A problem that is simple to solve in one dimension is often much more difficult to solve in more than one dimension. Consider satisfying a boolean expression in conjunctive normal form in which each conjunct consists of exactly 3 disjuncts. This problem (3-SAT) is NP-complete. The problem 2-SAT is solved quite efficiently, however. In contrast, some problems belong to the same complexity class regardless of the dimensionality of the problem.

Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. As an example, the maximal sub-rectangle of the array:

 0 -2 -7  0
 9  2 -6  2
-4  1 -4  1
-1  8  0 -2

is in the lower-left-hand corner:

 9 -2
-4  1
-1  8

and has the sum of 15.


The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by N^2 integers separated by white-space (newlines and spaces). These N^2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [-127, 127].


The output is the sum of the maximal sub-rectangle.

Sample Input

0 -2 -7  0 9  2 -6  2
-4  1 -4  1 -1
8  0 -2

Sample Output


This challenge is provided by the ACM International Collegiate Programming Contest.

Upload Solution

Please log in to submit your solution.


Difficulty (5 votes)
Average test runtime 0.33
Points (changes over time) 10
Tried by 8 users
Solved by 5 users

Global ranking

# Name Runtime Points worth
1 Chris Danger 0.17 14
2 Justin 0.17 14
3 ,s/java/NaN/gi 0.17 14
4 Nis 0.56 4
5 Sk√łgland 0.60 4