
Statechart Tools - User Guide

.

Statechart Tools

User Guide

Alexander Nyßen, Dominik Schmidt, Benjamin Schwertfeger,
Jörn Seger, Axel Terfloth

Version 1.2.0

1

Statechart Tools - User Guide

2

Contents

1 Overview 5

1.1 YAKINDU Statechart Tools . 5

1.1.1 YAKINDU and Eclipse . 6

1.1.2 Status, Warranty and License . 6

1.1.3 Eclipse Public License . 6

1.1.4 Tool architecture . 10

2 Installation 11

2.1 Eclipse Installation . 11

2.2 Installing the YAKINDU-Plugins . 12

2.3 Installing from Zip . 14

3 Statechart Modelling and Simulation 15

3.1 The YAKINDU Perspective . 15

3.2 Example Step by Step . 16

3.2.1 Example State Machine . 16

3.2.2 Creating a new Project . 16

3.2.3 Defining a State Machine . 18

3.2.4 Checking the State Machine . 21

3.2.5 Project type and dependencies . 21

3.2.6 Create check files . 22

3.2.7 Editing check files . 23

3.2.8 Simulating a State Machine . 24

3.3 Using Example Projects . 27

3

Statechart Tools - User Guide

4 C-Code Generator 29

4.1 Introduction . 29

4.2 Example Scenario . 30

4.3 Starting the workflow . 30

4.4 Code Integration into an Existing Project . 32

4.5 State Machine Access . 33

4.6 Operating System and Drivers for the Example Device 34

5 Java-Code Generator 37

5.1 Introduction . 37

5.2 Setting Up The Example Project . 38

5.3 Generating Source Code . 40

5.3.1 Create Xtend Project . 40

5.3.2 Manage Dependencies . 42

5.3.3 Create MWE Workflow File . 44

5.3.4 Execute MWE Workflow . 47

5.4 The Generated Source Code . 48

5.5 Integrating Generated Java Code . 49

6 UML Transformation 53

6.1 Introduction . 53

6.2 UML2 model . 53

6.3 The example project . 53

6.4 How does it work . 55

6.4.1 Name mapping . 55

6.4.2 New elements . 55

6.4.3 Limitations . 55

6.4.4 Transformation Cartridge . 56

6.5 Extending an UML2 state machine . 56

7 Dynamical Systems Modeler (DAMOS) 61

4

Chapter 1

Overview

1.1 YAKINDU Statechart Tools

YAKINDU is a tool kit for model based development and the statechart tools are the first modules
provided by this project. The tools apply the concept of state machines that are well understood and
formal enough to describe behaviour unambiguously. The statechart tools support editing, validating,
simulating state machines and generating code from state machines. The tools are provided as
Eclipse-plugins and integrate tightly into the IDE.

The simulation of a state machine is integrated into the YAKINDU state machine Diagram Editor
and provides visual highlighting of the active state and the current transition. Additionally, the user
can interact with the simulation by sending triggers to or by changing variable values within the
simulator to drive the state machine.

The distribution described by this document contains:

• statechart meta model

• statechart editor

• Eclipse YAKINDU perspective

• instant validation

• statechart simulator

• C-code generator

• Java-code generator

• Model transformations from UML

• Eclipse integration

• User guide

5

Statechart Tools - User Guide

• examples

Future versions will add :

• Code generation for different target languages like PLC and others.

• Testing infrastructure

Take a look at the roadmap on the YAKINDU website for details.

Even though the main aim of YAKINDU is to support the development of embedded systems, state
machines are a general concept that is also widely used in other domains like the field of enterprise
systems. Thus, the YAKINDU Statechart Tools can be of value for software development in general.

1.1.1 YAKINDU and Eclipse

The YAKINDU statechart tools are completely based on Eclipse technologies and especially those
from the Eclipse Modeling Project (EMP). This user guide will refer to those technologies whereever
neccessary. For a overview please take a look at the web pages http://www.eclipse.org/modeling/
and

This version (1.2.0) of the YAKINDU statechart tools is based on the Helios (3.6.x) release of the
Eclipse platform.

1.1.2 Status, Warranty and License

The software described by this document is freely available and will be provided without any warranty
under the Eclipse Public License (EPL) version 1.0.

1.1.3 Eclipse Public License

Eclipse Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE
PUBLIC LICENSE (”AGREEMENT”). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

”Contribution” means:

a) in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

b) in the case of each subsequent Contributor:

6

http://www.eclipse.org/modeling/

Statechart Tools - User Guide

i)changes to the Program, and

ii)additions to the Program; where such changes and/or additions to the Program originate from
and are distributed by that particular Contributor. A Contribution ’originates’ from a Contributor
if it was added to the Program by such Contributor itself or anyone acting on such Contributor’s
behalf. Contributions do not include additions to the Program which: (i) are separate modules of
software distributed in conjunction with the Program under their own license agreement, and (ii)
are not derivative works of the Program.

”Contributor” means any person or entity that distributes the Program.

”Licensed Patents ” mean patent claims licensable by a Contributor which are necessarily infringed
by the use or sale of its Contribution alone or when combined with the Program.

”Program” means the Contributions distributed in accordance with this Agreement.

”Recipient” means anyone who receives the Program under this Agreement, including all Contribu-
tors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly display,
publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if,
at the time the Contribution is added by the Contributor, such addition of the Contribution causes
such combination to be covered by the Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not infringe
the patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its Contri-
bution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

