
Project Report for
Google Maps for Models

Winter term 2020/21

David Wolff

Master project
March 2021

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M.Sc. Niklas Rentz

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

The Google Maps for Models project aims to identify and extract the interactive browsing
features as commonly used in mapping tools such as Google Maps and apply the concepts to
automatically generated diagrams for models as used in the KIELER project to improve the
browsing experience of the model visualization. In this context, the focus lies on SCCharts. The
main feature is Smart Zoom, that automatically expands and collapses regions and complex
states based on the zoom level and aborts rendering for invisible elements. Other features are
the simplification of small text elements and constant line width independent of the viewport.
Using these new concepts, we evaluate the increased rendering performance in medium to
large models.

Acknowledgements

I would like to thank Niklas Rentz for giving constructive feedback on both the implementa-
tion and the written elaboration as well as helping each week to determine the next steps
for the project. I would also like to thank Prof. Dr. Reinhard von Hanxleden for helping to
determine possible next features and improvements as well as the general direction of the
project. In addition I am thankful for the guidance of the Real-time Embedded Systems group
with parts of the KIELER project I was unfamiliar with.

v

Contents

1 Introduction 3

2 Motivation 5

3 Implementation 7
3.1 Scaling of Lines . 7
3.2 Simplification of Small Text Elements . 8
3.3 Collapsing and Expanding . 9
3.4 Scaling of Titles . 10
3.5 Limiting the rendered Scalable Vector Graphics (SVG) 11

4 Evaluation 13
4.1 Performance . 13

5 Future Work 15

6 Conclusion 17

Bibliography 19

vii

Contents

KEITH Kiel Environment Integrated in Theia

KIELER Kiel Integrated Environment for Layout Eclipse RichClient

VSCode Visual Studio Code

SVG Scalable Vector Graphics

IDE Integrated Development Environment

SCChart Sequentially Constructive Statecharts

IDE Integrated Development Environments

KLighD KIELER Lightweight Diagrams

ID Identifier

1

Chapter 1

Introduction

The main goal of this project is to apply functionalities seen in Google Maps to the visualiza-
tion of models in Kiel Environment Integrated in Theia (KEITH) [Dom18; Ren18]. KEITH is a
browser-based Integrated Development Environments (IDE) for Model-Driven Development
that uses the Kiel Integrated Environment for Layout Eclipse RichClient (KIELER) [HFS11]
language server to provide features such as model visualization and simulation for languages
such as Sequentially Constructive Statecharts (SCCharts) [HDM+13]. It is developed using the
Theia 1 framework and is designed to apply known and well-accepted user experiences in
web IDEs such as Visual Studio Code (VSCode). To this end, the generated diagrams should be
easy to understand and intuitively to interact with.

In this context, we worked specifically on the visualization of SCCharts. The diagram
for the model is represented using the KIELER Lightweight Diagrams (KLighD) [SSH13]
framework. The resulting SVG for the diagram and many interactions are realized using
Sprotty 2. In this process, most model updates are handled by the language server. To allow
good responsiveness, we will implement all features on the client side and use no new server
requests. Additionally, we try to improve the performance as the whole diagram is rendered
in its entirety for each frame.

In this work we will look at the motivation for the concepts in Chapter 2, their imple-
mentation in Chapter 3 and evaluation in Chapter 4, followed by possible future work in
Chapter 5 and a final conclusion in Chapter 6.

1https://theia-ide.org/
2https://github.com/eclipse/sprotty

3

Chapter 2

Motivation

When working on increasingly complex models, it is often difficult to comprehend their
behaviour and find problems solely based on the textual representation. Therefore model
visualizations often allow to gain quick insight of a model. As such they are often a vital
component for an efficient workflow as complexity increases.

