspace it can be very hard to �nd the execution �le that
is needed for the current simulation. The list of recently used documents provided by
Eclipse is of little use since all opened documents are placed there, not just execution
�les. This problem leads to the following tasks:

1. Finding a way to track recently used execution �les and make it easier for the
user to load them without the need to locate them inside his Workspace.

2. In addition to tracking recently used execution �les the user might want to
have a way to get a list of execution �les that work for the currently active
editor. This list should show the most likely candidates at the top to allow less
experienced users to select an execution �le that will most likely work.

16

4. Concepts

The solution to the problems outlined in Chapter 3 can be achieved with the help of
the Eclipse plug-in technology described in Chapter 2.

This chapter explains the solutions in the same structure as Chapter 3. That
means that it will start by introducing solutions to the problem of how save the new
con�guration properties into the existing execution �les. In addition the chapter
will explain ways to enable the user to set up a series of default con�gurations. The
last section of this chapter will explore possibilities of how to make it easier to load
previously saved schedules.

4.1. Con�gurations

The �rst approach to save additional con�guration information in the execution �les
would be to actually modify the format of those �les by appending the con�guration
information. This would most likely be the easiest approach but would destroy
backward compatibility of those �les. This means that an instance of the Execution
Manager without the KIEMCon�g plug-in could not open the modi�ed �les.

The approach taken in this thesis is based on the list of DataComponents (see
Section 2.2.1). Each execution �le carries a list of its own DataComponents and
their properties to ensure that the components are properly initialized the next time
the execution �le is loaded. That list can be loaded even if there are DataCompo-
nents contained in it that are not present in the current runtime con�guration. The
Execution Manager will show a warning indicating that it doesn't know the given
component but proceed to load the rest of the execution.

These DataComponents basically carry a list of the KiemProperties described
in Section 2.2.2. The properties can carry a list of key, value pairs which means they
are suited well for storing simple information like the value of a text �eld.

To solve the problem a new type of DataComponent was constructed and regis-
tered through the extension point in the Execution Manager. This ensures that the
component can be added to any execution �le. The Execution Manager makes sure
that all properties contained in the component will be saved with the execution �le
and loaded the next time the �le is opened. After that the con�guration plug-in
has to �nd the component inside the DataComponent list, get the properties saved
inside it and set them inside the Execution Manager.

This approach ensures that the execution �les modi�ed by the KIEMCon�g plug-in
are backward compatible. An instance of the Execution Manager that doesn't have
the plug-in will show a warning but still be able to load the rest of the schedule.

17

4. Concepts

Figure 4.1.: Layout Preference Page by Miro Spönemann

4.1.1. Default Con�guration

In order to provide a place to manage the default con�gurations the Eclipse preference
page mechanism (see Section 2.1.2) will be used.

The root page for the Execution Manager contains the basic settings for KIEM

itself. This includes default value for the aimed step duration and timeout as well as
ways to customize the di�erent view elements of KIEMCon�g.

The next page is used for managing the di�erent schedules and their editors.
For that the LayoutPreferencePage by Miro Spönemann (see Figure 4.1) was
slightly adapted. The original preference page displays a table where di�erent lay-
outers can receive priorities for di�erent diagram types. This is similar to the problem
that needs to be solved in this thesis. The diagram types can be directly mapped
to the list of editors and the layouters are replaced by the list of saved schedules.
That way the modi�ed preference page can be used to assign priorities to schedules
for di�erent editors. The priorities can then be used to sort the schedules matching
the currently opened editor.

The last page is used to allow the user to set up his own properties and give them
default values.

18

4.2. Easier Schedule Loading

Figure 4.2.: Application of the listener pattern

The values entered in those pages are stored inside the Eclipse preference store
(see Section 2.1.2).

4.2. Easier Schedule Loading

To allow the user to easily load previously saved �les there are several options avail-
able.
The �rst option would be to use one of the existing menu or create a popup menu

inside the Execution Manager. This option was rejected because it would mean
additional mouse clicks for the user. Furthermore the menus should only contain
items that are globally valid and not just for the Execution Manager.
The approach chosen in this thesis is the use of ComboBoxes on the tool bar of

the Execution Manager. This has the advantage of providing a one-click loading
mechanism. Furthermore the ComboBoxes can be used to display the name of the
currently loaded execution �le. One of these ComboBoxes displays the list of recently
used schedules. The other one shows the list of schedules that work for the currently
active editor.
As soon as the user opens a new execution �le through the normal Workspace view

the KIEMCon�g plug-in will be noti�ed of that event by the Execution Manager (see
Figure 4.2). A new object will then be created which represents the execution �le
and contains its path. This schedule object will also be added to the list of recently
used schedules that is maintained through the use of the Eclipse preference store.
When the user selects one of the previously saved schedules in one of the Com-

boBoxes the saved path will be retrieved and relayed to the Execution Manager to
load it.

19

4. Concepts

20

5. Code Changes in the Execution

Manager

Although the project attempts to realize most of the objectives without changing
the Execution Manager itself, minimal adaptations were necessary. This mostly
involves adding new methods to the API in order to gain access to previously hidden
properties.
Also some changes had to be performed where properties were loaded from hard-

coded default values. These were re�ned and will now only be used if the KIEMCon�g

plug-in is not registered to supply previously saved properties.
However all changes that were made to the KIEM plug-in were merely additions

and won't break any plug-ins relying on the old implementation.

5.1. Schema Files and Interfaces

In order to provide additional functionality for other plug-ins the extension point
mechanism described in Section 2.1.1 was chosen. The reason for this choice is to
retain the old functionality of the plug-in while on the other hand giving options to
ask extending plug-ins for their contributions.
The extension points are described in more details in the next sections. They

consist of a schema �le for de�ning the extension point and an interface that contains
the methods that extending components have to supply.

5.1.1. Toolbar Contribution Provider

The purpose of the tool bar contribution provider is to allow other plug-ins to put
items onto the tool bar of the Execution Manager. There are two reasons for using
the extension point mechanism rather than making the tool bar available and have
other plug-ins put their contributions directly on it:

1. At the moment the tool bar and all contributions are created dynamically.
Switching the entire native tool bar of the Execution Manager to adding the
actions to the tool bar through a prede�ned Eclipse extension point would
require major code changes and have major drawbacks. For example that the
tool bar could not be dynamically refreshed.

2. A programmatic approach gives control over the contributions to the Execution
Manager. This means that the order of the native Execution Manager buttons
is always the same and in the same place. It also has the added bene�t that

21

5. Code Changes in the Execution Manager

Listing 5.1: The interface for ToolbarContributionProviders

1 public interface IKiemToolbarContributor {
2

3 /**
4 *
5 * @param info
6 * may hold some information.
7 * @return the list of controls that should be contributed.
8 */
9 ControlContribution[] provideToolbarContributions(Object info);

10

11 /**
12 *
13 * @param info
14 * may hold some information.
15 * @return the list of actions that should be contributed.
16 */
17 Action[] provideToolbarActions(Object info);
18 }

the Execution Manager can choose to ignore contributions if the tool bar gets
too crowded.

The schema �le for components that want to add contributions to the tool bar is
quite simple. It only requires them to implement the interface shown in Listing 5.1.
The implementing class provides an array with all ControlContributions they
want to add to the tool bar. A ControlContribution for a tool bar can be almost
any widget like for example Labels, Buttons or ComboBoxes. Instead or in addition
it can also provide an array of Actions. Actions are of a more simple nature
than ControlContributions. An Action can only be some kind of Button
which either has an icon or a text label. However unlike ControlContributions,
Actions can also be added to menus.
The plug-in will add the components from left to right in the order that the

contributors are stored in the extension registry. KIEM's own controls will be added
after the contributed components have been added. The components will be added
from left to right in the order they are stored in the array.
When the Execution Manager starts to build the views tool bar it will perform

the following steps:

1. The contributors will be asked for the list of controls that they want to con-
tribute.

2. That list will be added to the Execution Manager's tool bar.

3. After that the Execution Manager will add its own controls to the tool bar.

This order causes the tool bar to have the native elements always in the same order.
The contributed elements will be added from left to right in the order that they
occur in the array.

22

5.1. Schema Files and Interfaces

The plug-ins will be asked in the order they appear inside the internal list of plug-
ins maintained by Eclipse. However that list may vary during each new start of the
application due to changes in the plug-ins. This means that there is no guarantee
that the plug-ins will be asked for their contributions in the same order on every new
launch of the application.

The only solution to this problems would be to store the list of plug-ins that have
contributed to the tool bar inside the Eclipse Preference Store. On the next start
of the application the Execution Manager can then ensure that the plug-ins will be
asked in the same order as before. However this would involve maintaining a list of
all plug-ins that have ever contributed any items to the tool bar. Since this list can
grow quite large over time the option was rejected.

Figure 5.1 shows the Execution Manager tool bar with the two ComboBoxes be-
longing to KIEMCon�g contributed through the extension point. Figure 5.2 shows the
same tool bar without the contributions.

Figure 5.1.: The Execution Managers Tool bar with two contributed ComboBoxes

Figure 5.2.: The Execution Managers Tool bar without contributions

5.1.2. Con�guration Provider

The purpose of the con�guration provider is to allow internal attributes of the Exe-
cution Manager to be stored in another plug-in.

This is achieved by another extension point to allow any plug-in to listen to changes
in the Execution Manager's attributes. It also means that there may be multiple
plug-ins that provide values for properties and not all plug-ins may have the value
for a property needed by the Execution Manager. Through the plug-in mechanism
KIEM can ask all providers for values and choose the one he would like to use.

The two methods from the interface shown in Listing 5.2 work in the following
way:

� String changeProperty(String key) throws KiemPropertyException:
This method will be called by the Execution Manager whenever a property has
to be loaded where other plug-ins are encouraged to provide their value. When
a plug-in is asked for a value it can respond in one of two ways:

23

5. Code Changes in the Execution Manager

Listing 5.2: The interface of the Con�guration Provider

1 public interface IKiemConfigurationProvider {
2

3 /**
4 * Ask the component to give a new value for the property specified by the
5 * key.
6 *
7 * @param key
8 * the key of the property to change.
9 * @return the new value of the property.

10 * @throws KiemPropertyException
11 * if the propertyId was not found.
12 */
13 String changeProperty(String key) throws KiemPropertyException;
14

15 /**
16 * Notify the listener that the user changed the property specified by the
17 * key.
18 *
19 * @param key
20 * the key of the property.
21 * @param value
22 * the new value of the property.
23 */
24 void propertyChanged(String key, String value);
25 }

1. It can either provide a value for the property. Any value is acceptable
here, even null. If one plug-in provides any value at all, the other plug-
ins will not be asked. The reason behind this arrangement is that the
Execution Manager can't decide which value has more validity if more
than one plug-in gives a valid answer.

2. If it can not provide a value the declared Exception should be thrown
in which case the Execution Manager will move to the next plug-in. It
would also be possible to encode a non-existing value as null. However this
arrangement was not chosen because null might be the intended value.

� void propertyChanged(String key, String value):
Noti�es the listener that a property was changed somewhere in the Execution
Manager. This will be called for example when the user changes the aimed
step duration through the input �eld on the Execution Managers tool bar.

An example for a simple implementation that just stores the aimed step duration
can be seen in Listing 5.3.

5.1.3. Event Listener

The main function of the EventManager is to inform DataComponents of events
happening in the Execution Manager during execution. This behavior has been mod-
i�ed to include events that occur while the execution isn't running. This modi�cation

24

5.1. Schema Files and Interfaces

Listing 5.3: An implementation example of the Con�guration Provider

1 public class ExampleConfigurationProvider implements IKiemConfigurationProvider {
2

3 private String stepDuration = null;
4

5 public String changeProperty(final String key) throws KiemPropertyException {
6 String result = null;
7 if (key.equals(KiemPlugin.AIMED_STEP_DURATION_ID)) {
8 result = stepDuration;
9 }

10 if (result == null) {
11 throw new KiemPropertyException("Property " + key + " not found.");
12 }
13 return result;
14 }
15

16 public void propertyChanged(final String key, final String value) {
17 if (key.equals(KiemPlugin.AIMED_STEP_DURATION_ID)) {
18 stepDuration = value;
19 }
20 }
21 }

has lead to the creation of another extension point in order to allow other plug-ins
to be noti�ed on any of these events as well. The classes implementing the interface
(see Listing 5.4) required by this extension point will be noti�ed on any event that
happens inside the Execution Manager.

� int provideEventOfInterest(): This method is directly derived from the
method with the same name in the AbstractDataComponent class of the
KIEM plug-in. It is called by the EventManager to determine which events the
implementing class is interested in. This improves e�ciency since components
are not �ooded with events they are not interested in anyway.

� void notifyEvent(KiemEvent event): This method is called by the
EventManager when something happens inside the Execution Manager that
the implementing classes might be interested in. An implementation example
is shown in Listing 5.5. The example checks which type of event was received.
If the type of event was either a load or a save the method delegates the
information contained in the event to the appropriate methods. In these two
cases the information contains the path to the execution �le that was loaded or
saved. If the event indicates that the Execution Manager has �nished building
his view another method will be called that performs some actions that need
a complete view.

25

5. Code Changes in the Execution Manager

Listing 5.4: The interface of the Event Listener

1 public interface IKiemEventListener {
2

3 /**
4 * This is the basic notify method that is called by KIEM whenever an event
5 * occurs for which this EventListener is registered (see
6 * {@link #provideEventOfInterest()}).
7 *
8 * @param event
9 * the KiemEvent with additional attached information, depending

10 * on the specific event
11 */
12 void notifyEvent(final KiemEvent event);
13

14 /**
15 * Return a KiemEvent type (integer value) that represents a number of
16 * events this component wants to listen to.
17 *
18 * A KiemEvent can be a combination of several events. The simplest way to
19 * register for two events that e.g., indicate a step-command and the
20 * removal of the component is to have the following code:
21 *
22 * public KiemEvent provideEventOfInterest() {
23 * int[] events = {CMD_STEP, DELETED}
24 * return new KiemEvent(events);
25 * }
26 *
27 * @return the KiemEvent type indicating the events of interest
28 */
29 KiemEvent provideEventOfInterest();
30 }

5.2. KIEMPlugin.java

KIEMPlugin.java serves as the root class of the Execution Manager and contains
almost the entire API. Therefore all additions to KIEMs API were made here.