7

Statechart Tools - User Guide

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and implied,
including warranties or conditions of title and non-infringement, and implied warranties or conditions
of merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, including direct, indirect,
special, incidental and consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by that Contributor alone
and not by any other party; and

iv) states that source code for the Program is available from such Contributor, and informs licensees
how to obtain it in a reasonable manner on or through a medium customarily used for software
exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program. Each Con-
tributor must identify itself as the originator of its Contribution, if any, in a manner that reasonably
allows subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of
the Program, the Contributor who includes the Program in a commercial product offering should
do so in a manner which does not create potential liability for other Contributors. Therefore, if a
Contributor includes the Program in a commercial product offering, such Contributor (”Commercial
Contributor”) hereby agrees to defend and indemnify every other Contributor (”Indemnified Con-
tributor”) against any losses, damages and costs (collectively ”Losses”) arising from claims, lawsuits
and other legal actions brought by a third party against the Indemnified Contributor to the extent
caused by the acts or omissions of such Commercial Contributor in connection with its distribution
of the Program in a commercial product offering. The obligations in this section do not apply to any
claims or Losses relating to any actual or alleged intellectual property infringement. In order to qual-
ify, an Indemnified Contributor must: a) promptly notify the Commercial Contributor in writing of
such claim, and b) allow the Commercial Contributor to control, and cooperate with the Commercial
Contributor in, the defense and any related settlement negotiations. The Indemnified Contributor
may participate in any such claim at its own expense. For example, a Contributor might include
the Program in a commercial product offering, Product X. That Contributor is then a Commercial
Contributor. If that Commercial Contributor then makes performance claims, or offers warranties
related to Product X, those performance claims and warranties are such Commercial Contributor’s
responsibility alone. Under this section, the Commercial Contributor would have to defend claims
against the other Contributors related to those performance claims and warranties, and if a court
requires any other Contributor to pay any damages as a result, the Commercial Contributor must
pay those damages.

8

Statechart Tools - User Guide

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED
ON AN ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDI-
TIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTIC-
ULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of using
and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement , including but not limited to the risks and costs of program errors, compliance with
applicable laws, damage to or loss of data, programs or equipment, and unavailability or interruption
of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PRO-
GRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable. If Recipient institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Program itself (excluding
combinations of the Program with other software or hardware) infringes such Recipient’s patent(s),
then such Recipient’s rights granted under Section 2(b) shall terminate as of the date such litigation
is filed. All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of
the material terms or conditions of this Agreement and does not cure such failure in a reasonable
period of time after becoming aware of such noncompliance. If all Recipient’s rights under this
Agreement terminate, Recipient agrees to cease use and distribution of the Program as soon as
reasonably practicable. However, Recipient’s obligations under this Agreement and any licenses
granted by Recipient relating to the Program shall continue and survive. Everyone is permitted to
copy and distribute copies of this Agreement, but in order to avoid inconsistency the Agreement is
copyrighted and may only be modified in the following manner. The Agreement Steward reserves
the right to publish new versions (including revisions) of this Agreement from time to time. No one
other than the Agreement Steward has the right to modify this Agreement. The Eclipse Foundation
is the initial Agreement Steward. The Eclipse Foundation may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after
a new version of the Agreement is published, Contributor may elect to distribute the Program
(including its Contributions) under the new version. Except as expressly stated in Sections 2(a) and

9

Statechart Tools - User Guide

2(b) above, Recipient receives no rights or licenses to the intellectual property of any Contributor
under this Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the
Program not expressly granted under this Agreement are reserved. This Agreement is governed by
the laws of the State of New York and the intellectual property laws of the United States of America.
No party to this Agreement will bring a legal action under this Agreement more than one year after
the cause of action arose. Each party waives its rights to a jury trial in any resulting litigation.

1.1.4 Tool architecture

Figure 1.1: Tool architecture

10

Chapter 2

Installation

2.1 Eclipse Installation

The YAKINDU Plugin installation follows the usual eclipse installation process.

However, before you start, be sure to have the Eclipse environment (3.6/Helios) installed. You can
download eclipse distributions from the Eclipse download site.

http://www.eclipse.org/downloads/

Please be aware that there are many different distributions supporting different features. When
installing the YAKINDU features the required features will be installed automatically if they are not
already installed. You can also download the itemis oAW distribution that already contains several
required plugins.

http://oaw.itemis.com/downloads/

The YAKINDU statechart tools require several Eclipse plugins:

• EMF

• GEF

• GMF

• Xtend

• Xpand

• Xtext

• MWE

• and some others. . .

11

http://www.eclipse.org/downloads/
http://oaw.itemis.com/downloads/

Statechart Tools - User Guide

Additionally you may want to install additional features like the CDT (C/C++ Development Tools)
or the JDT (Java Development Tools). You can install them with the same mechanism as described
in the next section.

2.2 Installing the YAKINDU-Plugins

To install the YAKINDU plugins, open the Software Updates and Add-Ons dialog which can be
found at Help→ Install New Software... (like 2.1). In the window press the Add ... button and

Figure 2.1: Menu to select software updates

enter the update site URL http://updates.yakindu.com/helios/release/ into the Location
area (see Figure 2.2). After accepting the new URL the update site will be queried.

Figure 2.2: Update site for YAKINDU

If everything is correct, you will find a new entry YAKINDU Update Site in the list in the Available
Software tab. Before continue it is neccessary to acitvate update sites for MWE, Xpand and Xtext.
This is done by clicking on Manage Sites. . . and selecting the Helios update site.

Figure 2.3: Select update site for dependency resolving

For quick start check the Feature YAKINDU Feature, MWE SDK, Xpand SDK and Xtext SDK
below the tree of YAKINDU Update Site and Helios Update Site. After select the Features press the

12

http://updates.yakindu.com/helios/release/

Statechart Tools - User Guide

Figure 2.4: Software Updates and Add-Ons Install Dialog

Install button. For the first installation many dependencies are downloaded and you have to wait
some minutes.

In the next steps you have to confirm the selected Features (see Figure 2.5) and accept the License
after reading it. Confirm the Security Warning by clicking the ”Ok” button. The next steps are
automatic and are finished by an information box from eclipse, asking you to restart. Answer with
Yes, because YAKINDU becomes active after restart.

Figure 2.5: Confirm selected features and the license

After a few seconds, your installation is ready to run the quick start example presented in the next
section. Before we continue it is a good idea to change the perspective to YAKINDU. With this
perspective all main tools from the YAKINDU-Toolchain are directly accessible. Although it’s also
possible to add some of this views to your favourite perspective and edit statecharts in parallel to
your all day work.

It is highly recommended that you update your plugins after installation via Help→ Check for
Updates. So you get the actual version of the YAKINDU-Statechart Tools.

13

Statechart Tools - User Guide

2.3 Installing from Zip

The YAKINDU-Web Site also provides a zip file with all plugins for download. The dependencies
to GMF must be satisfied manually. The update sites for eclipse are the following and the required
features are mostly the sdks of the plugins mentioned before:

• EMF Update Site: http://download.eclipse.org/modeling/emf/updates/

• GMF Update Site: http://download.eclipse.org/modeling/gmf/updates/releases/

• Helios Update Site: http://download.eclipse.org/releases/helios

• Xtext http://xtext.itemis.com/downloads/

• and some others. . .

