o kWb =

=S === =

Five-Minute Review

nat is a variable”?

nat is a class? An object?

nat is a package?

nat is a method”? A constructor?

nat is an object variable”?

Programming — Lecture 3

Expressions efc. (Chapter 3)

* Aside: Context Free Grammars
« EXxpressions

* Primitive types

* Aside: representing integers
* Constants, variables

* |dentifiers

» Variable declarations

* Arithmetic expressions

» Operator precedence

* Assignment statements

« Booleans

Aside: Context-Free Grammars (CFGs)

Can specify syntax of a program (or parts of
a program) as CFG

Note: “Aside” indicates that this material is not
covered in the book, but still part of the class
content, also relevant for exam.

For further reference, see e.q.:
https.//en.wikipedia.org/wiki/Context-free _grammar

https://en.wikipedia.org/wiki/Context-free_grammar

Why You Should Care About CFGS

nnnnnn

The Java® Language Specification .-

\\\\\\\\\\\\

Table of Contents

1. Introducton
1.1. Organization of the Specification
1.2. Example Programs
1.3. Notation
1.4. Relationship to Predefined

Classes and Interfaces
1.5. Feedback
1.6. References
2. Grammars
2.1. Context-Free Grammars
2.2. The Lexical Grammar
2.3. The Syntactic Grammar
2.4. Grammar Notation

,,,,,,,,,,,,,

Context-Free Grammars (CFGs)

From the Java Language Standard, Sec. 2.1:
A context-free grammar consists of a number of productions.

Each production has an abstract symbol called a nonterminal as
its left-hand side, and a sequence of one or more nonterminal
and ferminal symbols as its right-hand side. For each grammar,
the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished
nonterminal, called the goal symbol, a given context-free
grammar specifies a language, namely, the set of possible
sequences of terminal symbols that can result from repeatedly
replacing any nonterminal in the sequence with a right-hand side
of a production for which the nonterminal is the left-hand side.

https.//docs.oracle.com/javase/specs/jls/se9/html/jIs-2.html#jls-2.1

Context-Free Grammars (CFGs)

Formally: CFG defined by 4-tuple G =(V, 2, R, S)
 Vis a set of nonterminal characters or variables
« 2, the alphabet, is finite set of terminals.

* R, the set of (rewrite) rules or productions,
Is relation from Vto (VUX)*, i.e., a set of ordered pairs

of elements from V and (VU2)*, respectively
« S € Vs the start variable (or start/goal symbol)

Note: *is the Kleene Star. For any set X, X* denotes 0
or more instances of elements of X.

Example: {0,1}*={¢, 0,1, 00, 01, 10, 11, 000, ... },
where ¢ denotes the empty string

Language of CFG

For any strings u, v € (VUX)",

u directly yields v (written u = v)

if 3(a, B) € Rwitha € Vand u,4, u, € (VU2)* and
u = usau,and v = u,Bu,.

Thus, v is a result of applying the rule (a, 3) to u.

Language of grammar G = (V, 2, R, S) is the set
L(G)={weX:S=>"w}
where =7 is reflexive transitive closure of =

Example: Well-Formed Parentheses

Well-formed: (), (()), ()(), ((()), ---
lli-formed: €, (,),)(, (0), ...

G=(V,Z, R, S) with

* Variables V={ S}

« Alphabet 2 ={(,)}

* ProductionsR={S—> SS,S—(S),S— ()}
May also write Ras S — SS | (S) | ()

S—SS[(S)]()

Claim: The string (()()) is valid, i.e., in L(G).
Proof: consider the derivation
S = (S) = (SS) = (0S) = (00)

However, the string)(is not in L(G),
since there is no derivation from S to)(

10

Trees In CS

R
Our trees grow downwards! m
LI L
R: Root I\
L: Leaf O
| Internal node (i.e., not a leaf)
[\ [\
L LLL

Typically, root is an internal node
(when not?)

11

Parse Trees

May use parse trees as compact

representation for derivation. S
. []\
Internal nodes are variables,
[eafs are terminals. (S)
[\
S = (S) = (SS) = (()S) = () S O
IS a derivation that follows from [\ 1A
parse tree on right. () ()

Recall: S— SS | (S) | ()

12

Example: Parenthesized Sums

a+b,ux+(y+2z),..

G=(V, 2, R, S)with
 Variables V={ S, P, X}
* Alphabet2 ={(,), +,a, ..., 2}

 Productions:
S—>S+P|P
P—(S)|X
X—>a|...|z

13

S—>S+P|P S
P—(S)|X /
X—al..|lz

Parse tree for a + (b + ¢) + d. 2”

Parsing done bottom-up;
lower position in parse tree
is parsed/evaluated earlier X 1

Parentheses evaluated first a P X
Note that above rules imply that >|< |

+ is evaluated left-to-right ¢
(left-associative) L

Note on Notation

Recall: formally, set of productions is a relation.
Can write this in different ways:

Set notation:
R={(S, SS),(S,(5)). (S, ()} Multiline
notation:
Verbose arrow notation: S:
S—>SS,S—-(S),S— () SS
(S)

Compact arrow notation:
S—>SS | (S)] () s

Context-Free Languages

L is a context-free language (CFL),
if there exists a CFG G, such that L = L(G)

Example: Is L, ={a" b": n € N } context-free?
Yes, L,=L(({S},{a,b},{(S,aSb), (S,¢€)}, S))

Example: Is L;={a"”b"c": n € N } context-free?
No, there is no CFG G with L; = L(G).

Proof: see
https://en.wikipedia.org/wiki/Pumping lemma for context-free languages

Note: CFLs are a superset of reqular languages. E.g., L, is not regular.
16

https://en.wikipedia.org/wiki/Pumping_lemma_for_context-free_languages

So, Is Java context free?