5.2.1. Listener

The following methods were added to communicate with the plug-ins registered
through the ConfigurationProvider extension point (see Section 5.1.2).

� notifyCon�gurationProviders(String propertyId, String value):
This method can be called by any class inside the Execution Manager itself.
It should be called when the user changes a property through any of the ele-
ments on the GUI. The method will then inform all listeners that the property
identi�ed by the given identi�er was changed to the new value.

� String getPropertyValueFromProviders(String propertyId):
This method allows the Execution Manager to retrieve a previously saved value.
KIEM will ask all plug-ins registered on the extension point if they can provide a
value for the given identi�er. Plug-ins that can't provide the value will indicate

26

5.2. KIEMPlugin.java

Listing 5.5: Code example for the Event Listener

1 public void notifyEvent(final KiemEvent event) {
2 if (event.isEvent(KiemEvent.LOAD)) {
3 handleLoad(event.getInfo());
4 }
5 if (event.isEvent(KiemEvent.SAVE)) {
6 handleSave(event.getInfo());
7 }
8 if (event.isEvent(KiemEvent.VIEW_DONE)) {
9 openLastUsedSchedule();

10 }
11 }

Listing 5.6: Example of modi�ed Getter and Setter

1 public int getAimedStepDuration() {
2 int result = this.aimedStepDuration;
3 Integer value = getIntegerValueFromProviders
4 (AIMED_STEP_DURATION_ID);
5 if (value != null) {
6 result = value;
7 }
8 return result;
9 }

10

11 public void setAimedStepDuration(final int stepParam) {
12 this.aimedStepDuration = stepParam;
13 // if executing, also update current delay
14 if (execution != null) {
15 this.execution.setAimedStepDuration(stepParam);
16 }
17 this.getKIEMViewInstance().updateViewAsync();
18 notifyConfigurationProviders
19 (AIMED_STEP_DURATION_ID, stepParam + "");
20 }

this by throwing an Exception. KIEM will then take the �rst value he receives
without getting an Exception and assign it to the internal property.

� Integer getIntegerValueFromProviders(�nal String propertyId):
This method is a convenience method for the one described above. It will try
to parse an integer from the retrieved String. If successful the value will be
returned otherwise the method will return null.

5.2.2. Getters and Setters

An example for the use of the methods described in the last section can be found
in the getter and setter methods (see Figure 5.6) for the di�erent properties in the
Execution Manager. These were changed in order to use the new methods but are
still able to fall back on hard-coded default values if no con�guration plug-in is
registered.

27

5. Code Changes in the Execution Manager

Listing 5.7: The head of the modi�ed openFile() method

1 public void openFile(final IPath executionFile, final boolean readOnly) throws
IOException {

2 String fileString = executionFile.toOSString();
3 final InputStream inputStream;
4

5 if (fileString.startsWith("bundleentry:/")) {
6 // code for loading execution files added through an extension point
7 String urlPath = fileString.replaceFirst
8 ("bundleentry:/", "bundleentry://");
9 URL pathUrl = new URL(urlPath);

10 inputStream = pathUrl.openStream();
11 } else {
12 // normal load
13 URI fileURI =
14 URI.createPlatformResourceURI(fileString, true);
15 // resolve relative workspace paths
16 URIConverter uriConverter = new ExtensibleURIConverterImpl();
17 // throws IOException if the file is missing
18 inputStream = uriConverter.createInputStream(fileURI);
19 }
20 [...]
21 }

5.2.3. Open File

The openFile() method inside the Execution Manager is responsible for loading
a schedule from an execution �le. The old implementation of the method accessed
the information about the �le that needs to be loaded in way that was unsuitable for
KIEMCon�g. Therefore the method was split into two parts. This was done to allow
other plug-ins to pass an IPath object directly to the method and perform a load of
that �le without having to go through the User Interface (UI). This method was also
slightly restructured in order to detect missing execution �les before the load enters
the UIThread. This was necessary to make it possible for the callers of the method
to catch the resulting Exception. The method also had to be modi�ed in order to
be able to take �les that are not inside the Workspace but were added through an
extension point. The changed part of the openFile method is shown in Listing 5.7.
The last change to that method concerns the event listener. When the user opens a
�le through the Eclipse Workspace without using KIEMCon�g the plug-in still has to
be informed. This happens through the use of the EventManager that noti�es all
listeners upon the successful completion of the loading operation.

5.3. KIEMView

The changes described in Section 5.2 were mostly concerned with the con�guration
management and loading of new execution �les. This section will mostly deal with
the changes that were necessary to enable the adding of new items to the tool bar.

The tool bar of the Execution Manager is created in a programmatic way instead

28

5.3. KIEMView

of using the corresponding Eclipse extension point. This means that the only way
to place additional controls onto the tool bar is to modify the code in order to make
use of the Toolbar Contribution Provider extension point described in Section 5.1.1.
For the full code of the modi�ed method see Listing 5.8.

29

5. Code Changes in the Execution Manager

Listing 5.8: Example for the use of extension point code in the modi�ed creation of
the Execution Manager's tool bar

1 /**
2 * Builds the local tool bar for the KiemView part.
3 */
4 private void buildLocalToolBar() {
5 IActionBars bars = getViewSite().getActionBars();
6 IToolBarManager manager = bars.getToolBarManager();
7 // first remove all entries
8 manager.removeAll();
9 // call soh’s extension point

10 addExternalContributions(manager);
11

12 manager.add(getActionUp());
13 manager.add(getActionDown());
14 manager.add(new Separator());
15 manager.add(getAimedStepDurationTextField());
16 [...]
17 }
18

19 /**
20 * Add components contributed by other plugins through the
21 * ToolBarContributor extension point.
22 *
23 * @param manager the manager where to add the components
24 */
25 private void addExternalContributions(final IToolBarManager manager) {
26 IConfigurationElement[] contributors = Platform.getExtensionRegistry()
27 .getConfigurationElementsFor("de.cau.cs.kieler.sim.kiem.

toolbarContributor");
28 for (IConfigurationElement element : contributors) {
29 try {
30 IKiemToolbarContributor contributor = (IKiemToolbarContributor) (

element
31 .createExecutableExtension("class"));
32 ControlContribution[] contributions = contributor.

provideToolbarContributions(null);
33 if (contributions != null) {
34 for (ControlContribution contribution : contributions) {
35 if (contribution != null) {
36 manager.add(contribution);
37 }
38 }
39 }
40 Action[] actions = contributor.provideToolbarActions(null);
41 if (actions != null) {
42 for (Action contribution : actions) {
43 if (contribution != null) {
44 manager.add(contribution);
45 }
46 }
47 }
48 } catch (CoreException e0) {
49 e0.printStackTrace();
50 }
51 }
52 }

30

6. The KIEMCon�g plug-in

This chapter describes the contents and functionality of the newly created plug-in
to solve the problems described in Chapter 3. A new plug-in was created in order
to ensure modularity within the KIELER framework. Putting the code into the KIEM
plug-in itself would have meant that there's no way to separate the two projects which
is something that should be avoided in order to allow projects to be exchanged.
The sections in this chapter deal with the di�erent parts of the KIEMCon�g plug-in.

The whole plug-in is structured according to the MVC pattern shown in Figure 6.1.
The �rst section will describe the data storing classes which constitute the model.
The second section will describe the di�erent manager classes which are essentially
the controller of the entire plug-in. This section will also look at the API that the
KIEMCon�g plug-in provides to other plug-ins. The last section will describe the
classes that render the preference pages and other view elements.

6.1. Data Classes and Utilities - the Model

This section will describe the di�erent classes that are responsible for storing all data
that the plug-in needs at runtime.

6.1.1. Con�gDataComponent

This extension to the AbstractDataComponent of KIEM is responsible for solving
the problem described in Section 3.1. This means that it provides the facilities for
storing the con�guration of the Execution Manager inside an execution �le.

Figure 6.1.: The components of KIEMCon�g in the MVC pattern.

31

6. The KIEMCon�g plug-in

Figure 6.2.: Schedule showing the Con�gDataComponent(�Current Con�guration�)

The component is a DataComponent like all others used in the Execution Man-
ager. It is registered through the extension point that allows new DataComponents
to appear in the list of available components. However unlike the usual DataCom-
ponent that is responsible for simulating a model during an execution run its main
function is to store the con�guration of KIEM. Since the user should not be con-
fused by a DataComponent in the list that doesn't do anything during simulation
the ConfigDataComponent is only visible in the advanced user mode described
in Section 6.3.1. Figure 6.2 shows the ConfigDataComponent in the list of Data-
Components when it's visible.

Like all other DataComponents the ConfigDataComponent contains an array
of KIEMProperties. These properties contain a String key which should be non-
null and unique as well as a value which can be of various types. However for the
purpose of storing con�guration elements only the String value will be used.

The new DataComponent also provides additional methods in order to make ac-
cessing and manipulating the array more convenient:

� KiemProperty �ndProperty(String key): This method iterates through
the array and attempts to �nd the KIEMProperty that contains the provided
key. Since the keys are assumed to be unique the �rst match is returned by
this method. If there is no property with the given key the method will throw
an Exception.

� void removeProperty(String key): This method attempts to remove the
property identi�ed by the given key from the array. This is accomplished by
converting the array to a list, locating and removing the speci�ed property and
then converting the list back to an array. This procedure may not be as e�cient
as manually constructing the new array but it still performs the operation in
linear time. Furthermore it makes the method easier to understand than the
alternative.

� KiemProperty updateProperty(String key, String value): This method
updates the property identi�ed by the key with a new value. It �rst checks if
the property already exists. If a property was found the value is updated. If

32

6.1. Data Classes and Utilities - the Model

a property with the speci�ed key doesn't exist a new one is created and the
provided value stored inside.

The ConfigDataComponent is not only used to store the properties of the cur-
rently active con�guration that each execution �le carries. It is also used to store
the default con�guration that is saved in the Eclipse preference store. This is done
because both instances are closely linked and have the same requirements (see Sec-
tion 6.2.2).

The default behavior of the Con�guration Manager is to add a new
ConfigDataComponent to each execution �le that it encounters and that doesn't
already have one. However as this feature can be turned o� the user also has can
upgrade old �les or downgrade new ones by manually adding and removing the
ConfigDataComponent.
This newly created DataComponent implements the behavior described in Sec-

tion 4.1. This means that any new execution �le can be upgraded by adding the new
component to it. Upgraded execution �les can still be loaded in an instance of the
Execution Manager that doesn't have the KIEMCon�g plug-in. KIEM will only show
a warning that an unknown DataComponent is present but will load the rest of the
�le anyway.

6.1.2. EditorDe�nition

The EditorDefinition class is responsible for storing information about the ed-
itors that are known to the KIEMCon�g. Each instance of this class stores the infor-
mation about a single editor. This is necessary in order to successfully operate a list
of execution �les that work for the currently active editor.

� String editorId: The identi�er for the given editor. This attribute is a unique
non-null String by which any editor can be identi�ed. For example the
standard Java editor has the ID org.eclipse.jdt.ui.CompilationUnitEditor.

� String name: The name of the editor. This is the human readable name
given to the editor by the plug-in that de�nes the editor. Storing this attribute
may seem redundant since the names of the editors can be retrieved through
an Eclipse mechanism if the editor ID is known. However there is no guarantee
that a previously saved editor ID exists in the currently active application in
which case the name of the editor can't be retrieved.

� boolean isLocked: This attribute is responsible for showing that the editor
can not be removed. The reason that an editor might become read only will
be explained in Section 6.2.3.

An example for an EditorDefinition is shown in Listing 6.1. The example
shows the EditorDefinition in its serialized form. This particular de�nition
contains the editor ID and name for the KIELER SyncCharts editor.

33

6. The KIEMCon�g plug-in

Listing 6.1: Example for a serialized EditorDe�nition

1 <EDITOR>
2 <EDITOR_NAME>
3 Synccharts Diagram Editing
4 </EDITOR_NAME>
5 <EDITOR_ID>
6 de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID
7 </EDITOR_ID>
8 </EDITOR>

6.1.3. ScheduleData

The ScheduleData class is responsible for tracking the di�erent execution �les
that are known to the KIEMCon�g. A ScheduleData object is the representation
of a single execution �le. It contains the following attributes:

� The most important attribute is the path at which the corresponding execu-
tion �le is located. The path is used to trigger the loading of the �le inside
the Execution Manager. It is also used to determine whether a newly loaded
execution �le is already known. The path also doubles as the unique identi�er
for the schedule since there can't be two �les at the same physical location.

� The ScheduleData object also stores a list of priorities for all known editors.
This is necessary in order to determine whether or not a given schedule can
be used with the currently opened editor and which position it should have in
an ordered list. To make accessing and manipulating this list easier it simply
uses an instance of the ConfigDataComponent. The component already has
methods for accessing the array inside and can be easily stored and loaded.

� Like the EditorDescription a ScheduleData also contains a boolean
isLocked. ScheduleData object with that attribute set to true can't be
modi�ed or removed (see Section 6.2.3).

The ScheduleData objects are used to maintain the list of recently used sched-
ules and of those that match the currently opened editor.
An example for a ScheduleData object is shown in Listing 6.2. The example

shows the ScheduleData object in its serialized form. The listing shows the lo-
cation of the managed execution �le as well as two editors assigned to the schedule
contained in the �le. In this particular example the editors are the SyncCharts editor
and the Esterel editor. The ScheduleData also contains the priorities to each of
the editors. In this example the priorities indicate that the schedule is more likely
to work for the SyncCharts editor than for the Esterel editor.

6.1.4. Tools

The Tools class holds a host of useful methods and attributes that are used in
various parts of the plug-in.