14

http://download.eclipse.org/modeling/emf/updates/
http://download.eclipse.org/modeling/gmf/updates/releases/
http://xtext.itemis.com/downloads/

Chapter 3

Statechart Modelling and Simulation

Now follows a quick introduction into the YAKINDU tools and the usage. For a deeper understanding
you can read the later chapters.

3.1 The YAKINDU Perspective

The YAKINDU tools comes with an easy perspective for quick start-

Figure 3.1: Selecting the
YAKINDU Perspective

ing and using it. The perspective can be activate by clicking on Win-
dow→ Open Perspective→ Other and selecting the YAKINDU
perspective (Figure 3.1). After activation the screen looks like figure
3.2.

In the middle the main view on screen is the editor. It is still empty,
but you will use it most often. On the left is also a default eclipse
view, the project explorer. You will need it for the next step. The
other views will be described later, when they are needed.

Figure 3.2: The YAKINDU Perspective

15

Statechart Tools - User Guide

3.2 Example Step by Step

When YAKINDU is properly installed, we can start a small example project. This example project
gives an idea of how powerful the YAKINDU tool-chain is. It contains a visual editor, a semantic
and logic verification check, a simulator unit and a number of code generators.

To present the visual editor, the check mechanism and the simulator of the YAKINDU tool-chain,
an example was chosen, that is simple enough to give an impression of the usage but is not to
far-fetched.

3.2.1 Example State Machine

The idea is to have a state machine, that represents a staircase lighting. This staircase lighting is
started with a key-press and stops after 30 seconds.

The state machine itself consists of two states: ,,Lights On” and ,,Lights Off”. The standard state
within the state machine is ,,Lights Off” and is entered from start-up (the so called initial state).
When an occupant enters the staircase and presses the lighting button, a ,,keypress” event is gen-
erated which starts the transition to the ,,Lights On” state.

On entering the state ,,Lights On”, the staircase lighting is turned on. When the retention period
has expired (after 30 seconds), the ,,Lights On” state is left with a transition to the state ,,Lights
Off” and the lighting is turned off again.

3.2.2 Creating a new Project

When everything is set up, your Eclipse editor should look similar to this:

16

Statechart Tools - User Guide

Figure 3.3: Creation of a new project

Figure 3.4: Wizard to create a new State Machine

To start a new project, open the menu (File→ New→ Project) and create a new Java Project. In
our example, the project is called ,,Example”. However, this procedure only creates a default Java
project. For simplicity you should deny the question for changing to Java perspective, because we
won’t use anything from Java.

17

Statechart Tools - User Guide

To create a state machine model to this environment, right-

Figure 3.5: Wizard to create
a new state machine domain
model

click the src directory icon and open the select wizard at New→
Other. Here you have to select state machine Diagram from the
YAKINDU folder as shown on figure 3.4.

Figure 3.5 displays the New Statemachine Diagram window, in
which the name of the state machine model is set. In our exam-
ple, the name is changed from default.statemachine to stair-
case.statemachine.

The wizard has then created two sources: the staircase.state-
machine and the staircase. statemachine diagram. The state
machine itself is represented as an XML-file in staircase. state-
machine and the visual representation of the state machine can be
found in the staircase.statemachine diagram file.

Now you should have a new visual editors view to create a state ma-
chine as shown in figure 3.6. Here you have all elements to create
a state machine from bottom up in the elements menu. The ele-
ments that are important for our small project are , ,

and .

3.2.3 Defining a State Machine

To start with the visual editor you firstly need a region, in which the states of the state machine
reside. Therefore you need to click the icon and draw a region on the empty plain. When
you have placed the last corner of the region and you release the mouse button, a new region in
light green appears. At the properties area, the priority of this region is highlighted and should be set
to a value. As we do not have any concurrent regions in this example, the priority is not important
and could be set to any valid integer value (10 in our example). If you use more than one region,
the priority specifies the processing order in which the states actions and the states transitions are
processed.

To set the priority of the region afterwards, you can open the properties view. If you cannot find it
in your eclipse perspective, you can open it by clicking Window→ Show View→ Others and in
that menu: General→ Properties.

Now as you have created a region, you need a starting point of your state machine. This starting
point is called initial state and can also be found as an icon () in the elements menu.
As explained at the beginning of this chapter, the two states LightOn and LightOff should be
installed within the state machine region.

To create a state, you have to select the () element and then open the area within the region
plain. When the state outline is created, the first line within the properties area is highlighted and
needs to be filled by the name of this state (e.g. LightOff). The name of a state has to be unique
within a region.

After the creation and naming of the states, the actions (< entry >, < do >, < exit >) should be

18

Statechart Tools - User Guide

Figure 3.6: YAKINDU State Machine editor

created. In our case, the only action that should be performed is switching the light on or off. The
status of the light is represented by a variable that could hold one of the two values 1 or 0. This
variable needs to be created in the State Chart Interface. Within this view, you can right-click
on Variables, where you get a new window to specify the variable that should be created (refer
figure 3.8). Here you add the variable name (Light), the port, the IO-type and the data type. In our
example all other information except for the variable name do not have to be changed.

Then you add the action Light=0; into the < entry > line within the states properties area (either
within the Diagram or within the Properties view). This definition creates a new action, that is
performed whenever the state LightOff is entered. So when the unconditioned state transition from
the initial state to the LightOff state is performed, the internal variable Light is set to zero. The
same takes place, when the state LightOff is entered through a transition from any other state.

The state LightOn is created in the same way, except that the action is set to Light=1;.

To create a transition between the Initial State and the LightOff state, you choose the
element and connect the Initial State and the LightOff state. Every transition claims an expres-
sion, when this transition should be executed.

An expression can consist of one or more triggers, guard operations and actions, which can also be

19

Statechart Tools - User Guide

Figure 3.7: Creation of the Initial, LightOff and LightOn state

mixed. Additionally a transition must have a priority, to define the order, in which the expressions
of different, concurrent transitions are processed.

