You will of course all be familiar with binomial coefficients. The binomial coefficient
\( \binom{n}{k}, k \leq n \in \mathbb{N}_{\geq 0} \)
gives the number of ways to choose \(k\) quests of great glory from a set of \(n\) available quests of great glory. The value is defined as follows:
\( \binom{n}{k} = \frac{n!}{k! \cdot (nk)!} \)
Given two numbers \(k \leq n \in \mathbb{N}_{\geq 0}\), calculate \( \binom{n}{k} \).
The input starts with the number of test cases to follow (you can assume this number to be at most 10,000). Each test case consists of two nonnegative integer numbers \(n\) and \(k\) with \( n, k \leq 50 \) on a separate line.
For each test case output on a single line the value of \( \binom{n}{k} \).
4
3 1
1 1
4 2
2 2
3
1
6
1
Please log in to submit your solution.
Difficulty 

Average test runtime  0.37 
Points (changes over time)  10 
Tried by  27 users 
Solved by  19 users 
#  Name  Runtime  Points worth 

1  The Dude  0.13  19 
2  Dark  0.15  16 
3  ,s/java/NaN/gi  0.16  15 
4  Brian  0.16  15 
5  Chris Danger  0.17  15 
6  Marvin  0.17  15 
7  JB  0.20  12 
8  Daniel  0.21  12 
9  Justin  0.22  11 
10  Irfan  0.22  11 
11  Melf  0.23  11 
12  贝尔恩德  0.23  11 
13  Merle  0.51  5 
14  Ansgar  0.53  5 
15  Tim  0.55  4 
16  Mac  0.66  4 
17  Philip  0.72  3 
18  Skøgland  0.84  3 
19  IeM  0.95  3 