34

6.1. Data Classes and Utilities - the Model

Listing 6.2: Example for a serialized ScheduleData object

1 <SCHEDULE_DATA>
2 <LOCATION>/test/demo.execution</LOCATION>
3 <CONFIG_DATA_COMP>
4 <KIEM_PROPERTY>
5 <Key>de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID</Key>
6 <Value>10</Value>
7 </KIEM_PROPERTY>
8 <KIEM_PROPERTY>
9 <Key>de.cau.cs.kieler.esterel.Esterel</Key>

10 <Value>4</Value>
11 </KIEM_PROPERTY>
12 </CONFIG_DATA_COMP>
13 </SCHEDULE_DATA>

Attributes

First of all it contains messages and tool tips that are used in more than one class.
This ensures that the appearance of the di�erent messages is uni�ed across the entire
plug-in. It also makes it easy to change these messages or combine di�erent partial
messages to new ones.

The class also holds the di�erent identi�ers for the properties that are used in the
plug-in. This is done to avoid bugs due to mistyping an identi�er which is likely to
happen if it is stored in two di�erent places.

Methods for Parsing and Serialization

All of the manager classes in the KIEMCon�g need to save their properties into the
Eclipse preference store. In order to have the information stored in a structured way
an XML like format was chosen. As this requires the keys and values to be formatted
in a certain way the Tools class provides methods to format the Strings in the
required way.

� String putValue(String key, String value): Converts the key, value pair
into a formatted String for saving into the Eclipse preference store. The
resulting String has the following format: <[key]>[value]</[key]>.

� String putProperty(KiemProperty property): Convenience method for
transforming a KiemProperty object into a formatted String. This method
exists because most of the items serialized in this way have that type. The
resulting String has the following format:
<KIEM_PROPERTY>
<Key>[property.key]</Key><Value>[property.value]</Value>
</KIEM_PROPERTY>.

The methods described above provide all the necessary facilities for the KIEMCon�g

to save its preferences into the Eclipse preference store. In order to retrieve these

35

6. The KIEMCon�g plug-in

properties the Tools class provides another set of methods. These methods take an
input String and try to parse the saved properties.

� String getValue(String key, String input): This method retrieves the
value enclosed by tags with the given key. The retrieved value can either be an
atomic String that can directly be assigned to a property or another series of
values enclosed in their tags. The method will always look for the outermost
tags inside the input String. The method returns null if there are no tags
with the provided key inside the input String.

� KiemProperty getKiemProperty(String input): Tries to retrieve the
key, value pair that constitutes a KiemProperty object from an input String.

� String[] getValueList(String key, String input): Since there sometimes
is the need to store an entire list of entities the Tools class provides a method
to convert an entire list back to the individual Strings. The method iterates
over the input String and extracts all elements that are enclosed in tags with
the speci�ed key.

Listing 6.3 shows a con�guration that was saved using the methods described
above.

Methods for Dialogs

The Tools class also contains methods for easily displaying error and warning di-
alogs. These methods take the information, add the own plug-in ID and forward the
information to the error handling facilities inside the Execution Manager itself.

6.1.5. MostRecentCollection

The MostRecentCollection is a new collection type that is used for simulating
the behavior found in 'Open recent' menu item of almost any text editing application.

To avoid the list growing too long it can be given a maximum capacity. After this
capacity is reached the oldest entry will be deleted when a new one enters the list.

The default implementation of the collection uses an ArrayList to store the data
but it also contains facilities to provide the same functionality to any other list.

Most operations are directly delegating to the operations of the underlying List.
The only exception is the add(item : T) method which works in a di�erent way:

1. It checks if the item is already in the list and if that is the case removes it.
This is necessary to ensure that already added items don't appear twice in the
list. Since recently used �les need to be tracked it would be misleading to have
the same �le in the list two times.

2. It adds the item at the highest index to the end of the list and increments the
index of all other items.

36

6.2. Manager Class - the Controller

Listing 6.3: Example for a con�guration saved into the Eclipse preference store

1 #Wed Feb 10 16:18:38 CET 2010
2 eclipse.preferences.version=1
3 SCHEDULE_CONFIGURATION=
4 <SCHEDULE_DATA>
5 <LOCATION>/de.cau.cs.kieler.sim.kiem/example.execution</LOCATION>
6 <CONFIG_DATA_COMP>
7 <KIEM_PROPERTY>
8 <Key>de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID</Key>
9 <Value>5</Value>

10 </KIEM_PROPERTY>
11 </CONFIG_DATA_COMP>
12 </SCHEDULE_DATA>
13 <SCHEDULE_DATA>
14 <LOCATION>/test/noname2.execution</LOCATION>
15 <CONFIG_DATA_COMP>
16 <KIEM_PROPERTY>
17 <Key>de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID</Key>
18 <Value>2</Value>
19 </KIEM_PROPERTY>
20 </CONFIG_DATA_COMP>
21 </SCHEDULE_DATA>
22 DEFAULT_CONFIGURATION=
23 <KIEM_PROPERTY>
24 <Key>AIMED_STEP_DURATION</Key><Value>500</Value>
25 </KIEM_PROPERTY>
26 <KIEM_PROPERTY>
27 <Key>TIMEOUT</Key><Value>5000</Value>
28 </KIEM_PROPERTY>
29 EDITOR_IDS=
30 <EDITOR>
31 <EDITOR_NAME>Synccharts Diagram Editing</EDITOR_NAME>
32 <EDITOR_ID>
33 de.cau.cs.kieler.synccharts.diagram.part.SyncchartsDiagramEditorID
34 </EDITOR_ID>
35 </EDITOR>

3. The element at the head of the list is overwritten by the new item.

4. Optionally the last item is removed if the list has grown beyond the capacity.

The collection also provides an additional method that is used to replace an item in
the list by another one. This routine is necessary when �les are renamed and the
name of the ScheduleData inside the list has to be updated.
This collection is used to track the most recently used schedules and display them

in the corresponding ComboBox.

6.2. Manager Class - the Controller

The manager classes are responsible for the control �ow inside the plug-in. They
gather information from the view, the Eclipse preference store and the Execution
Manager and create and update a model using the classes described in Section 6.1.
There are multiple managers each with a di�erent task:

37

6. The KIEMCon�g plug-in

Figure 6.3.: UML Diagram of the manager classes

� The Con�guration Manager is responsible for maintaining the con�gura-
tion saved in each execution �le and the default con�guration saved in the
preferences store.

� The Schedule Manager is responsible for keeping track of the di�erent exe-
cution �les and updating the information inside the ScheduleData objects.

� The task of the Editor Manager is to keep track of the di�erent known
editors.

� The ContributionManager is used to manage the controls that are placed
on the tool bar in the Execution Manager.

� The PropertyUsageManager is responsible for managing the keys of those
properties where the default con�guration is used rather than the current con-
�guration.

Figure 6.3 shows the overall structure of all manager classes as well as the most
important API methods they provide.

38

6.2. Manager Class - the Controller

6.2.1. Abstract Manager

All of the managers share some common features that each of them must provide.
Some of those features are handled almost the same or exactly the same in each
manager. This lead to the creation of an abstract super class for all managers that
takes care of the basic tasks.

The �rst task is to allow other classes to register as a listener to the manager.
Some of the classes in KIEMCon�g have to perform updates when a value inside the
model changes. It is the managers responsibility to inform the listeners when such a
change was completed successfully.

The second task is to provide the subclasses with facilities to easily access the
Eclipse Preference Store. Whenever a value is requested by any part of the controller
or another plug-in and a manager didn't access the preference store yet it has to gain
access to the store and retrieve the information belonging to it. Furthermore when
the user explicitly wants to save the preferences or the Workbench is shutting down
the data contained in the model has to be saved into the Eclipse Preference Store.
For an example of a saved con�guration see Listing 6.3.

6.2.2. Con�guration Manager

The Con�guration Manager basically handles all the problems described in Sec-
tion 3.1. This means that the Con�guration Manager has two responsibilities:

1. It manages the con�guration contained in the currently opened execution �le
and all properties contained in it. It is also responsible for deciding whether or
not the preferences stored in that con�guration should be used or the default
preferences instead.

2. It manages the default con�guration that the user can access and modify
through the preference pages (see Section 6.3). For all of the prede�ned prop-
erties it also has to hold and manage the hard-coded default values.

Currently Loaded Con�guration

The main function of the Con�guration Manager is to store and retrieve properties.
Figure 6.4 illustrates the process of loading a property. The �rst thing the Con�g-
uration Manager has to do when a request for the value of a property is made is to
locate the ConfigDataComponent that contains the property.

It �rst takes a look at the list of keys where the default con�guration should be
used. If this is the case the task is quite simple and the default con�guration is
loaded from the preference store and used.

If the current con�guration should be used the task is a little more di�cult. The
Con�guration Manager then has to look at the list of DataComponents inside the
Execution Manager. The list holds all components for the currently opened execution
�le. If the list already contains a ConfigDataComponent that component is used.

39

6. The KIEMCon�g plug-in

Figure 6.4.: Diagram illustrating the loading of a property value

40

6.2. Manager Class - the Controller

Otherwise a new ConfigDataComponent is created, initialized with the default
values from the default con�guration and then added to the list of the current exe-
cution �le. Since this feature can be disabled by the user the Con�guration Manager
can encounter execution �les that have no ConfigDataComponent or where the
component simply doesn't contain the requested value. In this case the default con-
�guration has to be used.
If the default con�guration couldn't supply a value the last possibility is that the

caller passed a non-null default value for the given property. In this case the default
value is returned to the caller.
If no value could be retrieved in the way described above there is no way to get

a valid value for the requested key. In this case the Con�guration Manager noti�es
the caller through an Exception of these circumstances.
However if the value was expected in the current con�guration but not found the

Con�guration Manager assumes that it should have been in there. To remedy that
situation the Con�guration Manager will try to add a new property to the current
con�guration with the value that the method will return (either the one retrieved
from the default con�guration or the default supplied by the caller).

Default Con�guration

The �rst responsibility of the Con�guration Manager with respects to the default
con�guration is to manage the hard-coded default values. As described in Section 3.1
the idea of KIEMCon�g is to avoid using hard-coded values and retrieve user de�ned
values. However the Execution Manager and KIEMCon�g rely on certain values to
be present and even though the user is encouraged to change them they still have
to be present before the user enters them for the �rst time. Furthermore the user
may want to revert back to sensible default values which should be provided by the
plug-in itself.
This means that the plug-in contains a list of hard-coded default values for the

needed properties. It also supplies methods to access these properties and restore
the default values by writing their values into the default con�guration.
The next feature provided by the default con�guration concerns adding new

ConfigDataComponents to the list inside the Execution Manager. Since the
Con�guration Manager knows which properties will be taken from the current con-
�guration it can already make sure that the component contains some value. This
is done through calling void initWithDefaults(AbstractDataComponent
dataComponent) with the newly created component. This causes the default val-
ues for all properties that are likely to be taken from the current con�guration to be
added to it.
The Con�guration Manager also supplies di�erent views on the default con�gura-

tion.

1. KiemProperty[] getDefaultCon�g().getProperties(): This method sim-
ply returns all properties stored in the default con�guration. This is the list
actually written to the Eclipse preference store.

41

6. The KIEMCon�g plug-in

2. KiemProperty[] getInternalDefaultProperties(): This method returns
the list of properties that are needed to operate the Execution Manager and
KIEMCon�g. The motivation for this method is that the keys and types for
these values are already known. That means that a view that modi�es these
properties can be designed in a more user-friendly way than would have been
possible otherwise. Furthermore the Con�guration Manager is guaranteed to
have hard-coded default values for these properties.

3. KiemProperty[] getExternalDefaultProperties(): This method returns
the complement of the internal properties with respect to the entirety of the
default properties. These properties are those that the user de�ned himself.

However neither of the last two lists will return the default editor as that falls into
the responsibility of the Editor Manager which is described below.
The Con�guration Manager also supplies methods to add new properties to the

default con�guration, remove properties and update the value of speci�c property.

6.2.3. Schedule Manager

The Schedule Manager is responsible for managing the ScheduleData object, the
execution �les and provides the methods for solving the problem described in Sec-
tion 3.2. This means that the Schedule Manager ensures that the user can easily ac-
cess any of his execution �les without having to look for them through the Workspace
explorer.
The responsibilities of the Schedule Manager can be broken down into six di�erent

parts:

1. Gather the di�erent types of lists of schedules.

2. Manage the di�erent ScheduleData objects and provide methods to add,
remove and change them.

3. Deal with loads and saves triggered through the normal Workspace interface.

4. Provide a means to trigger the loading of an execution �le in the Execution
Manager.

5. Track the locations of the execution �les if the user modi�es them.

6. Loading the default schedules.

Provide the Schedule Lists

The Schedule Manager stores all ScheduleData objects in one list that is saved and
loaded through the abstract super class. However di�erent components of KIEMCon�g

or other plug-ins need di�erent views on that list. Some components may not want
to display all schedules or have the list sorted in a certain way. To provide these
di�erent views, the Schedule Manager contains several methods:

42

6.2. Manager Class - the Controller

� List<ScheduleData> getAllSchedules(): Returns the list of all schedules.
This method triggers a load through the super class if no load has been per-
formed yet. It also triggers a load of the default schedules described at the end
of Section 6.2.3.

� List<ScheduleData> getMatchingSchedules(String editorID, String
editorName): This method is responsible for constructing the list that will
be displayed in the ComboBox that shows the list of schedules matching the
currently active editor. First it tries to �nd an EditorDefinition with the
given editor ID. If that fails a new EditorDefinition is created and added
it to the list of known editors. After that the method searches through the list
of all schedules and extracts those that have a positive priority for the given
editor. The list is then sorted and returned with the schedule with the highest
priority appearing at the lowest index.

� List<ScheduleData> getRecentSchedules(): This method constructs the
list of recently used schedules. This list is used in another ComboBox to al-
low the user to easily load his last used schedules. In order to realize this
feature the Schedule Manager keeps a list of all execution �le locations that
were recently accessed using the MostRecentCollection described in Sec-
tion 6.1.5. When the method is called it iterates over the list of locations and
tries to �nd a schedule for each location. Schedules that match a location in
that list are added to the resulting list. Entries in the list of locations where
no schedule can be found will be removed from the list as they are no longer
valid.

� List<ScheduleData> getImportedSchedules(): Returns the list of de-
fault schedules. This feature will be described in detail at the end of Sec-
tion 6.2.3.

These views on the list are used to give the user a �ltered selection of all known
execution �les, e.g. the ones that work for the currently active editor or the ones
that have been used recently.