In our example, the transition between the Initial state

Figure 3.8: Creating a variable in the
State Chart Interface

and the LightOff state do not need any expression, as this
transition has no condition. When the expression area of
a transition is left blank, the expression is represented by
an asterisk (*).

The transition between LightOff and LightOn is per-
formed, if the trigger keypress was received. Therefore a
new event has to be implemented in the State Chart In-
terface (refer also to figure 3.8). Here you add an event
that can be used as a trigger within a transition expres-
sion. Implementing a trigger with a transition needs only
the trigger name as the expression string (keypress).

To specify the transition from LightOn to LightOff after 30 seconds, you use the keyword after(<
duration > s) within the transition expression string. The after() expression switches to the target
state when the specified time has been expired.

So in the end your state machine looks like in figure 3.9.

20

Statechart Tools - User Guide

Figure 3.9: Complete State Machine (State Machine Diagram Editor)

3.2.4 Checking the State Machine

The state chart is very common and it is possible to model things, which doesn’t make sense for
your target platform or you want to have some special naming conventions. We will check now, that
every name of a state is at least eight character long. But first we have to prepare our Project for
code completion within checks. Later on we can add a new check file and enter the checks.

3.2.5 Project type and dependencies

For this steps it is neccessary, that the model is inside an Java project. If it’s not yet, you can create
a new project beside the first, copy the model and change the target directories (see chapters 4 and
5) for generated files, so they point to the first.

Figure 3.10: Add plugin development nature to your java project

We will add the plugin development nature from eclipse to the project by selecting the project, click
with the right button and select Configure→ Convert Projects to Plugin Projects. . . (Picture
3.10). Your project is already selected in the next window and you can press Finish to complete. As

21

Statechart Tools - User Guide

a result some new files are created in your project. We only need the MANIFEST.MF inside the
folder META-INF. Open this file by double-click and add some dependencies (See picture 3.11).
This is done by clicking on Add and selecting some plugins. If you design for codegeneration the
plugin com.yakindu.statechart.codegenerator.java or com.yakindu. . . c are the one of your choice.
For platform independent modeling you can select com.yakindu.statechart.model.expressions.

Figure 3.11: Add dependencies to your project

Now the file can be saved and closed. It will not be neccessary to edit this file later, except you
decide to use an additional codegenerator.

3.2.6 Create check files

All user defined check files reside in a folder names checks. Within this folder all .chk-files are
evaluated and considered for checking. The format of check files is described in the reference of
eclipse modeling project and the old openArchitectureWare-project1.

Create a new folder in the root of your project by right-click on Examples and selecting New→Folder.
The folder must be named checks and the other options can be ignored. Simply finish and create
your check files inside this folder.

Check files are created by selecting the folder ”checks” and choosing in the drop-down-menu the
entry New→Other. In the next window the entry Check file is found inside the category Xtend(see
Figure 3.12.

1http://oaw.itemis.de/openarchitectureware/662/ressourcen

22

Statechart Tools - User Guide

Figure 3.12: Add a new check file to your project

3.2.7 Editing check files

The syntax of check files is described in the oAW-Reference, but the short introduction here is
enough for the first experience. If you try the code completion (Strg+space) the first time in the
editor, you are asked to add the Xtend nature to your project (See figure 3.13). Answer with yes,
to get code completion.

Figure 3.13: Add the Xtend nature to your project for code completion

Every check file starts with an import of the required and used models. For the statemachine
it is sufficient to add the model statemachine. After this we want to add a check for a state.
This is done by defining a context for the model element State and the severity of WARNING or
ERROR. Because short names are not nice and we spelling names we define an error with the error
message ”State names must have at least 8 characters”. After a colon the boolean expression folows.

23

Statechart Tools - User Guide

The expression defines the default, not the error. In our case names are longer or equals to eight
characters. In figure 3.14 the result of ”state.chk” is printed.

Figure 3.14: An example check file for names longer than eigth characters

After saving the file and opening the statechart again, the statechart is validated after some seconds.
As a result you can see a red cross in the upper right corner of state LightOn. That’s because we
added a check, that state names must have at least eight characters and LightOn needs only seven
characters. If you put the mouse above the red cross and wait some seconds, the error message is
shown in a small box.

3.2.8 Simulating a State Machine

When the state machine diagram is completed, you can start a simulation session, to check, whether
your new state machine is working correctly.

To start a simulation you have to create a new run configuration, as shown in figure 3.15. Choose
the entry Run Configuration ... to open the configuration dialog.

Figure 3.15: Starting the Simulation creation dialog

In this dialog you add a new YAKINDU Simulation called Example by clicking the ’New’ button
in the upper left corner. Then the configuration dialog is presented. After choose your Example
project and the staircase state machine as your model file the dialog looks like figure 3.16. As your
simulation engine, please choose YAKINDU Statechart Simulator.

When you click the Run button in the lower right corner, you start the simulation. To rerun the
simulation later, you find an entry Example in your Run configuration.

On Simulation start-up make sure, that the debug view is open (refer figure 3.18). In this view, the
simulation process can be started, stopped and paused. Additionally the simulation can be used in
single step modus. To activate the single step modus, the simulation must be in the pause position.

24

Statechart Tools - User Guide

Figure 3.16: Dialog to create a new simulation environment

Figure 3.17: Restart a simulation in the menu

When a single step should be performed, the single step button can be pressed. The advantage
in this modus is, that you can set the input parameter according to your simulation scenario and
perform the next step, when you are done with that. To be able to change the events and variables,
you must have started the simulation explicit by a click to the run button in the debug view, or by
clicking on the single step button.

To be able to interact with the simulation by the input values, open the YAKINDU Statemachine
View. This view can be found in the main menu under Window→ Show View→ Other.... In the
appearing menu choose YAKINDU Statemachine.

In our example project, the state machine starts with a transition from the initial state to the
LightOff state. This state transition is visualized by a red arrow. During a simulation an active state
is highlighted in red.

After the active state has changed into LightOff, this state can only be left by a transition to
LightOn. The condition expression is set to the trigger keypress. This trigger can be created in
the YAKINDU Statemachine View during simulation time. To simulate a keypress, just click the

25

Statechart Tools - User Guide

Figure 3.18: Running a simulation

Figure 3.19: Change trigger value during simulation

”fire” button near the keypress event in Statemachine view. In this case, the value changes and the
transition is followed. After the transition has been performed, the trigger for the transition is reset.