Diagrams of large models can be barely readable at first glance, when viewed on a
computer screen as seen in Figure 2.1. They often contain unreadably small texts, vanishingly
small edges and paths as well as information irrelevant to the top level structure. Therefore,
an important focus of this project is the simplification and representation of complex states
and regions. That allow for a more dynamic view of the structure in question. In addition
we will improve visibility for transitions as well as region and state boundaries, as these are
important to discern system behaviour. An example of these features can be seen in Figure
2.2.

Moreover, large graphs can lead to low frame rates in KEITH, as the entire diagram is
rendered for each translation or scaling step. With the browsing experience in mind, increasing
the performance by removing invisible and currently unreadable elements is also an aspect of
this project.

Figure 2.1. Diagram of the wagon model using original KEITH.

5

2. Motivation

Figure 2.2. Diagram of the wagon model using all new features.

6

Chapter 3

Implementation

In this chapter, the main aspects of the implementation as well as decisions that were made
during the development are presented.

3.1 Scaling of Lines

Figure 3.1. Diagram of the wagon model with line scaling.

Much interesting information is reinforced through lines or paths such as the structure of
states and transitions. The width of these are predefined and independent of the viewport in
KEITH.

Thus, the first change made during the project was to scale the line width depending on
the current zoom level as seen in Figure 3.1. Dividing the line width by the current zoom
level results in lines being drawn with constant width as a new rendering is made for each
scaling step. During this some edge cases need to be handled. The ones considered here are
the original expand and collapse buttons as well as drawing lines as originally intended,
when zooming in further.

7

3. Implementation

3.2 Simplification of Small Text Elements

Figure 3.2. Examples of text simplification.

Text elements take a considerable time to render. As small text elements are unreadable, we
simplify the small text elements to allow the user to determine that there is still text present.

We first need to define a threshold under which this should occur. To check the height of
a given text element in the view port, we have to divide the server calculated height by the
zoom level. To replace the text elements I used simple rectangles with the same width. These
are set to fill 50% of the original text height and use the same color style to appear visually
close to the original text.

Later I was told that a similar function was already implemented, that hides really small
text elements completely. This can already be fine-tuned at a much finer granularity for several
different types of text elements and could be expanded to also fill the need for placeholders.

8

3.3. Collapsing and Expanding

3.3 Collapsing and Expanding

Figure 3.3. Different zoom levels of ABRO diagram using Smart Zoom.

An example of the zoom-dependant expansion state of elements can be seen in Figure 3.3.
To be able to remember and apply expansion of states and regions the Boolean property

expansion state is added to KNode model elements. This property is checked when rendering
a KNode. This results in normal behavior, when the expansion state is set to true, indicating
an expanded region. Otherwise, the rendering returns no SVG for the current node and
consequently does not render nested nodes.

To set the appropriate expansion state, the first test implementation used the ZoomMouseListener

provided by Sprotty to detect a change in zoom level. After a fixed change in zoom level, the
most nested visible nodes got collapsed or expanded based on the direction in the change of
the zoom level. To realize this the entire model was traversed and as a result, when changing
the expansion state the visualization would stutter.

To mitigate this, a new class DepthMap was implemented. Here, node references are
combined into regions that should appear and disappear together. To make finding the
appropriate elements faster, a 2D array is used to save the regions, where the outer array
corresponds to the nesting depth. As such now only each region needs to be checked to apply
the expansion states.

For deciding the expansion state based on the size of the region, the bounding rectangle
of the region is saved and used to quickly identify a region based on a HashMap with the
rectangle Identifier (ID) as the key and the corresponding region as the value. This can be
used in the rendering to determine when the next region is being rendered.

In addition, the tree structure of the model is applied to the regions as well by traversing

9

3. Implementation

the parents of the regions bounding rectangle until the next parent region is found. These are
then saved in the corresponding regions as well. This also allows to minimize the number of
regions that need to be checked to apply the correct expansion state as the child regions of
collapsed regions do not need to be checked.