Listen to User Events

It has to be assumed that the user creates his own schedules and saves and loads
them through the Workspace explorer. Since the Schedule Manager should attempt
to track all available execution �les it has to be informed about these changes and
act on the noti�cation. In order to get noti�ed the Event Listener extension point
of the Execution Manager is used (see Section 5.1.3). The listener will dispatch an
event that contains the location of any saved or loaded execution �le as soon as the
user performs the corresponding action. When the Schedule Manager receives such
an event it will perform the following steps illustrated in Figure 6.5:

1. Try to �nd a schedule with the provided location. If a schedule can be found
there is nothing to be done and the method skips to the last step.

43

6. The KIEMCon�g plug-in

Figure 6.5.: Process that follows a load of an execution �le in KIEM

2. If no schedule was found with the given location a new one has to created. In
order for that the method �rst has to check if there is an active editor and if
the editor is known to the Schedule Manager. If that is the case the method
skips ahead to Step 4.

3. If the editor is unknown, a new EditorDefinition is created and added to
the list of known editors. If no editor is active the default editor will be used.

4. The new schedule is created with the editor determined in the previous steps.
Since it is assumed that the created schedule works with the currently active
editor a default priority is inside to that editor in the newly created schedule.

5. Since the �le operation constitutes a use of the given schedule the list of recently
used schedules has to be updated. The used schedule will be added to the top
or moved to the top if it's already inside.

This procedure ensures that the user only has to look for execution �les manually
in the Workspace explorer if the �les are unknown to KIEMCon�g.

Open a Schedule

The Schedule Manager also provides a way to trigger a load in the Execution Man-
ager through the modi�ed openFile() method described in Section 5.2.3. The
reasoning behind this is that the Schedule Manager may try to load schedules where
the �les no longer exist or that the Execution Manager is unable to load. The method

44

6.2. Manager Class - the Controller

mentioned above will throw Exceptions in order to inform the caller of these cir-
cumstances and the Schedule Manager will pass that information to its callers.
As described in the last section the Schedule Manager will be informed of a load

through the EventListener interface and will act on it. However if the load is
triggered by the Schedule Manager itself that behavior would not be desirable. To
avoid the Schedule Manager informing itself the method makes sure that the next
event indicating a loaded �le will be ignored.
Since the load triggered by the Schedule Manager constitutes an access to that �le

the associated schedule is added to the list of recently used schedules. Furthermore
all listeners on the Schedule Manager will be noti�ed because view updates may be
necessary.

Tracking Execution Files

As described above new schedules will be created when the user manually loads or
saved an execution �le. However in some cases the user may also choose to remove,
rename or move execution �les. Since the Schedule Manager relies on the path of
the execution �le to load the schedules it runs into trouble if the path is changed
outside its control.
The only solution in this case is to prompt the user to select a new path for an

execution �le that is no longer at the expected location. An alternative would be to
simply delete the schedule and all assigned priorities.
However if the user performs a remove, rename or move through the context

menu inside the Eclipse Workspace window Eclipse itself provides a way to get
noti�ed of these changes. Any class can register themselves as listener by calling
addHistoryListener(IRefactoringHistoryListener listener)
on the HistoryService of the RefactoringCore.
Whenever the removal, renaming or moving of a �le is completed, all listeners will

be noti�ed. The noti�cation is processed by the listener implementing a method
with the following signature:
void historyNotification(RefactoringHistoryEvent event).
The event contains di�erent information based on the type of the operation. De-
pending on the type of operation that was performed the Schedule Manager takes
one of the following actions:

� Delete: One or more �les were deleted by the user. In this case the event
contains the list of �les that was deleted. Since the user has no more use for
the deleted �les he probably has no use for the schedule and the saved priorities
as well. The Schedule Manager attempts to �nd the ScheduleData object
associated with the given �le and removes it.

� Rename: The user changed the name of a �le. The event provides the old
�le name and the new name of the �le. In order to keep track of the �le the
Schedule Manager tries to �nd the ScheduleData associated with the old �le
name and changes the name to the new �le.

45

6. The KIEMCon�g plug-in

Listing 6.4: Example implementation of the Default Schedule extension point

1 <extension
2 point="de.cau.cs.kieler.sim.kiem.config.DefaultScheduleContributor">
3 <configurationFile
4 file="testFiles/krep.execution">
5 <editor
6 id="de.cau.cs.kieler.krep.evalbench.ui.editors.kasm"
7 name="KASM Editor"
8 priority="8">
9 </editor>

10 </configurationFile>
11 </extension>

� Move: One or more �les were moved by the user to a new location. The
event contains the list of �les that were moved and the destination path. The
Schedule Manager tries to �nd a ScheduleData object for each of the �les
involved and changes its name to re�ect the new location.

This service ensures that KIEMCon�g keeps track of all execution �les with minimal
interaction by the user.

Default Schedule

The Execution Manager and KIEMCon�g are released as part of the KIELER project.
Since the project will be used by inexperienced users as well it is desirable to include
example �les. These example �les are not located in the users Workspace but rather
in the plug-in that provides them.

To provide example �les for the Execution Manager the new extension point
DefaultScheduleContributor was created. As soon as the Schedule Man-
ager loads the schedules from the Eclipse preference store it also triggers a load from
the components registered on this extension point. The new schedule will be con-
structed with the location provided through the corresponding �eld in the extension
point. After that the Schedule Manager iterates through the list of child elements
of a given execution �le and adds all the editors and their priorities to the schedule
and the Editor Manager.

Since the schedules and editors added in this way are supposed to be a kind of
factory defaults they are not supposed to be removed or changed. The Schedule
Manager sets a �eld in both the newly created ScheduleData objects and the
EditorDefinitions. It is the responsibility of the di�erent view elements not to
modify entities marked in this way.

Listing 6.4 shows an example implementation of the extension point. One execu-
tion �le (krep.execution) is added as a default schedule. The schedule only supports
simulation of one editor in this case the KASMEditor.

46

6.2. Manager Class - the Controller

6.2.4. Editor Manager

As described in Section 6.1.2 the editor names and editor IDs have to be saved since
they might not be available in the current runtime environment. The Editor Manager
is responsible for managing the list of all known editors. It also contains facilities
around the default editor.

� EditorDe�nition addEditor(EditorDe�nition editor): Adds a new
EditorDefinition to list of known editors. If an editor with that editor ID
already exists in the list it is not added to prevent duplicates. In this case the
already existing editor is returned instead. Since some methods may want to
work on the editor that was just added they can work on the returned reference
instead of having to perform a �nd to get the correct object.

� EditorDe�nition �ndEditorById(String id): Iterates through the list of
available editors and retrieves the one with the given ID. Since editors IDs are
assumed to be unique the �rst match is returned. This method is for example
used to build the list of schedules that work with the currently active editor.

� void removeEditor(EditorDe�nition editor): At some point the user may
decide that one of the editors is no longer used. In this case the editor is simply
removed from the list of available editors. However if the removed editor is the
default editor the method also has to choose a new default editor. The editor
of choice for simplicity is the �rst editor in the list. If the last editor is removed
a hard-coded default editor is restored.

When the user has �nished changing the editors, the manager can use the facilities
in the super class to save the list of known editors to the Eclipse preference store.

Default Editor

KIEMCon�g contains a facility for showing the list of schedules that match the cur-
rently active editor. However a situation may arise where no editor is opened. Since
the user should be able to keep working with his schedules in this situation there is
the need to de�ne a default editor. This editor will be assumed to be open when in
fact no editor is active.
Although the actual storing of the default editor happens inside the Con�guration

Manager the Editor Manager still supplies facilities to get and set the default editor.
This arrangement is more intuitive than having the methods inside the Con�guration
Manager.

6.2.5. Contribution Manager

The Contribution Manager is responsible for maintaining the view elements (see
Section 6.3.3) that are not part of any of the preference pages. To accomplish this
the manager has two tasks:

47

6. The KIEMCon�g plug-in

Listing 6.5: Implementation of the Contribution Manager

1 public ControlContribution[] provideToolbarContributions(final Object info) {
2 load();
3 List<ControlContribution> list = new LinkedList<ControlContribution>();
4 if (isRecentVisible) {
5 if (recentCombo == null) {
6 recentCombo = new ScheduleSelector(RECENT_COMBO);
7 }
8 list.add(recentCombo);
9 }

10 if (isMatchingVisible) {
11 if (matchingCombo == null) {
12 matchingCombo = new ScheduleSelector(MATCHING_COMBO);
13 }
14 list.add(matchingCombo);
15 }
16 return list.toArray(new ControlContribution[list.size()]);
17 }

1. The manager must create the view elements and store them. As described in
Section 5.1.1 the Execution Manager will ask KIEMCon�g for the list of items
it wants to contribute to the tool bar. The manager then has to create the list
with the saved view elements and forward it through the extension point.

2. As the user might want to hide the new elements the Contribution Manager
also has to keep track of the visibility of the elements. Showing and hiding the
components is realized in the following way:

� When the Execution Manager requests the list of control contributions
the Contribution Manager checks whether or not the given view element
should be visible. If it should not be shown on the tool bar it is not added
to the list and thus never reaches the tool bar.

� When the user changes the visibility of a given view element the manager
�rst updates its own representation of that information and triggers a save
into the Eclipse preference store through the use of the facilities in the
super class. After that the manager triggers a refresh in the Execution
Manager view which causes the method in the extension point to be called
which then receives the changed list.

This process is illustrated in Listing 6.5. It shows the Contribution Manager
creating and adding the components that should be visible and then returning them
to the caller.

6.2.6. Property Usage Manager

As described in Section 3.1.1 the user might not want to use the properties saved
in the currently loaded execution �le but rather the default values entered through

48

6.3. Preference Pages - the View

Figure 6.6.: The main preference page of the Execution Manager

the preference page. The Property Usage Manager is responsible for enabling the
Con�guration Manager to realize this feature.

To accomplish this task the manager contains a list of property keys for those
values that should be taken from the default con�guration. The list can be changed
by any other class when the user changes the preferences on which properties should
be in it. The list is also stored and loaded through the use of the facilities in the
Abstract Manager.

6.3. Preference Pages - the View

The view part of this project mostly consists of the preference pages for setting up the
di�erent aspects of KIEMCon�g. These preference pages use the technology described
in Section 2.1.2 which integrates them into the rest of the preference page framework.
The root page for the Execution Manager is added into the already existing tree of
preference pages for the rest of KIELER in order to make them easier to �nd.

6.3.1. Con�guration Page

On the main preference page of the Execution Manager shown in Figure 6.6 the user
can set up most of the default properties. The user can also change the visibility of
the ComboBoxes that display the recently used and matching schedules. The last
CheckBox is for enabling the advanced user mode.

In the normal user mode the ConfigDataComponent described in Section 6.1.1

49

6. The KIEMCon�g plug-in

Figure 6.7.: The page for de�ning custom properties

is not visible to the user. It is also automatically added to any new �le that is loaded
into the Execution Manager. While this behavior is �ne for the average user an
advanced user may want to have a little more control. An advantage of having the
component visible is that the user can reinitialize the current con�guration with the
values in the default con�guration by removing and adding the component in the
list.

User-De�ned Properties Page

Since there is a page to modify the internal properties of the Execution Manager
there also exists a preference page where the user can de�ne, edit and remove his
own properties (see Figure 6.7). These properties can then be accessed by any
DataComponent (or any other plug-in) through KIEMCon�g's API.

Since not much can be said about the nature of the user de�ned properties there
is no real format that can be chosen for an individual property. Thus all properties
are simply displayed in a table with a key and a value column.

The user is only allowed to edit the value column of previously de�ned properties.
This restriction is necessary to keep the user from accidentally changing keys that
are required by another users DataComponent.

However the user can remove a property that is no longer needed or de�ne his own
properties with a custom key.

50

6.3. Preference Pages - the View

Figure 6.8.: The Property Usage Dialog

Property Usage Dialog

Both of the previously described pages contain a button for accessing the Property
Usage Dialog. This dialog (see Figure 6.8) is used for selecting which properties
should always be taken from the default con�guration rather than the con�gura-
tion component contained in every execution �le. The dialog used for this is a
ListSelectionDialog which just receives the list of all keys as input. The list of
properties already stored in the Property Usage Manager serves as default selection.
After the user has �nished selecting attributes and hits the 'OK' Button the dialog
passes the new list of selected items back to the Property Usage Manager.

6.3.2. Scheduling Page

The Scheduling Page is used to manage the schedules and the editors that they
belong to. As mentioned in Section 4.1.1 this page is basically a modi�ed version of
the LayoutPrioritiesPage (see Figure 4.1) by Miro Spönemann.

As seen in Figure 6.9 the page is divided into two parts. The top part shows the
table, the bottom part the buttons for manipulating the table entries.

The table column headers show the abbreviated names of the editors (the tool
tip of each header will show the full name). Each column represents the priorities
that the di�erent schedules have for this particular editor. When the editor is active
in the Workbench view the list of matching schedules will be sorted in the order of
these priorities. The user can directly edit these properties in the table. For easier
readability the best schedule for each editor is marked with a dot() and the table
is sortable by clicking any of the column headers.

The editors and schedules that have a padlock() next to their name are the ones
imported through the default schedule extension point described in Section 6.2.3.
These editors and schedules are not supposed to be edited or removed since they
represent a factory default setting. The view realizes this by graying out the corre-

51

6. The KIEMCon�g plug-in

Figure 6.9.: The page for managing the schedules and editors

52

6.3. Preference Pages - the View

Figure 6.10.: The Editor Selection Dialog

sponding buttons when an imported schedule is selected.

All other schedules can be removed by simply clicking the appropriate button. The
button for editing the location of a schedule opens a dialog showing the currently
active Workspace and allows the user to select a new execution �le that should be
associated with the selected schedule. This feature is necessary in case the user
moves a schedule through his �le browser instead of the refactoring facilities on the
Workbench.

The editor marked with the dot is the default editor (see Section 6.2.4).

Adding and Removing Editors, Selecting a Default Editor

On the scheduling preference page there are routines for adding and removing editors
as well as selecting a default editor. All of these actions use the same basic method
for displaying an ElementListSelectionDialog that takes a list of editor IDs
and returns the one selected by the user. This means that all dialogs look basically
the same (see Figure 6.10). All dialogs have a list of elements to choose from. The
user can select exactly one element or choose to cancel.