The same procedure is valid to set a value of a variable. The difference between a variable and a
trigger is that a trigger value is reset to zero as soon as the trigger has taken effect, e.g. a transition
was successful. A variable value is only changed when it is actively changed by the user or an action
e.g. in < entry > < do > or < exit >.

26

Statechart Tools - User Guide

Figure 3.20: Trigger keypress was activated and the state LightOn has been reached

3.3 Using Example Projects

Some example projects are included in the YAKINDU release. They can be installed by creating the
Statemachine example project. This is done by selecting File→ New→ Statemachine exam-
ple project. This Wizard (see Figure 3.21) creates after all three new projects in your workspace,
called ”Safe”, ”StaircaseLighting” and ”TrafficLight”. You can read a short description of them, if
you select one. After you click finish the new projects are listed in your project explorer.

Taking a deeper look at the files inside the examples (Figure 3.22), the two projects Safe and
StaircaseLighting contain only two files. The .statemachine file contains the model of your state
machine, and the .statemachine diagram file is for modelling. Both files are necessary to simulate
and visualize the simulation. If no visualization is needed, the model themself is enough. How to
simulate is described in section 3.2.8.

The files inside the third project, the TrafficLight model, includes also model files inside the model
directory, but also an workflow under workflow and an complex simulation environment for practical
usage with a microcontroller. This set up and handling is described in the next section 4

Now we will start with a short hands-on example to demonstrate how development is done and what
especially the elements and views are for. This step is orthogonal to-the-ready to use examples in
this section.

27

Statechart Tools - User Guide

Figure 3.21: The state machine examples

Figure 3.22: Example projects and files inside

28

Chapter 4

C-Code Generator

4.1 Introduction

The creation of a state machine is shown in YAKINDU Tutorial in detail. However, what is left is
how the state machine models can be used to create source code. The purpose of this document
is to give an overview how the code is created and how the created code can be integrated into an
existing project.

The C source code generator, shipped with the YAKINDU release, is optimized for small embedded
systems with certain restrictions, like small RAM/ROM, ANSI-C restrictions and MISRA rules (i.e.
no heap usage, no function pointers). These restrictions are mandatory for many tasks e.g. in the
automotive area.

Currently, the YAKINDU C source code generator is under heavy development as the other
YAKINDU features, too. So the interfaces are not fixed yet and will probably change in the near
future.

This document guides through an example scenario on an Display3000 development board. It uses
an Actmel ATMega128 CPU, 128 kByte Flash and 4 kByte RAM.

The Traffic Light example, which is discussed in this section, is included into the YAKINDU examples
and can be installed as described in section 3.3.

29

Statechart Tools - User Guide

4.2 Example Scenario

The example scenario is a simple pedestrian traffic light. A pedestrian can press a button to indicate,
she/he wants to cross the street. Then a blinking white light indicates, that the traffic light has
recognized the request. After a few seconds, the traffic light for the street turns to red and the
pedestrian traffic light turns to green. Then the pedestrian traffic light turns to red and the street
traffic light changes to green again.

The state machine to model this behaviour is shown on figure 4.1. This state machine must not be
created but is shipped with the example project and can be found in the workspace/Traffic Light/

directory.

Figure 4.1: Statemachine for the Traffic Light Example

4.3 Starting the workflow

The source code is created by starting the MWE workflow. This workflow can be found in the traffic
light example directory:

30

Statechart Tools - User Guide

Figure 4.2: Starting the oAW-workflow to create the sources

The generated C source code can be found within the new directory c-src-gen:

31

Statechart Tools - User Guide

Figure 4.3: The sources are placed into the c-src-gen directory

4.4 Code Integration into an Existing Project

Aside the source code for the state machine and the code for the interfaces, the code generator
creates a file called make.include. This file can easily be included into an existing makefile by the
line:

include c-src-gen/make.include

The files, which are needed for the compilation, are added to the environment variable SM SOURCE,
so you have to add these sources to your project sources:

OBJECTS = main.o $(ENV_OBJ) $(GRAPHIC_OBJ) $(SM_SOURCE)

Additionally you should add the c-src-gen directory to the include and source paths, so that the
headers and sources could be found.

The example is designed for the Display3000 board, so the Makefile was designed to create a binary
for this hardware. Therefor it requires the AVR-gcc toolchain to be able to compile. The toolchain
contains a compiler, a linker and some other usefull tools e.g. to download the data.

So go to your workspace directory with a shell and from there into the base directory of your project
and call make:

workspace$ cd Traffic_Light

Traffic_Light$ make

32

Statechart Tools - User Guide

[...] compiling [...]

avr-gcc -Wall -Os -DF_CPU=7456000 -mmcu=atmega128 -I. -I./graphicLib [...]

rm -f main.hex

avr-objcopy -j .text -j .data -O ihex main.elf main.hex

If the compile was successful, you have a working binary main.hex that could be deployed on the
target.

To transfer the binary, you can use make flash.

4.5 State Machine Access

As mentioned before, the code for the state machine can be found in the folder c-src-gen. After
running the workflow the following files should be available in this directory:

c-src-gen$ ls

make.include sm_trafficlightWaiting_PedWaiting.h

simElement.c trafficlightWaiting.c

simElement.h trafficlightWaiting.h

sm_trafficlightWaiting.c trafficlightWaiting_Iface.c

sm_trafficlightWaiting.h trafficlightWaiting_Iface.h

sm_trafficlightWaiting_Handle.c trafficlightWaiting_timerIface.c

sm_trafficlightWaiting_Handle.h trafficlightWaiting_timerIface.h

sm_trafficlightWaiting_PedWaiting.c

The files completely define the state machine. How to integrate the source into another project, was
subject of the previous section.

The files sm trafficlightWaiting.* and sm trafficlightWaiting PedWaiting.* represents
the two regions in the state chart. The header- and C-file called sm trafficlightWaiting Handle.*

contain the main handle, which is called SM trafficlightWaiting Handle. Please do not access
the state machine handle information directly.