The next modification was the process to determine the expansion state of a region. To do
this, dependent on the current viewport, the size of the region is rescaled with the zoom level
to determine its actual width and height in the rendering. These are then compared to the
dimensions of the viewport. The bigger of the two resulting fractions is then used to determine
the expansion state by thresholding. This threshold was added to the rendering options and
can be changed during browsing. A threshold of 0.5 results in a region being collapsed, when
its largest dimension fills under 50% of the viewport and expanded otherwise.

To help with visibility, when using a large threshold, surpassing the native resolution of
the diagram through zooming results in all nodes being expanded.

3.4 Scaling of Titles

Figure 3.4. Displaying different title types in order of precedence. Left to right: region title, state title,
single macro state title.

For a collapsed region, it is not apparent what role it might have in the model. To have at
least an impression of what could be hidden here, adequate titles are searched for and scaled
to ensure readability. In this context, three kinds of titles are distinguished. A region itself can
have a title as well as a super state. Here a super state has at least some internal states and a
macro state has at least some declarations. If none of these apply and the region has only one
complex state, this state title is then used as the region title. These three types of titles as well
as the final scaling can be seen in Figure 3.4.

The detection of a direct title of a region is possible directly from the model. This is also
located in the correct nesting level. This allows to simply scale and indent the KText, when a
title of a collapsed region is encountered.

For super and macro states, the property isNodeTitle was added to KText on the server
side, which is set to true if it is a macro state title. With this property on the client side it can
be checked whether a region has macro states or is a super state.

10

3.5. Limiting the rendered SVG

When the region itself is a super state, the title needs to be rendered in the corresponding
child area. For this reason the KText is rendered again, one nesting level lower in the rendering.
To find the corresponding region in the lower level the ID is used. This rendering is then
scaled the same way.

For macro state titles, we have to make sure that there is only one macro state. In order to
determine whether the appropriate KText can be used as a title. Here the KText is rendered
one level higher, from the content of the region to the same level as the region. This KText

then only needs to be scaled.
With this lifting and lowering of the nesting depth of elements, we have to make sure to

only perform this step once and employ counter measures to not confuse titles as this could
impact whether or not we find multiple macro state titles.

For collapsed regions where no title applies, a placeholder in the form of a magnifying
glass is drawn to suggest that more can be displayed here by zooming in.

3.5 Limiting the rendered SVG

The most significant part of the implementation to improve performance for the visualization
of large models is not rendering regions. The idea is simple: With the size and position of all
regions and the viewport it can be determined which regions are not currently visible. Follow-
ing this these regions can be collapsed to skip the rendering. However, the implementation
turned out to be one of the bigger challenges.

The main problem is that the exact position in the diagram, as well as the viewport is
needed. The absolute position of nodes can not be determined easily. For each KNode, the
KIELER language server pre-calculates position and size. This position is relative to the parent
node. Using Sprotty’s getAbsoluteBounds should be able to determine the absolute position by
going through all parent nodes and their relative positions. In contrast Sprotty assumes, that
the position of the child node relative to the parent node begins at the corner of the parent
node. Thus, the displacements due to titles, declarations, and other layouting information
add up with each nesting level. To combat the complexity of going through all layouting
information and constructing the absolute position, a simpler approach was implemented.

It is not technically pretty, but serves its purpose. A function from Sprotty called
getAbsoluteClientBounds is used for inspiration here. It looks up the SVG associated with a
graph element and determines the position relative to the entire browser window. With this
being done for each region, it introduces a lot of new operations for the initial rendering and
thus is a bottleneck for diagram generation of larger models. This could be circumvented, by
using the already available layouting information as elaborated in Chapter 5.

The indexing structure assumed by Sprotty differs from the one implemented by KIELER.
Thus for each region, the SVG of the bounding rectangle, as well as the diagram window must
first be found. To calculate the position of the region relative to the diagram.

