## Setting

You will of course all be familiar with binomial coefficients. The binomial coefficient

$$\binom{n}{k}, k \leq n \in \mathbb{N}_{\geq 0}$$

gives the number of ways to choose $$k$$ quests of great glory from a set of $$n$$ available quests of great glory. The value is defined as follows:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Given two numbers $$k \leq n \in \mathbb{N}_{\geq 0}$$, calculate $$\binom{n}{k}$$.

## Input

The input starts with the number of test cases to follow (you can assume this number to be at most 10,000). Each test case consists of two non-negative integer numbers $$n$$ and $$k$$ with $$n, k \leq 50$$ on a separate line.

## Output

For each test case output on a single line the value of $$\binom{n}{k}$$.

## Sample Input

4
3 1
1 1
4 2
2 2


## Sample Output

3
1
6
1


## Upload Solution

Please log in to submit your solution.

## Statistics

 Difficulty (1 vote) Average test runtime 0.37 Points (changes over time) 10 Tried by 27 users Solved by 19 users

## Global ranking

# Name Runtime Points worth
1 The Dude 0.13 19
2 Dark 0.15 16
3 ,s/java/NaN/gi 0.16 15
4 Brian 0.16 15
5 Chris Danger 0.17 15
6 Marvin 0.17 15
7 JB 0.20 12
8 Daniel 0.21 12
9 Justin 0.22 11
10 Irfan 0.22 11
11 Melf 0.23 11
12 贝尔恩德 0.23 11
13 Merle 0.51 5
14 Ansgar 0.53 5
15 Tim 0.55 4
16 Mac 0.66 4
17 Philip 0.72 3
18 Skøgland 0.84 3
19 IeM 0.95 3