The structure carries the information about the current state, the actual transition, that has been
activated, the handle for the first level region and the interface handle. The handle is initialized
with the function trafficlightWaiting init(&sMachineHandle, &interfaceHandle). Here
the sMachineHandle is the state machine handle and the interfaceHandle is a pointer to an
interface handle. The initialization call initializes the whole state machine and returns the interface
handle pointer.

For convenience all a state machine user needs to include is trafficlightWaiting.h. This header
includes all other necessary information.

33

Statechart Tools - User Guide

4.6 Operating System and Drivers for the Example Device

To let the state machine run on the Display 3000 development board, the system needs a minimal
operating system (OS) and some drivers for input and output. This operating system is found in
the environment directory. This cooperative OS is written in C++ and contains an input driver
for the 6 keys on the hardware board and an output driver for the display and a LED board that is
connected to the port A.

Because of copyright restrictions, the display driver is not included into this example. The calls to the
display interface can included by adding -DWITH DP3000 GL to the compiler options and updating
the include path defined in variable COMPILETT of the Makefile to point to the right AVR-Libraries.

The transfer of the LED data uses a simple software driven SPI-like interface with three connections
(data, clock and inherit).

The rest, like shifting the data, is done by the hardware board.

Following files belong to the operating system:

definitions.h event.h scheduler.cpp task.cpp

event.cpp prioQueue.h scheduler.h task.h

The key* files contain the driver for a debounced key input. The output* files contain the driver
code to create the output. To create the cycles for the state machine, this behaviour is placed in
the files statemachine*.

Figure 4.4: Display3000 Development board with additional Hardware

After generation of source code by the workflow, it is possible to call the Makefile inside the root
directory of this example. By default this File calls the commands avr-gcc and avr-g++. If you

34

Statechart Tools - User Guide

like to send the binary to the micro controller, it is neccessary to check the PORT variable inside the
Makefile and avrdude needs to be on classpath. If everything is correct, make flash will send the
binary to the controller.

35

Statechart Tools - User Guide

36

Chapter 5

Java-Code Generator

5.1 Introduction

The creation of a YAKINDU Statechart is shown within the YAKINDU Tutorial in full detail. However,
what is left is how the state machine models can be used to create Java source code. This will be
demonstrated in the following, making use of the TrafficLight demo project deployed with the
YAKINDU Statechart tools.

37

Statechart Tools - User Guide

5.2 Setting Up The Example Project

The reference example used within this documentation is the TrafficLight example project deployed
with the YAKINDU distribution. To set it up in your local workspace, use the YAKINDU Example
Project Wizard as depicted by Figures 5.1 and 5.2.

Figure 5.1: Opening the Example Creation Wizard

Figure 5.2: Creating Statechart Example Projects

After successful completion, the Example Project Wizard will create the YAKINDU Statechart ex-
ample projects within the workspace, out of which one - TrafficLight - will serve as demonstration

38

Statechart Tools - User Guide

example in the following. As outlined within Figure 5.3, it denotes a state chart to control a simple
traffic light with a corresponding pedestrian light.

Figure 5.3: Traffic Light Example Project Contents

39

Statechart Tools - User Guide

5.3 Generating Source Code

5.3.1 Create Xtend Project

The starting point to create Java source code from a YAKINDU Statechart model is to set up a Java
project to contain the generated code. For the sake of simplicity, we will instead create a new Xtend
project for this purpose (Xtend projects also possess the Java as well as the PDE Plugin project
nature), as this allows to easily manage dependencies and execute MWE workflows. As outlined
by Figures 5.4, 5.5, and 5.6, creating an Xtend project is easily done using the respective project
creation wizard. Here, we choose TrafficLightJavaDemo as the name of the project.

Figure 5.4: Open New Wizard

40

Statechart Tools - User Guide

Figure 5.5: Selecting to Create a new Xpand Project

Figure 5.6: Xtend Project Creation Wizard

41

Statechart Tools - User Guide

5.3.2 Manage Dependencies

Having created the TrafficLightJavaDemo project by means of the Xtend project wizard, the next
step is to make the YAKINDU Java code generator plugin visible within the local project’s classpath,
so the Java code generation cartridge file, which is deployed by the code generator plugin, can be
referenced from a local MWE workflow (to be set up as the next step). As we have created a
Xpand project (which is implicitly also a PDE plugin project, as the Xpand project wizard adds the
PDE plugin project nature to it), we may simply do so by adding the YAKINDU Statchart Java
code generator plugin to the list of dependent plugins of our local project. As outlined by Figures
5.7 and 5.8, this can be simply achieved by opening the manifest editor on the MANIFEST.MF file
located within the META-INF folder of the project, selecting the Dependencies tab (depicted by
Figure 5.7, then by choosing to Add a new dependency and selecting the YAKINDU Statechart Java
code generator plugin in the resulting dialog (depicted Figure 5.8). Also the following Plug-Ins are
required:

• org.eclipse.jface.text

• org.eclipse.emf.mwe.utils

• org.eclipse.emf.ecore.xmi

• org.antlr.runtime

• org.eclipse.xtext

• org.eclipse.xtext.log4j

• com.ibm.icu

• org.eclipse.core.runtime

• org.eclipse.jdt.core

42

Statechart Tools - User Guide

Figure 5.7: Manifest Editor

Figure 5.8: Adding Plugin Dependency

43

Statechart Tools - User Guide

5.3.3 Create MWE Workflow File

As the YAKINDU Java code generator plugin provides an OAW workflow cartridge that may most
simply be called from within a local MWE workflow file, the next step is to now set up such an MWE
workflow file. This can be done as depicted by Figures 5.9, 5.10, and 5.11, choosing generate.wme

as the name of the workflow file.

Figure 5.9: Opening New File Creation Wizard

44

Statechart Tools - User Guide

Figure 5.10: Selecting to Create a new MWE Workflow File

Figure 5.11: Specifying Name of MWE Workflow File

45

Statechart Tools - User Guide

The contents of the workflow file has to be added as outlined by 5.12. Basically, the location
of the input YAKINDU Statechart model (property model), as well as that of the output folder
(property src-gen), the Java source code has to be generated into, have to be specified by means
of workflow properties, being then passed to the YAKINDU Statechart Java code generator cartridge
(generate java defensive.oaw), which performs the actual code generation.