The first approach was to try to determine the position of all regions, before the centering
and scaling action of the initial drawing. This caused two problems. First, after generating

11

3. Implementation

the first diagram, micro layouting information are still exchanged with the server. Second,
the centering and scaling animation of Sprotty, executed after the first complete rendering,
cannot be paused easily for just this purpose. In addition the procedure of centering, after the
initial drawing might change in the future.

To circumvent the first problem, we find the step where no more micro layouting informa-
tion is exchanged. To do this the data structure used to store this information is checked to
see if it is empty. Then the finished diagram should be drawn at the client.

The second problem with the animation is compensated through scaling to original
proportions. To do this the previously acquired browser position is put into reference to the
diagram window. Then the current dimensions and position of the element are rescaled using
the zoom level.

However, there are sometimes position calculations for some elements in some renderings
with a large error. To still get a accurate position, an error margin is introduced and elements
that exceed this margin are checked again in subsequent renderings, until a good position
approximation is found. Therefore, it is important to get an error margin that is large enough
to compensate the error and allow as few absolute position approximations as possible. With
the error margin also extending the range of the visibility for drawn elements, it still needs
to be small enough to improve performance. These extra steps would not be needed, if the
absolute position was calculated using the layouting information as explained in Chapter 5.

12

Chapter 4

Evaluation

The goal of this project is to achieve a browsing experience similar to mapping software such
as Google Maps and apply them to models. To this end, we introduced a dynamic way for
states and regions to be hidden based on their size and position in the current rendering, while
still retaining some information through their titles. Furthermore, the visibility of transitions
and boundaries are enhanced as well. This makes the top level view more accessible and
unveils previously unrecognizable information. Furthermore this persists, when viewing
larger parts of a model.

Contrary to this is the unpolished look of the new features in comparison to the visual
style of KIELER. In addition the expansion and collapse actions are not novel functionality,
but are realized in a client-side way with the aim to decrease performance overhead through
these actions. With this, the project could still be used for further work.

4.1 Performance

To allow for a smooth browsing experience responsiveness is essential. Therefore, we will
take a look at the performance change due to the new features.

Figure 4.1 visualizes the frametimes when browsing through the railway wagon model
1 with and without the new features. Here we can see an improvement of almost a third
just by using the simplified text elements. The combination of collapsing and expanding
regions as well as hiding currently invisible elements can result in a refresh rate almost three
times as fast as the original implementation. With both combined, we get a relatively smooth
refresh rate for all zoom levels especially, when viewing the entire diagram. However, the
DepthMap and the process for finding the absolute position create a considerable overhead
when trying to visualize larger models. This not only leads to longer initialization times, but
also can reach a tipping point, where the collapse and hiding of elements can worsen the
performance. Therefore these results should be viewed with caution and future work can
ensure a performance increase for all diagrams.

1This model is from the railway project of summer semester 2017.

13

4. Evaluation

Both little

Both some

Both all

Smart Zoom little

Smart Zoom some

Smart Zoom all

Simplifiy Text

Original 277

190

159

112

98

78

80

97

295.6

206.6

190.1

118.1

106.4

82.8

94.6

102.8

393

250

259

128

123

87

132

110

Frametimes during panning on the wagon model in milliseconds

min avg max

Figure 4.1. Frametimes were measured using Google Chrome performance recording and rounded
to whole numbers. For each test 10 consecutive frametimes were randomly taken during continuous
scrolling.

14

Chapter 5

Future Work

The results can be improved further in future work on this topic. In addition, other topics for
future work were encountered.

Considering the visualization, regions pop in and out of the diagram abruptly. This could
be improved by morphing or smooth changes in visibility. In addition, the titles are just scaled
versions of KText elements without further modification or a smooth transition into their
normal occurrences. For example, it would be nice to have a type of visual difference between
the three types of titles for clarity. To go even further, the concept of placeholders could be
expanded for several different types of structures. For example placeholders indicating no
further nesting or conveying the complexity of the hidden states and regions. To do this, the
transitions could also be adjusted to fit to the new placeholders.