� The editor adding dialog gets a list of all editors currently registered on the
active Workbench. The user can select a single editor which is then added to
the table.

� The editor removal dialog gets a list of all editors currently available for assign-
ment of support properties. The editor selected by the user is removed from
the table. It is also removed from all schedules. This is necessary to prevent
the schedule objects from growing to unnecessarily large size over time when
editors are getting added and removed.

53

6. The KIEMCon�g plug-in

Figure 6.11.: The Schedule Selection ComboBoxes

� The default editor selection dialog gets the same list as the removal dialog.
The selected editor is then used as default editor.

6.3.3. ScheduleSelector

The ScheduleSelector is the only view element which isn't shown on the pref-
erence pages. It is used to construct and manage the two ComboBoxes for loading
schedules that are known to KIEMCon�g. Each of the two ComboBoxes seen in Fig-
ure 6.11 has its own task.

� The Matching Selector: This ComboBox displays the schedules that can
be used with the currently active editor. The list is sorted by the priorities
assigned through the Scheduling Page described in Section 6.3.2. It displays a
header showing its purpose in order to distinguish it from the other ComboBox.

� The Recently Used Selector: This ComboBox displays the list of recently
used schedules. The list is sorted in the same order that the schedules have been
accessed through the Execution Manager. The maximum size of the list can be
con�gured through the main preference page of the Execution Manager. The
ComboBox displays the name of the currently loaded execution �le regardless
of how it was loaded. This was done because up till now there actually was no
way to tell which execution �le was loaded in the Execution Manager.

54

7. Conclusion

As stated in Chapter 3 the problem consists of two parts:

1. Find a way to add con�gurations to the existing execution �les. Additionally
�nd a way to allow the user the set up default preferences.

2. Make it easier to load previously saved schedules without having to locate the
execution �le in the Workspace.

The following sections will summarize the results and provide some ideas for future
work.

7.1. Results

The �rst task was to implement a way for execution �les to carry con�guration
properties. This was solved by creating a new type of DataComponent that stores all
properties and is accessed by KIEMCon�g when values for the properties are needed.
The newly created component is automatically saved with any execution �le that
wants to use the new feature.
Part of the �rst task involved enabling the user to manage a default con�guration

for the di�erent properties. This was realized through the creation of a set of prefer-
ence pages. These pages allow the user to manage the properties and even override
the ones stored in the execution �le.
The last objective concerned the actual loading of the execution �les. A way had to

be found in order to make loading the �les easier and provide �ltered perspectives on
all known �les. This was accomplished by providing the user with two ComboBoxes
that contained a subset of all known execution �les. One ComboBox is used to load
the most recently used �les while the user contains �les that probably work for the
currently active editor.

7.2. Future Work

Although all initial goals of this thesis were met there are still some ideas left which
could solve as a basis for further study.

7.2.1. Eclipse Run Con�gurations

The Eclipse framework provides a very comprehensive system to run di�erent mod-
ules. This is used to execute Java programs or to start a new Eclipse application but
there are a variety of other applications as well.

55

7. Conclusion

The entire Execution Manager could be refactored into using that runtime mech-
anism instead of setting up a run through the now present KIEM view. This means
that the table that shows the DataComponents has to be moved to a new run con-
�guration page.
The controls for pausing, resuming, stopping and stepping through the execution

have to be moved somewhere else as well, possibly the DataTable.

7.2.2. Improve Storage Options

Currently DataComponents as well as the preference mechanism only allow the use
of Strings to store the preferences. This means that all primitive data types can
more or less be stored by conversion to a String. However more complex objects
can't be stored without serializing them into a String and parsing them again on
load.
A future project could try to �nd a way to overcome that limitation by allowing

objects that implement the Serializable interface to be stored as well.

7.3. Summary

All in all the initial problem of providing a means to storing additional con�guration
information in an execution �le as well as providing a mechanism for providing a
default con�guration was solved. In addition to that the second objective which
involved �nding a way to make it easier to load previously saved schedules was also
completed.
However there is still a lot of basis for further work on the concepts of this project

and on the concept of the Execution Manager in general. One of the projects that
extends the Execution Manager in general is described in the next part of this thesis.

56

Part II.

Automated Execution

57

8. Used Technologies

In addition to the technologies used in the �rst part of this thesis (see Chapter 2)
other Eclipse technologies will be used as well.
The next sections will describe these technologies and give some examples of their

usage in the standard Eclipse application. The technologies described here are the
following:

� The Job: The Eclipse Job is a mechanism for very long running tasks.

� The Wizard : The Wizard is a method for helping the user to set up complex
tasks.

This chapter also includes a section about some related work.

8.1. The Job

The Eclipse Job API provides the means to schedule very long running tasks. It uses
a Thread to run the actual task and contains a ProgressMonitor to show the
progress of the task. Since it is a task that can run independently of the current state
of the Workspace it can also be run in the background if the user desires this. An
example for the use of jobs in the normal Eclipse architecture is the Subversion (SVN)1

commit operation seen in Figure 8.1. An SVN commit involves sending a possibly
large amount of �les to a remote location over a network connection. That operation
might take a very long time. Furthermore there is no reason to prevent the user from
continuing to work while the �les are sent which means that the job can be run in
the background.

8.2. Eclipse Wizards

Wizards are used to guide the user through the process of creating complex items by
taking the information in a structured way and then generating the item from it. A
wizard is basically a multi-page dialog with each page representing one step in the
creation of the desired item.
One example inside the Eclipse Architecture is the JavaClassCreationWizard

as depicted in Figure 8.2. Normally a user would have to open a text �le and enter
the entire Java code by hand. However if the wizard is used the user only has to
select the class he wants to extend and the interfaces he wants to implement and

1http://subversion.apache.org/ Retrieved 2010-03-08

59

http://subversion.apache.org/

8. Used Technologies

Figure 8.1.: The SVN commit job

activate one check box. The wizard will create the class body, all required methods
and comments for each element (see Listing 8.1). This makes it very easy to create
new classes without knowing the exact syntax even for inexperienced users.

8.3. Related Work

Many IDEs for software include automated validation tools. In the context of Eclipse
and Java the JUnit2 tests come to mind. However these tools are not as closely
related to the project of this thesis as the ones described below.

8.3.1. KEP/KREP Evalbench

The evaluation tool for the KIEL Esterel Processor (KEP) and the KIEL Reactive
Esterel Processor (KREP), the so called Evalbench, is very similar to the automated
execution plug-in of this thesis.
The KEP Evalbench is a standalone application that is used to evaluate and debug

the KEP programs [4]. It contains facilities to automatically simulate a batch of
programs through a command line interface.
This is very similar to the problem of this thesis since an entire model �le can

be evaluated automatically. However in order to evaluate multiple model �les the
command line version still has to be invoked multiple times.
The successor of the KEP Evalbench is the KREP Evalbench. It is fully integrated

into Eclipse and the KIELER project [5]. It uses a table to display the results of
the automated evaluation. The KREP Evalbench can verify the contents of an entire
folder by executing all programs and traces in it (see Figure 8.3). The KREP Eval-
bench already o�ers a functionality that is very close to achieving the task of this
thesis. However it is still limited to the context of the KREP and one program can
not receive multiple trace �les.

2http://www.junit.org/ Retrieved 2010-03-08

60

http://www.junit.org/

8.3. Related Work

Figure 8.2.: The Class Creation Wizard

61

8. Used Technologies

Listing 8.1: Code generated by the wizard

1 package test;
2

3 import org.eclipse.jface.action.ControlContribution;
4 import org.eclipse.swt.widgets.Composite;
5 import org.eclipse.swt.widgets.Control;
6

7 public class MyClass extends ControlContribution
8 implements Runnable {
9

10 /**
11 * Creates a new MyClass.java.
12 *
13 * @param id
14 */
15 public MyClass(String id) {
16 super(id);
17 }
18

19 /**
20 * {@inheritDoc}
21 */
22 @Override
23 protected Control createControl(Composite parent) {
24 return null;
25 }
26

27 /**
28 * {@inheritDoc}
29 */
30 public void run() {
31 }
32

33 /**
34 * @param args
35 */
36 public static void main(String[] args) {
37 }
38 }

62

8.3. Related Work

Figure 8.3.: The KREP Evalbench verify view

63

8. Used Technologies

64

9. Problem Statement

The objective of this project is to �nd a way to automate the execution runs of the
Execution Manager as described in the diploma-thesis of Christian Motika[1].
Currently the Execution manager works in a way that the user manually sets up a

new execution run or loads a saved execution �le. The DataComponents then have
to gather all information they need themselves like model �les, trace �les and so
on. Since there is no generic way to do that, this information is either hard-coded
into the components or entered manually through the properties. After that the
user has to manually control the execution. The execution runs until the user or a
component stops it. The user then has to manually set up another execution run.
This could even involve rewriting his components if the model �les and trace �les
are hard-coded. This is very unsatisfactory if you have a large number of model �les
that should be tested with a one or more execution �les and possibly hundreds of
trace �les.
Manually performing runs with that amount of �les is very undesirable as even

with the automation in place it would take several hours.
The task resulting from this problem can be broken down into four parts which

are explained in detail in the following sections:

1. The setup of an automated run by the user.

2. The input of all the necessary information.

3. The control �ow of the automated run.

4. The gathering of information after the run has �nished and the display of that
information.

9.1. Setting up a Run

The �rst objective is to �nd an easy way for the user to e�ciently set up an auto-
mated run. This involves selecting the model �les and execution �les needed for the
automation as well as entering initial properties.

9.2. Input for the Automation

The second objective is to enable the DataComponents to receive inputs. Each
component should receive all information it needs prior to each execution run in
order to make the components more dynamic. This mechanism would ensure that

65

9. Problem Statement

components can be written in a more generic way than currently possible. We will
have to de�ne an API for this information-passing process as well as an API to let
other plug-ins trigger an automated execution.

9.3. Automate the Execution

The third objective is to automate the control �ow of the execution itself. This would
involve the following:

1. Loading the desired execution �les, model �les and trace �les.

2. Determining how many steps should be performed and running the execution
up the desired step.

3. Gathering the information produced by the components.

4. Properly shut down the execution so that a new one can be started.

9.4. Output Execution Results

The last objective is to display the information in a meaningful way. This should
involve at least two methods of output:

1. A formatted String, possibly in an XML fashion, that can be parsed and
used by other plug-ins for automated analysis.

2. Some graphic component that will display the information in a way that is easy
to read for most users.

9.5. Application Examples

This section gives some examples of the possible applications for the new plug-in.

9.5.1. Application in Teaching

One of the possible applications of the newly created plug-in can be found in the
context of teaching itself. A group of students may receive the task to create a
SyncCharts model that implements a certain functionality. The instructor would
then have to manually look at each model and check it does indeed conform to the
speci�cations. If the group of students is su�ciently large this could take a long
time.
However with KIEMAuto plug-in the instructor only has to de�ne a set of trace

�les which are then used to test the di�erent functionality. The entire evaluation
of the students models can then be achieved in a matter of minutes with minimal
interaction from the instructor.

66

9.5. Application Examples

9.5.2. Application in Arti�cial Intelligence

Another application could be in the �eld of Arti�cial Intelligence (AI) speci�cally in
the training of an Arti�cial Neural Network (ANN). ANNs are basically build like the
human brain. They consist of a net of synapses with each synapse triggering con-
nected synapses when a certain condition arises. This training is usually realized by
providing a set of inputs with the expected outputs and feed them into the ANN. The
network then runs the inputs through its net of synapses and compares the created
outputs to the expected ones. After that the network will then adjust the conditions
at which the synapses trigger their neighbors in order to match the expected outputs.
This process continues until the ANN has received su�cient training and can more
or less reliably generate correct outputs for inputs which don't exactly match the
training inputs.
This process could easily be automated through the use of the KIEMAuto plug-in.

A DataComponent has to be implemented which manages an ANN it receives in the
form of a model �le. The only thing to do would be to run the trace �les through
the model �le during the automated execution and adjust the model �le after each
iteration.

67

9. Problem Statement

68

10. Concepts

This chapter presents the conceptual solution to the problems described in Chapter 9.
The chapter will start by o�ering a few possible options for the user to set up an

automated execution. It will continue by providing alternatives of how DataCompo-
nents receive the necessary information prior to each run. The next section explains
how the actual control �ow throughout the automation will be handled. In the last
section some possibilities for user-friendly output are presented.

10.1. Setting up a Run

There are several possibilities of how to solve the problem of accumulating large
amounts of information prior to a long running action.
The �rst possibility would be to have the user store the paths to the necessary

�les in a �le (see Listing 10.1). The automated execution would then have to parse
this �le and start a run with the parsed information. While this is a good method
for performing static runs from a console environment it has several disadvantages
inside the GUI of an Eclipse application:

� Manually entered �le names are prone to have erroneous information. It is
very hard to manually enter the correct �le name of any �le and the entered
location only works on one Operating System (OS). Aside from that it takes a
long time to manually enter the possible vast amount of �les used.

� There is no way to quickly adjust the �le if other models or execution �les
should be used.

Listing 10.1: Example for automation input through a text �le

1 execution files:
2 /execFiles/synccharts.execution;
3 /execFiles/synccharts2.execution;
4 /execFiles/krep.execution;
5 /execFiles/test.execution;
6

7 model files:
8 /krepModels/abro.kasm
9 /krepModels/runner.kasm

10 /syncchartsModels/group01.kixs
11 /syncchartsModels/group02.kixs
12 /syncchartsModels/group03.kixs
13 [...]
14 /syncchartsModels/group21.kixs

69

10. Concepts

� It also means more �les cluttering up the Workspace.

� It is not very intuitive and the user has to know the exact syntax that the
execution needs.

Another approach is the selection of the �les through a dialog. Here the �rst
option is to write a new dialog from scratch. While this option ensures �exibility
since only the elements that are really needed are on it in exactly the way they are
needed there are still some disadvantages:

� It involves a lot of work since every widget has to be manually placed on the
dialog.

� It involves even more work to get the layout of the dialog just right.

� A manually created dialog is unlikely to be reusable by other programmers.