Figure 5.12:

In fact, the YAKINDU Statechart Java Codegenerator provides a lot of workflow cartridges, namely
generate java.oaw, generate java me.oaw and generate java lejos.oaw. Each has a defensive-version,
which basically generate the same sort of Java source code, with the restriction that the defensive
version generates additional defensive code, being used to check pre- and post-conditions as well as
invariants at runtime. The Java-Codegenerator generates normal JavaSE-Code. The JavaME-Code
is designed for mobile devices, which doesn’t supports all Javaclasses. The third workflow cartridge
generate Java-Code for leJOS, which can deploy on a LEGO Mindstorm.

46

Statechart Tools - User Guide

5.3.4 Execute MWE Workflow

Having specified all relevant workflow properties, and having specified to call the code generator car-
tridge, the MWE workflow may then be simply executed as depicted by Figure 5.13. It will generate
Java source code into the selected folder (here, the local src-gen folder within the TrafficLight-
JavaDemo project).

Figure 5.13: Contents of MWE Workflow File

47

Statechart Tools - User Guide

5.4 The Generated Source Code

The Java source code generated by the YAKINDU Statechart Java code generator consists of a set
of generic classes (located within the com.yakindu.statechart package) and a model specific
state chart implementation class, named according to the respective Statechart, here Traffic-

LightStatechart within trafficlight package), which is outlined by Figure 5.14. It is the single
class that may be directly used by clients to integrate the generated code with manually written or
other generated code.

To obtain a new instance of the state chart implementation, the generated implementation class
offers a static method named createInstance(). It returns a completely initialized state chart
instance, which may be started (via enter()), cyclically executed (via runCycle()), and stopped
again (via leave()).

Feeding the state chart with external events is done by passing respective event constants (declared
within the state chart implementation class) into the state chart instance (via setEvent()) prior
to executing a new cycle (via runCyle()). Setting variable values is similarly possible via respective
selector methods generated into the implementation class (a pair of getter and setter for each variable
of the state chart). On each call to runCycle(), the state chart reacts on all events currently raised
(since the completion of the prior cycle) and reads the variable values as they are set when calling
runCycle(). After runCycle() has been completed, all events raised prior to its execution will be
cleared and the variables reflect the values as they result from the reaction of the state chart.

Figure 5.14:

48

Statechart Tools - User Guide

5.5 Integrating Generated Java Code

A demonstration example that reflects the integration of the Java code, generated for the TrafficLight
example with manually written code is deployed with the YAKINDU Statechart tools and may be
created using the example wizard as outlined by Figures 5.15 and 5.16.

Figure 5.15: Opening the Example Wizard

Figure 5.16: Creating a new Java Code Generator Example Project

49

Statechart Tools - User Guide

As depicted by Figure 5.17 it contains some manually written code (within the src folder) that
realizes a Draw2d visualization of a traffic light, being adapted (within the CrossingDemo main
class) to the generated source code of the TrafficLight example (contained in the src-gen folder
of the example project).

Figure 5.17: Traffic Light Java Demo Project Contents

50

Statechart Tools - User Guide

As outlined in Figures 5.18 and 5.19, the CrossingDemo main class within the example project may
be executed as a Java application. It shows a visualization of the TrafficLight state chart variable
values (by means of colors of the traffic and pedestrian lights contained) and offers a button group,
which prolongs respectively named events to the TrafficLight state chart.

Figure 5.18: Running CrossingDemo as Java Application

Figure 5.19: CrossingDemo Application

51

Statechart Tools - User Guide

52

Chapter 6

UML Transformation

6.1 Introduction

In our previous examples we created a YAKINDU state chart with the YAKINDU Statechart Editor.
However, it is also possible to import an existing UML2 state machine or create one with your
favourite UML2 tool (You may also use the UML2 Editor which ships with the eclipse modelling
distribution). The tool of your choice must support ”EMF UML2”. In our examples we are going to
use the UML2-Toools available in Eclipse.

If you want to use an UML2 modelling tool instead of the YAKINDU Statechart Editor or you
have an existing UML2 state machine, you need to consider that the YAKINDU state charts are
somehow different from the UML2 state machines. To fill this gap you have to extend your UML2
state machine (In future releases another approach may also be available).

6.2 UML2 model

As for the code genenerators, an example project for transformation of UML2 state machines to
YAKINDU state charts is also available. You can open the examples (see Figure 6.1) and compare
them with the generated YAKINDU state charts.

Some information, which cannot be modelled in UML2 are generated automatically, or as mentioned
before, can be specified somehow else. For example: Every Transition and every Region in a YAKINDU
state chart needs a priority. On how to set a priority will be discussed later. Lets have a look at an
example project first.

6.3 The example project

The example is available within eclipse under File → New → Example. . . within the category
YAKINDU Examples. Select ”UML -¿ YAKINDU Transformation” and Finish the dialog. A new

53

Statechart Tools - User Guide

Figure 6.1: UML2 state machine in eclipse

project ”UML TransformationExample” containing one UML diagrams inclusive ”.umlstm” diagram
file for UML tools will be created.

To generate the YAKINDU state chart, right-click on generate demo.oaw

Figure 6.2: Run UML transfor-
mation workflow

and select Run As→MWE Workflow (Compare Figure 6.2). The
output of the transformation is saved in the new folder src-gen and
the status of the run is available in the Console view of eclipse, which
will be automatically opened in the right corner at the bottom of
the window.

The result is a *.statemachine file which can be found in the src-gen
folder within your project. The output folder, where your statema-
chines will be generated and the UML2 model can be defined in the
generatordemo.oaw. The next step, which should follow, is to generate a diagram for your model.
This is not automatically done, but with a right-click on the statemachine file you can initialize a
diagram (see figure 6.3). Because the layout information are not stored inside UML2 you have to
draft your diagram by hand.

The generated state chart can be edited, simulated and code can be generated from it. These steps
were described in previous chapters. If you want to generate code from the state chart see Chapter
4 for C and Chapter 5 for Java. If the model is a valid YAKINDU state chart a simulation is also
possible (see Chapter 3.2.8).

54

Statechart Tools - User Guide

Figure 6.3: Initialize Diagram

6.4 How does it work

The UML2 state machine and the YAKINDU state chart are quite similar. Nevertheless, there are a
few differences that need to be cared of.