Actions such as panning and zooming get pipelined by Sprotty. This can lead to the build
up of actions, that get executed sequentially. This results in unresponsiveness of visualizations
with slow update rates. To reduce this effect, the ActionDispatcher of Sprotty would need to
be modified to combine confluent actions. A simple example would be to combine subsequent
translations into one by adding their displacement values and replacing them.

Another possible improvement considering Sprotty is to only generate a new SVG, when a
considerable change in the viewport was made or an event was triggered. This would allow
almost instantaneous updating, when just scrolling through a diagram.

The calculation of absolute positions can be implemented by evaluating all layouting
information. The main problem here is to find all relevant layouting information for each
element and transform them into absolute displacements with respect to the parent element.
Then you could determine the absolute position of a child element by going through all
parents and adding their displacements.

The overhead of the DepthMap could be reduced by progressively building it top down, i. e.
that the visualization begins at the root and elements are only added, when the corresponding
region or state gets expanded. Another way would be to limit it to just the visible elements
and use the tree structure to find regions that could get visible by going through the relevant
parents, when scrolling or zooming occurred.

The model could be generated progressively with server requests, with elements only
transmitted, when needed as well.

Lastly, the layout of regions and super states could be modified to better fit the current
viewport and allow for a more interactive experience. An idea for this is to find appropriate
positions and sizes for regions and super states and then scale the child area contents of these
to fit into the child regions. If the style of the diagram elements, could be adjusted to this

15

5. Future Work

change in size, the viewing experience should still be smooth, while there is more freedom to
try to optimize the overall layout further.

16

Chapter 6

Conclusion

With only one student participating in the project, the scope of possible implementations was
limited. To this end, the implemented features could be viewed as a proof of concept, that
still need some work. Those are the dynamic client based collapse and expansion of states
and regions, reducing the rendering scope to only visible elements, finding and processing
title candidates as well as text placeholders and constant line widths. These improve the
comprehensibility on the top level view and the performance of the visualization for some
models, but struggle when the models get too complex. In addition to the explored features
many new possible topics were discovered or rediscovered.

17

Bibliography

[Dom18] Sören Domrös. “Moving model driven engineering from eclipse to web tech-
nologies”. In: (Nov. 2018), p. 102. url: https://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/sdo-mt.pdf (visited on 03/25/2021).

[HDM+13] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. SCCha-
rts: Sequentially Constructive Statecharts for safety-critical applications. Technical
Report 1311. ISSN 2192-6247. Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, Dec. 2013.

[HFS11] Reinhard von Hanxleden, Hauke Fuhrmann, and Miro Spönemann. “KIELER—
The KIEL Integrated Environment for Layout Eclipse Rich Client”. In: Proceedings
of the Design, Automation and Test in Europe University Booth (DATE ’11). Grenoble,
France, Mar. 2011.

[Ren18] Niklas Rentz. “Moving transient views from eclipse to web technologies”. In:
(Nov. 2018), p. 103. url: https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/
sdo-mt.pdf (visited on 03/25/2021).

[SSH13] C. Schneider, M. Spönemann, and R. von Hanxleden. “Just model! — putting
automatic synthesis of node-link-diagrams into practice”. In: 2013 IEEE Sympo-
sium on Visual Languages and Human Centric Computing. 2013 IEEE Symposium
on Visual Languages and Human Centric Computing. ISSN: 1943-6106. Sept.
2013, pp. 75–82. doi: 10.1109/VLHCC.2013.6645246.

19

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf
https://doi.org/10.1109/VLHCC.2013.6645246

	Introduction
	Motivation
	Implementation
	Scaling of Lines
	Simplification of Small Text Elements
	Collapsing and Expanding
	Scaling of Titles
	Limiting the rendered SVG

	Evaluation
	Performance

	Future Work
	Conclusion
	Bibliography