A more comprehensive approach would be to use one of the dialogs provided by
Eclipse speci�cally the wizard type dialog. Eclipse itself uses a host of wizards as
explained in Section 8.2. The wizard has several advantages over the other methods
explained above:

� Even inexperienced users can be guided to set up a valid execution run.

� The entered information is most likely valid since the wizard only displays valid
�les.

� It is quicker to program and easier to adjust than any of the other methods.

� The wizard can easily be extended by adding new pages to it.

10.2. Input for the Automation

In order to send information to the DataComponents (see Section 2.2.1) the �rst
decision must consider the form of the information that will be supplied.
A list of key, value pairs supplies the greatest �exibility while still being very

generic and simple to read and write on. This list of properties will at least include
the path to the model �le (see Section 2.2.4) in order for components to be executed
with several di�erent model �les without having to alter the code between runs.
The next decision involves how the components are getting the information. The

�rst possibility would be to have the component ask the plug-in for the information
in question. The upside of this would be that components are sure to get all the
information they need before the execution can start since they can keep asking
for it. However this would likely mean that the component has to poll multiple
times as it has no knowledge about when the required information will be available
which constitutes additional workload. Furthermore this situation would likely mean
that multiple components might request information at the same time. This means

70

10.3. Automate the Execution

Figure 10.1.: The basic control �ow for the automation

that there would be the need for substantial synchronization mechanisms to ensure
consistency of data.

Therefore the way chosen in this thesis is that the Execution Manager will in-
form interested components about all properties that were accumulated and then
starts the execution run. This ensures that a run is started in any event and keeps
communication between the components and the manager simple.

10.3. Automate the Execution

Figure 10.1 show the basic control �ow for the automation:

1. The automation will iterate over all supplied execution �les. These are likely
the most time consuming to load which means loading an execution �le multiple
times should be avoided.

2. With each execution �le the automation will iterate over all model �les. Model
�les are costly to load as well however each load of an execution �le would mean
that all DataComponents would not be able to store their saved properties
either way which in turn means they would have to reload the model anyway.
For this reason the model �les will be loaded once for every execution �le.

3. With each model �le the automation will perform multiple runs. That means
starting a run in the execution manager and performing a certain number of
steps and the stopping the execution again. With each run the components get
the chance to execute a few steps with di�erent properties, for example trace
�les. These runs will be called iterations from this point forward.

Automating the execution itself requires the plug-in to interact with the Execution
Manager. There is already an API de�ned for loading an execution �le by supplying
a path so that is what will be used in this project. It is then necessary to initialize

71

10. Concepts

the execution and step through it using the API methods provided by the Execution
Manager. For this the EventListener extension point (see Section 5.1.3) of the
Execution Manager can also be used in order to determine when a step has �nished
executing and a new one can be dispatched. After the execution has �nished all
components should be called again to be given a chance to provide information for
the display in the next step. This information will be gathered in the same form and
way as described in Section 10.2.

10.4. Output Execution Results

On the subject of displaying the information several options are available.
The �rst option would be to open a dialog once the execution has �nished and

display the results in a tabular manner. This has the advantage that the users
attention is immediately caught when the run �nishes. However pop-up boxes should
be used only when something very important happens and only with small messages
as they tend to interrupt the users work �ow. Aside from that the user might want
to look at the results from the execution and compare them with the actual model.
An opened dialog is usually blocking the users view at the rest of the IDE. Dialogs
should only contain minimal information since the user usually tries to dismiss them
as fast as possible to continue working on his project.
The option taken in this project will utilize the view mechanism provided by

Eclipse. As described in Section 2.1 a view is used to display content that was
created elsewhere. Therefore it is the logical choice for displaying the information
created by the automated execution. This approach ensures that the user can place
the displayed results where he wants them to be. It also makes it possible for the user
to run an execution multiple times and compare the results by having them displayed
in multiple views or next to each other in the same view. Another advantage of the
view concept is that it provides a tool bar for adding actions. The user might want to
control the automated run during its execution or interact with the displayed results.
While a static dialog would have di�culties providing the control elements for those
actions a view can easily display them in the tool bar.

72

11. Interaction with the Execution

Manager

In order for KIEMAuto to operate successfully there were no changes necessary beyond
the ones described in Chapter 5. However the newly created plug-in uses many of
these features and could not achieve its objectives without them.
KIEMAuto uses the event listener extension point (see Section 5.1.3) to get noti�ed

about events occurring during the current execution run. This involves receiving
information about the completion of a step or user- and error-triggered termination
or the currently active execution.
It also uses the tool bar contributor extension point (see Section 5.1.1) to add new

control elements to the Execution Managers tool bar.

73

11. Interaction with the Execution Manager

74

12. The Automated Executions

Plug-in

This chapter describes the Automated Execution plug-in that is responsible for han-
dling the setup, control �ow and display of an automated execution run. The plug-in
is structured according to the model-view-controller pattern shown in Figure 12.1.
However this is not the structure that this chapter will use to describe it. Instead
this chapter will follow the structure already used in the previous chapters of this
part of the thesis. This means that the chapter will consist of four parts:

1. The setup of an automated execution run with a description of the wizard.

2. The input to the automated execution. This section will describe the newly
created interface.

3. The control �ow of the automation with the Automation Job and the Automa-
tion Wizard.

4. The output of the automation run. In this section the new view and the results
structure will be described.

12.1. Automation Setup Wizard

As described in Section 10.1 an Eclipse wizard will be used to set up the automated
run. For easy access the button for opening the wizard () is located on the tool
bars of both the Execution Manager and the Automated Execution view.

Figure 12.1.: The components of KIEMAuto in the MVC pattern

75

12. The Automated Executions Plug-in

Figure 12.2.: The Wizard Page for selecting the input �les for an automated run

The Automation Wizard consists of two pages:

1. The FileSelectionPage for selecting all �les that should be involved in
the automated run.

2. The PropertySettingPage for de�ning custom properties that the compo-
nents should receive prior to each iteration.

12.1.1. FileSelectionPage

The FileSelectionPage shown in Figure 12.2 is used to select the model �les
and execution �les that should be used for the automated run.
Since Eclipse already provides a variety of wizard pages it can be avoided to write a

page for a complex task like this from scratch. The wizard that can be modi�ed to �t
the needs of the task at hand is the standard Eclipse ResourceImportWizard. It
is normally used to select a number of �les and folders for import into the Workspace.
It provides a structured view where entire folders can be selected, �les can be �ltered
by their type and additional space is available for other buttons. In this project the
�les will be 'imported' into the automated execution. This is similar enough to make
it possible to use the wizard with a few modi�cations and extensions.
As it should be as easy as possible to set up a run for the user it would be desirable

that he doesn't need to select all the �les each time the wizard is opened. For this
reason the selection will be saved into the Eclipse preference store every time the
wizard is closed. The next time the wizard is opened the selection only has to be

76

12.1. Automation Setup Wizard

retrieved from the preference store and passed to the ResourceImportWizard
super class.

KIEMCon�g allows for execution �les to be linked into the Workspace through an
extension point. This is a useful feature for adding factory defaults and as such
KIEMAuto naturally wants to be able to use these execution �les as well. However
since these �les are not in the Workspace they can't be selected through the main
area of the wizard page. In order to select these �les anyway a simple list selection
dialog can be accessed through the button at the bottom of the page. The dialog
displays all schedules imported through the extension point and allows the user to
select any number of them.

The hard part is how to �gure out whether or not the user has selected valid �les
for an automated run. Recognizing selected execution �les can simply be done by
looking at the �le extension. However determining whether the user selected valid
model �les that will work with the selected execution �les is somewhat di�cult. One
possibility would be to use the priority system in KIEMCon�g in order to determine the
validity of the combinations. However this would assume that all selected execution
�les are known to the plug-in and that the user set priorities for each of them. At
this point it is for the sake of simplicity assumed that all selected �les that have
an extension other than 'execution' are model �les. Precautions to avoid running
invalid combinations of model �les and execution �les are described in Section 12.2.

The dialog will only allow the user to proceed if at least one execution �le or
imported schedule and one model �le is selected. Otherwise an error marker will be
displayed in the page header.

12.1.2. PropertySettingPage

The second wizard page shown in Figure 12.3 allows the user to enter some custom
properties for the automated run. Unlike the �rst page this one doesn't extend a
particular wizard page but rather the generic wizard page that only supplies the
header and the button bar at the bottom of the page.

The user can add an arbitrary number of panels for adding new key, value pairs
through the button at the top of the page. These values will be added to the list
that is passed to all DataComponents before each iteration and the values can be
retrieved by looking for the key.

Since these properties are completely optional there are requirements for �nishing
this page. This means that due to the wizard nature of the dialog the user doesn't
even have to look at that page at all but can �nish directly from the �le selection
page.

As with the �le selection page the user input will also be stored as soon as the
wizard closes and the properties restored on the next opening of the wizard. The
upside of this is that the user saves considerable work by only having to enter the
properties once. However the downside is that the user might not realize that the
properties are still set if he �nishes the wizard directly from the �rst page. The only
way to avoid this situation would be to force the user to look at the second page.

77

12. The Automated Executions Plug-in

Figure 12.3.: The Wizard Page for setting up user de�ned properties

This is however very undesirable since the second page is likely to be used only by
advanced users anyway and the average user wouldn't want to see it.

12.1.3. Information Processing

After the user is �nished with the wizard all information has to be collected in order
to set up the automated run. This involves the following steps:

1. Gather the model �les selected on the �le selection page.

2. Get the paths for the execution �les. This might involve retrieving the paths
from the schedules imported through the extension point if the user selected
any of those.

3. Get the list of key, value pairs that should be added to the automated run from
the second wizard page.

4. Invoke the Automation Manager described in Section 12.3 with the gathered
parameters.

12.2. Automation Input

This section describes how DataComponents were enabled to receive input prior to
each part of the automated run. To accomplish this task new interfaces had to be
created in order to allow KIEMAuto to interact with the components.

78

12.2. Automation Input

Listing 12.1: Implementation example of an Automated Component

1 public void setParameters(List<KiemProperty> properties) {
2 String model = null;
3 for (KiemProperty p : properties) {
4 if (p.getKey().equals(MODEL_FILE)) {
5 model = p.getValue();
6 }
7 }
8 if (model != null) {
9 modelFile = Path.fromOSString(model);

10 }
11 }
12

13 public int wantsMoreRuns() {
14 return traceFileList.size() - currentIterationIndex;
15 }
16

17 public int wantsMoreSteps() {
18 return traceList.hasNext() ? 1 : 0;
19 }
20

21 private static final String[] SUPPORTED_FILES = {"strl", "kixs"};
22

23 public String[] getSupportedExtensions() {
24 return SUPPORTED_FILES;
25 }

12.2.1. Automated Component

An automated component is any DataComponent (see Section 2.2.1) that is designed
to be used with the automated execution plug-in. An automated component has to
provide the following methods:

� String[] getSupportedExtensions():
This method is used in order to avoid the automated run encountering errors
while trying to simulate invalid combinations of model �les and execution �les.
As soon as any execution �le is loaded the method will be called on each of the
implementing DataComponents. The component should answer with a list of
�le extensions of the model �les that they can simulate. Model �les that no
component in the currently active execution �le can simulate will be skipped.

� void setParameters(List<KiemProperty> properties) throws Kiem-
InitializationException:
This method enables components to receive information prior to each execu-
tion run. The list is implemented as an array of key, value pairs stored inside
KiemProperty objects. At the very least the list contains the location of
the model �le and the index of the currently running iteration. This allows
components to load additional �les that are always in the same path as the ex-
ecution �le and determine which of those to load based on the iteration index.
The custom properties that the user de�ned through the wizard for example

79

12. The Automated Executions Plug-in

Listing 12.2: Implementation example of an Automated Producer

1 public List<KiemProperty> produceInformation() {
2 List<KiemProperty> res = new LinkedList<KiemProperty>();
3 res.add(new KiemProperty("Est. Reaction Time", assembler.getTickLen()));
4 res.add(new KiemProperty("Reaction Time", "{" + minRT + "/ "
5 + (steps == 0 ? 0 : rt / steps) + "/" + maxRT + "}"));
6 return res;
7 }

are also added here. If the component encounters an error during at this point
because for example a model �le could not be loaded it should respond by
throwing the declared Exception.

� int wantsMoreSteps():
This method is called before the Automation Manager performs the �rst step.
All components will be asked how many steps they are likely to need for their
execution run. The maximum of these values will be taken and the execution
will perform the requested number of steps. After that the components will be
asked again and so on. The process stops when all components answer with
zero.

� int wantsMoreRuns():
This method works analog to the wantsMoreSteps() method in the context
of entire execution runs. It is used to determine how many iterations should
be performed with the given combination of execution �le and model �le.

To illustrate the usage of the methods described above an implementation example
is shown in Listing 12.1. The example shows that the DataComponent is able to
process two di�erent model �le formats (kixs and strl). As soon as the automated
execution provides the component with the parameters through the corresponding
method, the component will look for the model �le and store the path. The step()
method which is not shown in this example may perform some actions on the re-
trieved model �le. The example component also contains a trace �le list which
contains traces. The two methods wantsMoreRuns() and wantsMoreSteps()
return the desired number of steps/runs based on the information in these lists.

12.2.2. Automated Producer

The Automated Producer interface extends the Automated Component interface
described in the previous section. In addition to the inherited methods it provided
one additional method.

� List<KiemProperty> produceInformation():
This method is called after an iteration has �nished and asks the components
if they want to publish any information about the results of their execution.

80

12.3. The Automated Run

This information is gathered by the plug-in and the accumulated results are
either passed to the calling plug-in or displayed in the specially designed view
(see Section 12.4).

The component is free to publish any amount of information using any of
the di�erent KiemProperty types. However the number and order of the
properties in the list has to stay the same through all iterations with one
execution �le. This restriction is necessary in order to be able to build one
large table rather than many small ones.

An example for the implementation of an Automated Producer can be seen in List-
ing 12.2. The example shows how information accumulated through one execution
run is packed into KiemProperties and then returned to KIEMAuto.