6.4.1 Name mapping

The naming is the smallest gap. The following table shows the name mapping between the UML2
state machine and the YAKINDU state chart.

UML2 YAKINDU
StateMachine Statechart

Region Region
Transition Transition

Vertex Node
State State

FinalState FinalState
Pseudostate Pseudostate

Table 6.1: UML2 - YAKINDU Mapping

As you can see, there are only marginal differences. Besides that, YAKINDU state chart also defines
new elements which are not present in the UML2.

6.4.2 New elements

The new elements are Variable and Event. As those can’t be mapped 1:1, some conventions are
needed. The default behavior of the transformation is to ignore those elements. This will result in
an incomplete YAKINDU state chart (therefore no simulation is possible). To prevent this, you have
to extend your UML2 state machine.

6.4.3 Limitations

There are a few UML Elements that are currently not supported by the transformation. That includes
the PseudoStates

55

Statechart Tools - User Guide

• join

• fork

• entryPoint

• exitPoint

• and terminate.

A transformation that encounters such an element will fail.

6.4.4 Transformation Cartridge

The Transformation Cartridge allows you to integrate the YAKINDU Transformation into your oAW
Workflow. The cartridge expects the following parameters.

Parameter Description
umlModel A path to your UML2 Model file.
srcgen The output folder where the generated *.statemachine files should be created.
package The root directory for the transformation.

Table 6.2: YAKINDU Transformation Cartridge Parameters

In your oAW Workflow it may look like this:

...

<property name="umlModel" value="model/Simple.uml"/>

<property name="src-gen" value="src-gen"/>

<property name="config" value="src/" />

<!-- Generator call with model-file and output-folder -->

<cartridge file=’com/yakindu/statechart/transformation/uml2/transform.oaw’

project="com.yakindu.statechart.transformation.examples.uml2"

umlModel="${umlModel}"

src-gen="${src-gen}"

config="${config}" />

...

6.5 Extending an UML2 state machine

Since there aren’t UML2 Elements called Variable or Event, those have to be created with the
existing UML2 elements and the YAKINDU UML2 profile. The profile allows you to give Transitions
and Regions a priority and to describe Events as Signals and Variables as Classes.

56

Statechart Tools - User Guide

First you need to apply the YAKINDU UML2 profile. Open your *.uml file and select the model.
Click on UML Editor → Package → Apply Profile. A new window pops up where you add the
YAKINDU UML2 profile to your model. Press Ok and save the *.uml file. Now that the profile has
been loaded you need to apply the stereotypes to various elements. You can do this with the UML
Editor which has been used until now.

Figure 6.4: UML2 state machine example

Open the related *.umlstm file. It should look somehow like Figure 6.4. The YAKINDU UML2 profile
allows us to apply the stereotypes Priority, Variable and Event. Priority can be applied to Transitions
and Regions, Variable to Classes and Event to Signals. First, we want to give every Transition and
every Region a Priority. To do so, select a Transition/Region in the UML Editor. Select UML Editor
→ Element → Apply Stereotype. . . . Afterwards you can edit the priority in the properties tab,
if element is selected. The default value for Priority is 0 (see figure 6.5). That’s it! Repeat this for

Figure 6.5: Change the Priority

every Transition/Region in your State machine.

Now we are going to add the Stereotypes Event to our Signals. Most work will be done in the tree
UML Editor.

Select a Signal and click on UML Editor → Element →Apply Stereotype (see figure 6.6). Add
YAKINDU::Event and press OK. In the Properties View you can see now a Property Event with

57

Statechart Tools - User Guide

Figure 6.6: Apply Stereotype

Figure 6.7: Change Attributes

some Attributes. Change those Attributes to your needs (see figure 6.7). Repeat this for every Signal
in your state machine.

To add Variables to your UML2 state machine you have to create properties for your variable first.

Those have to be named after the Variables in the Expressions of your Transitions (see figure 6.8).
If you created a Property, select it and click on UML Editor → Element → Apply Stereotype.
Add YAKINDU::Variable and press OK. In the Properties View you can change now the Attributes
of Variable to your needs. Repeat this for every Variable in you Expressions.

It is important to know that Signals and Properties that should be recognized as Events and Variables
must be created under the state machine in the UML2 model. This is necessary due to the fact that
any number of state machines can be in a UML2 model.

If you followed all the described steps you are now able to generate a valid YAKINDU state chart.

58

Statechart Tools - User Guide

Figure 6.8: Property named after a Variable

59

Statechart Tools - User Guide

60

Chapter 7

Dynamical Systems Modeler (DAMOS)

In the field of engineering, technical systems are often described by the concept of a dynamical
system, which is a mathematical formalization of a time-dependent process (e.g. swinging pendulum).
The prevalent method for modeling dynamical systems is by using block diagrams, which specify
the signal flow between the components of the system.

The Dynamical Systems Modeler (DAMOS) supports this modeling approach and consists of three
components:

• a block diagram editor

• a simulator

• and code generator for efficient C code

DAMOS itself is very modular and can be extended by custom block types and also the simulator
and code generator can be customized.

61

	Overview
	YAKINDU Statechart Tools
	YAKINDU and Eclipse
	Status, Warranty and License
	Eclipse Public License
	Tool architecture

	Installation
	Eclipse Installation
	Installing the YAKINDU-Plugins
	Installing from Zip

	Statechart Modelling and Simulation
	The YAKINDU Perspective
	Example Step by Step
	Example State Machine
	Creating a new Project
	Defining a State Machine
	Checking the State Machine
	Project type and dependencies
	Create check files
	Editing check files
	Simulating a State Machine

	Using Example Projects

	C-Code Generator
	Introduction
	Example Scenario
	Starting the workflow
	Code Integration into an Existing Project
	State Machine Access
	Operating System and Drivers for the Example Device

	Java-Code Generator
	Introduction
	Setting Up The Example Project
	Generating Source Code
	Create Xtend Project
	Manage Dependencies
	Create MWE Workflow File
	Execute MWE Workflow

	The Generated Source Code
	Integrating Generated Java Code

	UML Transformation
	Introduction
	UML2 model
	The example project
	How does it work
	Name mapping
	New elements
	Limitations
	Transformation Cartridge

	Extending an UML2 state machine

	Dynamical Systems Modeler (DAMOS)