12.3. The Automated Run

The Automation Manager is the key part of the automated execution. It manages
the control �ow throughout the entire automated execution and its public methods
are part of the plug-ins API. The reason for this is that the automated run can be
initiated without the use of the wizard by any other plug-in.
The next sections will give a detailed description of the control �ow during the

automated execution. The API methods to initiate a new automated execution are
located inside the Automation Manager. However since those methods immediately
create a new Automation Job and schedule it right away the �rst section will explain
the Automation Job.
Section 12.3.2 will then proceed to describe the entire control �ow that is managed

by the Automation Manager.
In Section 12.3.3 the Cancel Manager will be described which is responsible for

triggering a premature termination of the entire automated execution or parts of it.
The last section will describe the modi�cations to the ErrorHandler in order to

ensure a smooth run of the automation.

12.3.1. Automation Job

The Automation Job shown in Figure 12.4 is used to run the automated execution. It
uses the Job technology described in Section 8.1 in the form of a WorkbenchJob.
This special kind of Job can execute parallel to the normal operation of the GUI

without blocking it. It also comes with a progress monitor that is updated by the
Automation Manager through the course of the automated execution. Since an
automated run can take a very long time the user can also tell the Job to run in the
background while still being able to get feedback about it through Eclipse's progress
view.
Upon creation the Automation Job takes all the parameters necessary for the

automated execution. After that it opens Execution Manager view in order to load
all necessary plug-ins before the actual run starts. The Job then creates a new

81

12. The Automated Executions Plug-in

Figure 12.4.: The Automation Job showing the progress of an automated run

Thread and initiates the automated execution inside the Automation Manager. At
the end it tells the calling Thread that it's returning asynchronously in order not
to block any callers.
The dialog showing the progress monitor is not only used to get feedback about

the progress of the task. It can also be used to cancel the execution prematurely for
example if the user realizes that he selected the wrong �les.

82

12.3. The Automated Run

Figure 12.5.: The control �ow during the automation

12.3.2. Automation Manager

The Automation Manager is responsible for handling the entire control �ow during
the automated execution. Figure 12.5 illustrates this control �ow which will be
described in this section.

The Automation Manager takes the execution �les, model �les and other properties
as arguments and organizes the entire run based on the available information. During
the run the Automation Manager also collects the information that will be displayed

83

12. The Automated Executions Plug-in

as results by the view.

1. Initiate Progress Monitor : The Automation Manager starts by initializing
the progress monitor that displays the progress of the automated execution.
The displayed message of the monitor is set up and the total length of the
execution is calculated in order for the progress bar to be displayed.

Since a priori only the number of execution �les and model �les is known
these are the only variables that can be used. If more than one execution �le
and one model �le are used the progress monitor will display a progress bar
that advances with each completed model �le. However this method would be
meaningless if only one execution �le and one model �le are used. In this case
the progress bar will just show that progress is occurring at all.

2. Save Current Execution File: In this step the Automation Manager stores
the path of the execution �le that is currently opened inside the Execution
Manager. The reason for this is that the user might want to continue working
on that �le after the automated execution has �nished. If the �le wasn't stored
he would be left with the last execution �le that the automated run simulates.
The �le is restored in Step 21.

3. Initiate CancelManager: The next step is to initiate the Cancel Manager
described in Section 12.3.3. This also involves registering as listener on the
modi�ed ErrorHandler (see Section 12.3.4) to prevent most Exceptions
from interfering with the automated run.

4. Check Execution File: Since all parameters for the automated execution
have been set up now the Automation Manager can start working on the �rst
execution �le. The �rst thing to do here is to open the execution �le inside the
Execution Manager. If this fails the automation writes an entry into the error

84

12.3. The Automated Run

log and proceeds to the next execution �le. Otherwise it proceeds to the next
step. If all execution �les have �nished the automation will skip to Step 20.

5. Execution File Setup: The next step is to initiate all variables that are
needed for the currently active execution �le. The manager �rst asks the view
to create a new table to display the results that the execution will produce.
After that, all components will be asked for the list of model �le extensions
that they support (see Section 12.2.1).

6. Check Model File: With the information about the supported model �le
extensions gathered in the previous step the automation can start to examine
the �rst model �le. If any component in the current execution �le supports
the given model �le the automation proceeds to the next step. Otherwise it
skips to the next model �le. If all model �les on the current execution �le have
�nished it will proceed to Step 4 with the next execution �le.

7. Notify Observers: The �rst thing that happens when the Automated Man-
ager decides that a model �le should be simulated is that all Automated Com-
ponents will be noti�ed with the list of parameters.

This method iterates over all components and provides them with the list of
user de�ned properties that were passed to the automated execution. The list
also includes the path of the current model �le and the index of the current
iteration. Some components may choose to write information back into the
list in order to communicate with other components. Therefore the list will
be passed to all components twice if the size changed between after the �rst
noti�cation.

8. Number of Runs: Since the components now have all the necessary infor-
mation for the �rst iteration they might already be able to approximate how
many iterations they want to execute. Therefore all components will be asked
through the methods provided in the interface and the maximum value used.

At this point all components may decide that they don't need any runs at all.
The automation will then add a new result to the panel displaying that fact.
After that the automation will continue on Step 6 with the next model �le.

85

12. The Automated Executions Plug-in

If any component answers with a non-zero value the automation will move to
the next step and perform at least that many iterations, baring user cancella-
tion of course.

9. Check Iteration: Since set up of the model �le has now �nished the automa-
tion now checks if an iteration should be executed. It �rst checks whether
the number of remaining iterations has reached zero in which case no compo-
nent requested another run. It then checks whether the current model �le was
skipped through the Cancel Manager (see Section 12.3.3). If both checks turn
out to be negative it proceeds to the next step after decrementing the amount
of remaining iterations. If one of the checks hold true it continues on Step 6
with the next model �le.

10. Iteration Setup: In this step the Automation Manager sets up all parameters
that are needed for the current iteration.

It starts by updating the text in the progress monitor in order to re�ect the
current status of the automation. The displayed text shows the current model
�le and execution �le, the iteration index and how many iterations are to be
expected based on the value retrieved from the components.

After that the manager adds a new row to the resulting table inside the view
(see Section 12.4). This has to be done at this stage in order to show the status
of the currently executing iteration before it has �nished.

Before the execution can proceed the components �rst have to be passed the list
of parameters including the current iteration index. This process is performed
by the same method as described in Step 7.

After all the preparations have been completed the automation proceeds to the
next step.

11. Initialize Execution: The next step is to access the Execution Manager
itself in order to initialize the execution. The Execution Manager will set up
all DataComponents and create the Thread in which the execution is run.

86

12.3. The Automated Run

If an error occurred at this stage the automation will skip to Step 16. An error
can be caused by any of the DataComponents during their initialization phase
or by the Execution Manager itself if the execution �le can be loaded but not
executed.

If the initialization was successful the Automation Manager continue to the
next step.

12. Initial Number of Steps: Before the automated execution can begin to
step through the execution it has to ask the components if any steps should be
performed. Due to some results from previous iterations the components might
decide that they don't need to simulate a particular trace �le, for example. In
this case they need an opportunity to notify the Automation Manager of these
circumstances which will be done in this step.

The Automation Manager will ask each Automated Component how many
steps they expect to need for their execution (see Section 12.2.1). The max-
imum of all components will be taken and at least that many steps will be
performed before asking again.

13. Check Execution: With the information of the previous step the Automated
Manager will determine whether or not the execution should resume. It �rst
checks if the number of requested steps has reached zero. After that it checks
if the Cancel Manager requests a cancellation of the current iteration. If one
of these conditions hold true the automation will skip to Step 16. Otherwise it
will continue to the next step.

14. Perform a Step: The Automation is now ready to perform a step in the
Execution Manager. However it �rst resets the timeout in the monitoring
Thread inside the Cancel Manager. The Thread will abort the current step
if the timeout is reached.

After that the Automation Manager tells the Execution Manager to perform
a step. Since that method returns asynchronously in order not to block any
callers. The Automation Manager will lock itself inside a Semaphore after
the asynchronous return.

It will wait inside the Semaphore until one of the following events occur:

� The Cancel Manager determines that a timeout is reached, an error oc-
curred or the user cancels the current iteration. In this case the automa-
tion will skip to Step 16.

87

12. The Automated Executions Plug-in

� The Execution Manager has �nished processing the step and noti�ed
the Automation Manager through the extension point described in Sec-
tion 5.1.3. In this case the automation proceeds to the next step.

15. Number of Steps: After the step was successfully executed the Automation
Manager has to check if more steps should be performed. If at this stage the
number of remaining steps has reached zero and the iteration was not can-
celed by the Cancel Manager the Automated Manager will ask all Automated
Components how many more steps they need to perform (see Step 12).

If more steps should be performed the Automation Manager will proceed to
Step 13. Otherwise the current iteration will be paused and wrapped up in the
next step.

16. Iteration Wrapup: This phase will be executed if the iteration was completed
successfully or an error occurred. In any case some wrap-up has to be performed
in order to allow the next iteration to be performed or to tidily shut down the
entire execution.

The cleanup will start by terminating the Thread that watches for timeouts
during the currently executing step and user cancellations. This has to be done
because the wrap-up code should not be interrupted.

After that all Automated Producers (see Section 12.2.2) will be asked to publish
their results. The accumulated results together with the index of the last step
will be forwarded to the view in order to update the table (see Section 12.4).

As soon as the results were retrieved from all components the current execution
inside the Execution Manager is no longer needed. The Automation Manager
triggers the synchronous stop of the paused execution. This will cause the
Execution Manager to terminate all worker Threads and get ready for the
next execution that has to be run.

17. Iteration Finished: If the iteration completed without an error the status
will be set to �Done�. If the counter for the remaining iterations has reached
zero the components will be asked if they want to perform more iterations by
the same method as in Step 8.

If more iterations should be performed the iteration index is incremented and
the automation proceeds to Step 9. Otherwise the Automation Manager pro-
ceeds to �nishing the current model �le in the next step.

88

12.3. The Automated Run

18. Model File Finished: Since all iterations for the current model �le have been
�nished the automation will perform the progress monitor of that fact which
will cause a progress bar to advance.

If there are more model �les to simulate under the current execution �le the
automation will return to Step 6.

19. Execution File Finished: At this point the automation has �nished with
the last model �le under the current execution �le. If there are more execution
�les to be loaded the Automation Manager will return to Step 4.

20. Automation Finished: Since the entire automated execution has now �n-
ished another wrap-up stage has to be initiated.

First the Automation Manager will remove the listener on the ErrorHandler
that was added on Step 3. Since the automation has �nished there is no further
need to block pop-up messages and unnecessarily interfering with the error
messages of other plug-ins should be avoided.

After that the progress monitor will be informed that the job was �nished.
This will cause the dialog to disappear.

21. Restore Saved File: The last thing to do before the Automation Job can
terminate is that the �le stored in Step 2 is opened in the Execution Manager.
This is done in order to allow the user to continue his previous work.

After the Automation Manager has �nished the entire automated execution the
user can look at the complete results in the view or export them into an external
format (see Section 12.4).

12.3.3. Cancel Manager

The Cancel Manager is responsible for initiating a premature termination of any part
of the automated execution. There can be multiple reasons for such a process to be
necessary. For example, the user is monitoring the automation himself and decides
that he wants to skip a part of it or cancel the entire operation. Another reason would
be that an error occurred or a timeout was exceeded. These cases can't be detected
by the Automation Manager itself. Therefore the Cancel Manager launches another
Thread that keeps checking for any of the cancellation criteria to hold. However the
manager will not perform a hard cancellation of the Automation Manager's Thread.
This option was not chosen because no cleanup could be performed and it would make
skipping only certain parts impossible.

Skipping only certain parts of the entire automation is necessary in case an error
occurs or the user wants to skip a certain model �le, for example, because it was
added by mistake. The Cancel Manager provides the following cancellation option
which are supported by actions on the tool bar (see Section 12.4.1):

89

12. The Automated Executions Plug-in

1. Skip iteration: During an automated run the user might realize that an
iteration has somehow locked up or isn't aborting because the components
keep requesting more steps. This option performs a deferred termination of
the current iteration and proceeds to the next index.

2. Skip model �le: This option will skip to the next model �le after aborting the
current iteration. The reason for the user wanting to cancel the current model
�le might be that the components keep requesting additional runs inde�nitely.
Another reason would be that the model �le keeps producing faulty results due
to the trace �les missing and the user doesn't want to wait for it to fail on the
remaining �les.

3. Skip execution �le: Sometimes the user may even want to skip an entire
execution �le if at some point it can be expected that it won't produce any
useful results.

4. Cancel automated execution: This option initiates a deferred termination
of the entire execution. This has the same functionality as pressing �Cancel�
inside the progress monitor dialog.

As mentioned above the Cancel Manager will always perform a deferred termi-
nation rather than killing any Threads. This is necessary in order to ensure that
clean-up code is still executed.

12.3.4. Modi�ed Error Handler

One of the problems in the early stages of development was that an automated run
wouldn't complete because of errors in some of the DataComponents.

This was caused by the fact that the Automation Manager operates only indirectly
on the execution that is running inside the Execution Manager and thus will not
receive any thrown Exceptions. Any uncaught Exception in the Execution
Manager itself or in any of the DataComponents will cause the ErrorHandler of
the current Eclipse application to be invoked.

The ErrorHandler is responsible for dealing with all errors that may have to
be brought to the users attention. It contains facilities that will allow any plug-in
to dispatch an error with a prede�ned option of how to handle it. These options
include showing the error in the error log view, opening a dialog or opening a dialog
and block the GUI until the user acknowledges the error. During a very long running
automated run the last option is very undesirable as it means that the automation
suddenly requires user interaction which of course defeats the whole point. This
is even more annoying for the user since the majority of Exception during an
automated run that cause the GUI to block are not critical Exceptions.
For example, one of the DataComponents is analyzing a model �le with a given

set of trace �les. For some reason one of the trace �les is missing which causes an
Exception to be thrown inside the component which forwards it to the Execution

90

12.3. The Automated Run

Listing 12.3: The interface for listeners on the ErrorHandler

1 public interface StatusListener {
2

3 /**
4 * Indicates that the component doesn’t care about the style of the
5 * error.
6 */
7 int DONT_CARE = -1;
8

9 /**
10 * Reroute the exception to the given listener. If the listener wants to
11 * modify the style it should return the style that it wants the
12 * exception to have. If the component doesn’t care about that
13 * particular exception it should return the
14 * {@link StatusListener#DONT_CARE} style.
15 *
16 * @param statusAdapter
17 * the status adapter
18 * @param style
19 * the style
20 * @return the style that the status should have
21 */
22 int reroute(StatusAdapter statusAdapter, int style);
23 }

Manager.The Execution Manager doesn't deal with the RuntimeException and
throws it up to the Eclipse GUI which responds by invoking the ErrorHandler and
blocking the automated execution from continuing.

If the Exception could have been caught in the Automation Manager it would
simply mean that the iteration with that particular trace �le would have to be
skipped and the next trace �le should be used. The user then could have received
the error at the end of the run or look it up in the error log.

In order to remedy that situation the default ErrorHandler used by Eclipse is
replaced with a di�erent one. The modi�ed ErrorHandler allows listeners that
implement the interface shown in Listing 12.3 to register to it. Whenever a plug-in
asks the ErrorHandler to deal with an error it will �rst notify all listeners of the
error that occurred. The listeners then can decide if they want to modify the status
of the given error. The ErrorHandler accumulates all requests from the listeners
and computes the new status. If no listeners are registered or all listeners answered
with �Don't care� the error will be handled with its old status. If the listeners did
request a status change all requested status changes will be applied. This means if
one listener asks to only log the error while another listener requests a pop-up the
pop-up dialog is shown and the error is logged.

However there are some errors that will be immediately handled without asking
the listeners �rst. Those are fatal errors that will likely cause the entire application
to enter an unde�ned state and where the best course of action usually is to shut
down the application entirely.

Listing 12.4 shows the implementation of the listener interfaces in KIEMAuto. It

91

12. The Automated Executions Plug-in

Listing 12.4: Example implementation of the ErrorHandler

1 public int reroute(final StatusAdapter statusAdapter, final int style) {
2 String pluginId = statusAdapter.getStatus().getPlugin();
3

4 if (!pluginId.contains("org.eclipse")) {
5 CancelManager.getInstance().cancelIteration(CancelStatus.ERROR_CANCELED);
6 return StatusManager.LOG;
7 }
8 return StatusListener.DONT_CARE;
9 }

Figure 12.6.: Automation View showing the result of an automated execution

processes all errors that are not directly generated by eclipse itself but rather by one
of the user-de�ned plugins. In this case the the currently running iteration will be
aborted with an error because it is assumed that a plug-in related to the automation
caused the error. After the abortion of the iteration is initiated the error is written
to the error log and the automation can proceed uninterrupted.

12.4. Automation View

The Automation View seen in Figure 12.6 is used to display the results of an auto-
mated execution in a structured way.

However it would be very undesirable if the user had to wait for the entire auto-
mated run to �nish before viewing any information. Therefore the view displays all
information that is currently available.

The information is gathered from the output of the Automated Producers and

92

12.4. Automation View

also includes status information produced by the automation itself. The �rst four
columns contain this status information:

1. The �rst column shows the name of the model �le that was simulated. This
might be the same for multiple subsequent rows as a model �le might be sim-
ulated with more than one iteration.

2. The next column shows the index of the iteration that produced the given
result.

3. The third column displays the status that the execution that produced the
result is currently in:

� Created: The current iteration has been created and is preparing to ex-
ecute. It is for example waiting for trace �les to be opened or preliminary
calculations.

� Running: The iteration is execution in the Execution Manager and per-
forming the desired number of steps.

� Done: The iteration completed successfully.

� Aborted: The iteration was aborted by the user or another component.

� Failed: The iteration failed to complete because of an error.

4. The last column contains the step that the execution �nished on.

The following columns contain the information gathered from the Automated Pro-
ducers. In order to make the information easier to understand the column header
not only displays the name of the attribute but also the name of the component that
produced the given value.
If more than one execution �le is simulated a new table will be created below

the previous tables. This is necessary because another execution �le might contain
di�erent components which produce di�erent lists of results. These results would
not �t into the table of the previous executions. Another possibility would be to
add additional columns to the existing table. However this could increase the width
of the table too much for the user to still e�ectively read. Furthermore if the two
execution �les don't share any components a shared table would look more confusing
than helpful.

12.4.1. Tool bar

The tool bar of the Automation View contains several actions for controlling the
automated execution before, during and after its run (see Figure 12.7). The di�erent
controls have the following functionality (left-to-right):

1. Current Step Field: During the automated run this �eld displays the cur-
rently executing step. It is basically the same control as on the tool bar of the
Execution Manager itself. The control was duplicated in this place in order to

93

12. The Automated Executions Plug-in

Figure 12.7.: The tool bar in the automation view

avoid having to switch between the two views. This means that information
about the currently running execution is displayed in the Automation View.

2. Clear: When the user initiates multiple automated runs after one another the
results are all displayed in the same view. This is the intended behavior as
it should give the user the ability to compare automated runs with di�erent
inputs. However if the view gets �lled with too many results, the user needs
an easy way to clear the view which is realized through this button.

3. Automation Wizard: The next button is used in order to launch the Au-
tomation Wizard. The button exists both here and on the Execution Manager's
tool bar in order to allow easy access to the automation.

4. The next four buttons are used for performing one of the skipping actions
supported by the Cancel Manager (see Section 12.3.3):

Perform a deferred termination of the current iteration and proceed to the
next index.

Abort the current iteration and all subsequent ones on the current model
�le skipping to the next model �le.

Skip to the next execution �le.

Initiate a deferred termination of the entire execution. This has the same
functionality as pressing �Cancel� inside the progress monitor dialog.

5. Export: The export button is used for opening a dialog to export the cur-
rently displayed results to an external format. This feature is explained in
Section 12.4.2.

12.4.2. Exporting Results

As described in Section 12.4 a number of tables is used to display the results in
the view. However these tables are not persistent, i.e., they are removed when the
program is closed. In order to keep the results for analysis a method had to be found
to export them into an external format.
The �Export" button �rst opens a dialog that shows all available types that the

results can be exported to. The next window prompts the user to enter �le names

94

12.4. Automation View

Listing 12.5: Example of a table exported to CSV

1 krep[krep]
2 "Model file","Iteration","Status","Finished on step","Krep:Est. Reaction Time","

Krep:Reaction Time","Trace Compare:valid"
3 "/krep/abro.kasm","0","Done","6","19","{2/ 1/3}","true"
4 "/krep/abro.kasm","1","Done","13","19","{2/ 2/3}","true"
5 "/krep/abro.kasm","2","Aborted","4","19","{2/ 2/3}","false"
6 "/krep/abro.kasm","3","Done","7","19","{2/ 2/3}","true"
7 "/krep/abro.kasm","4","Done","13","19","{2/ 2/3}","true"
8 "/krep/runner.kasm","0","Done","11","19","{2/ 2/3}","false"
9 "/krep/runner.kasm","1","Done","7","19","{2/ 2/3}","true"

10 "/krep/runner.kasm","2","Aborted","4","19","{2/ 2/3}","false"
11 "/krep/runner.kasm","3","Done","12","19","{2/ 2/3}","true"
12 "/krep/runner.kasm","4","Failed","","","",""
13 "/krep/runner.kasm","5","Aborted","0","19","{2/ 2/3}","false"

for the exported �les. Since the exported �les are supposed to be used in other
applications as well the standard OS �le chooser is used instead of the Workspace �le
chooser.
To illustrate the results of such a transformation the table shown in Figure 12.6

is transformed in both formats. The resulting Comma-Separated Values (CSV) �le
can be seen in Listing 12.5. The same results exported to LATEX can be viewed in
Table 12.1.

95

12. The Automated Executions Plug-in

Krep Trace Compare

Model �le Iteration Status Finished
on step

Est.
Reac-
tion
Time

Reaction
Time

valid

/krep/abro.kasm

1 Done 13 19 2/ 2/3 true
2 Aborted 4 19 2/ 2/3 false
3 Done 7 19 2/ 2/3 true
4 Done 13 19 2/ 2/3 true

/krep/runner.kasm

0 Done 11 19 2/ 2/3 false
1 Done 7 19 2/ 2/3 true
2 Aborted 4 19 2/ 2/3 false
3 Done 12 19 2/ 2/3 true
4 Failed
5 Aborted 0 19 2/ 2/3 false

Table 12.1.: Example of a table exported to LATEX

96

13. Conclusion

The last chapter of this thesis will summarize the results and give some ideas for
future work.

13.1. Future Work

Although all initial objectives were achieved there is still room for additional im-
provements. These improvements which could be the subject of further study will
be explained in this section.

13.1.1. Scripting

Currently the automated execution can be triggered through the use of a wizard and
will run inside the Eclipse Workbench and display the results in a graphical view.

In order to allow other plug-ins or external applications to trigger an automated
execution an interface would have to be de�ned. This could involve the creation
of a scripting language that passes all the needed parameters to the automated
execution. It would also involve retrieving those results and importing them into the
calling application.

The existing code already supports most of the requested features however there
is no interface to access those features from outside of Java.

13.1.2. Con�gurations

Currently the wizard that is used to set up an automated run only restores the last
con�guration. However a user might want to save di�erent setups for automated
runs.

An extension of the existing plug-in could o�er the following:

� Allow the user to save the setup of an automated run.

� Add a new widget to the existing wizard to import the saved con�guration.

� Add an extension point to allow automated run setups to be bundled with a
plug-in which could be easily customized by the user.

97

13. Conclusion

13.1.3. Exports

Currently the only possibility to use the collected data in another application is by
exporting the entire table into CSV or LATEX.
This process could be improved, for example by allowing the user to select the

table columns and rows that he wants to export instead of exporting the entire
table. Furthermore export to additional formats could be implemented. It could
even be possible to interface the entire automation with a database application or
remote system.

13.2. Summary

As stated in Chapter 9 the problem consists of four parts:

1. Find an easy way for the user to set up an automated run.

2. Input the information provided by the user into the DataComponents.

3. Design a control �ow for an automated run.

4. Organize the output of the automated run and display it to the user.

The �rst objective of the project was to solve the set up of an automated run by the
user. The initial idea of using a script-based approach and providing the necessary
�les as lists in text �les was not pursued. Instead a more user-friendly solution was
found through the use of a wizard.
The next objective was to �nd a way to input information into the DataCompo-

nents in order for them to be designed in a more generic way. This was achieved by
designing new interfaces that allow components to receive a list of properties prior
to each part of the automated execution.
The main part of the task involved creating a manager that guided the control �ow

of an automated execution. The Automation Manager described in Section 12.3.2
loads all the necessary �les, sets up the di�erent outputs, steps through the execution
to the desired step and includes error management facilities as well.
The last part was to �nd a user-friendly way to display the information generated

by the automated execution. The problem was solved by creating a view that dis-
played the information in a set of tables. These tables are structured in a way to
easily compare the results of di�erent model �les and iterations. To allow use of the
generated tables in another context methods were implemented in order to allow the
generation of external formats (namely CSV and LATEX).
All in all the initial problem of providing a framework for setting up automated

execution runs was solved.
Further testing and use of these features may however reveal new ways that the

plug-in can extend its functionality.

98

Bibliography

[1] Christian Motika, Semantics and Execution of Domain Speci�c Models,
2009.

[2] Object Technology International, Inc. Eclipse Platform Technical Overview,
2003.

[3] Eric Clayberg and Dan Rubel, Eclipse Plug-ins. Addison Wesley, 2009.

[4] Xin Li, The Kiel Esterel Processor: A Multi-Threaded Reactive Processor,
July 2007.

[5] Claus Traulsen, Reactive Processing for Synchronous Language and its
Worst Case Reaction Time Analysis, To appear.

[6] Hauke Fuhrmann and Reinhard von Hanxleden. On the pragmatics of
model-based design. In Proceedings of the 15th International Monterey

Workshop on Foundations of Computer Software, Future Trends and Tech-

niques for Development, LNCS, Budapest, September To appear. Also avail-
able as Technical Report 0913, Christian-Albrechts-Universität zu Kiel, De-
partment of Computer Science, May 2009.

99

	Introduction
	KIELER Framework
	Outline of this Document

	Configuration Management
	Used Technologies
	Eclipse
	Plug-ins
	Preference Pages

	The KIELER Execution Manager
	DataComponents
	KiemProperty
	Execution
	Model Files

	Related Work
	Configurations

	Problem Statement
	Configurations
	Default Configuration

	Easier Schedule Loading

	Concepts
	Configurations
	Default Configuration

	Easier Schedule Loading

	Code Changes in the Execution Manager
	Schema Files and Interfaces
	Toolbar Contribution Provider
	Configuration Provider
	Event Listener

	KIEMPlugin.java
	Listener
	Getters and Setters
	Open File

	KIEMView

	The KIEMConfig plug-in
	Data Classes and Utilities - the Model
	ConfigDataComponent
	EditorDefinition
	ScheduleData
	Tools
	MostRecentCollection

	Manager Class - the Controller
	Abstract Manager
	Configuration Manager
	Schedule Manager
	Editor Manager
	Contribution Manager
	Property Usage Manager

	Preference Pages - the View
	Configuration Page
	Scheduling Page
	ScheduleSelector

	Conclusion
	Results
	Future Work
	Eclipse Run Configurations
	Improve Storage Options

	Summary

	Automated Execution
	Used Technologies
	The Job
	Eclipse Wizards
	Related Work
	KEP/KREP Evalbench

	Problem Statement
	Setting up a Run
	Input for the Automation
	Automate the Execution
	Output Execution Results
	Application Examples
	Application in Teaching
	Application in Artificial Intelligence

	Concepts
	Setting up a Run
	Input for the Automation
	Automate the Execution
	Output Execution Results

	Interaction with the Execution Manager
	The Automated Executions Plug-in
	Automation Setup Wizard
	FileSelectionPage
	PropertySettingPage
	Information Processing

	Automation Input
	Automated Component
	Automated Producer

	The Automated Run
	Automation Job
	Automation Manager
	Cancel Manager
	Modified Error Handler

	Automation View
	Tool bar
	Exporting Results

	Conclusion
	Future Work
	Scripting
	Configurations
	Exports

	Summary

	Bibliography