No.

CFGs don't address, e.g., variable
declarations/bindings.

But CFGs make the syntax precise, which is
important both for programmers and parsers.

17

Backus-Naur Form (BNF)

BNF is another notation for CFGs

* Close to compact arrow notation
 Use "::=" Instead of arrow, "<...>" for variables

Well-formed parentheses example in BNF:
<S> =<5><S> | (<S>) | ()

18

Extended Backus-Naur Form (EBNF)

Typically puts terminals into quotes (" or)
Typically no "<...>" for variables

[X] denotes 0 or 1 occurrences of X
S ::=a[b]c abbreviates S::=ac|abc

{X} denotes 0 or more occurrences of X
S:=a{b}c abbreviatesS::=aTc, T:=bT]|c¢

(X) defines a group
S:=a(b|c)d abbreviatesS::=abd|acd

19

Java Lexical Grammar

Isa CFG
 Terminals are from Unicode character set

* Translate into input symbols that, with
whitespace and comments discarded, form
terminal symbols (fokens) for Java Syntactic

Grammar
 Notation is variant of EBNF

See also https://docs.oracle.com/javase/specs/jls/se9/html/jls-2.html#jls-2.4

20

Example: Java Decimal Numerals

« Want to prohibit leading O (except in O itself),
to avoid clash with octal numeral

* Therefore, must be 0 or begin with non-zero

* Allow underscores, but not at beginning or
end

21

DecimalNumeral: Digit:
0 0

NonZeroDigit [Digits] NonZeroDigit

NonZeroDigit Underscores Digits

DigitOrUnderscore:

NonZeroDigit: Digit
(one of)
123456789

Underscores:
Digits: {}

Digit
Digit [DigitsAndUnderscores] Digit

DigitsAndUnderscores:

DigitOrUnderscore {DigitOrUnderscore}

https://docs.oracle.com/javase/specs/jls/se9/html/jls-3.html#jls-DecimalNumeral

22

EXxpressions

int total = nl + n2;

Expression: consists of terms (n1, n2), or

operands, joined by operators (+, *, =

Term:.
— Literal, a.k.a. (unnamed) constant (3.14)

— Variable (nl), including named constants
(PI,asin static final PI = 3.14)

— Method call (Math.abs (nl))
— Expression enclosed in parentheses

)

24

Primitive Types

Data type: set of values (domain) + set of operators

Type Domain Common operators
byte 8-bit integers in the range —128 to 127 The arithmetic operators:
+ add * multiply
16-bit integers in the range —32768 to 32767 - subtract / divide
short o remainder
. 32-bit integers in the range The relational operators:
int 2146483648 to 2146483647 ——equalto != not equal
64-bit integers in the range < lessthan <= less or equal
long | _9223372036754775808 to 9223372036754775807 > greater than >= greater or equal
32-bit floating-point numbers in the range
float 4+ 1.4x1045 to == 34028235 x 1038 The arithmetic operators except %
64-bit floating-point numbers in the range The relational operators
double +439x1022t0 = 1.7976931348623157 x 10308
char 16-bit characters encoded using Unicode The relational operators and +, -, ...
The logical operators:
boolean the values true and false && and || or ! not

The relational operators:
== equal to ! =not equal

26

Numbers
This is covered further in Ch. 7

Decimal, binary, octal, hexadecimal notation

zz%%%%% 4210 = 00101010, =525 = 2A4s
dokdkkhkke K MG, T
FXXXARE Docimal: 108,108, 105, 107
Binary: 210, 220, 230 240
In Java:

Prefix "0"/"0x" means octal/hex literal
012 2 10, Ox12 2 18

27

Aside: Encoding Integers

Computers represent integers in w bits x; € { 0, 1 }
X = Xuw-1 X2 - X1 Xp

[E—Y

W_

For unsigned int's, X encodes value B2U(X) = Exl_. 7
E.g., B2U(101)=1*4+0*2+1*1 =5 i=

w=2
For signed int's, X encodes B2T(X)=-x 2V 4 Exl.- 2!
This is two's complement encoding \ i=0

E.g., for w=3, B27(101) =-1"4 + 0*2 + 1*1 = -3 Sign bit

In Java: w = 8 (byte), 16 (short/char), 32 (int), or 64 (1long)

In Java, all integral types are signed, except for char
See also https://docs.oracle.com/javase/specs/jls/se9/html/jls-4.html#jls-4.2

33

https://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html

Bit-Wise Operators

byte x = 42; //xencoded as 0010 1010,
byte y = 15; //yencoded as 0000 1111,
byte z = -16; // zencodedas 1111 0000,

Bit-wise operators refer to binary encodings

AND:x & y =10 // 0000 1010,
OR: x | y =47 //0010 1111,

Shiftleft. 'y << 2 =60 //0011 1100,

Arithmetic shift right.y >> 2 =3 [/ 0000 0011,
z > 2 =-4 [/[1111 1100,

Logical shift right. 'y >>> 2 =3 //0000 0011,
z >>> 2 =60 //0011 1100,

More on bit-wise operators in Lecture 7 34

Abstract Data Types (ADTs)

ADT = set of variables
+ set of operations
+ specification

Specification may be informal prose and/or
mathematical equations that must hold (e.g.,
commutative/distributive/associative laws).

ADT abstracts from implementation.
In Java, typically implement ADT as class.

35

abstract
assert
boolean
break
byte
case
catch
char
class
const

continue
default
do
double
else
enum
extends
final
finally
float

|dentifiers

[dentifier: name of variable, class, method etc.
* Must begin with letter or underscore

* Remaining characters must be letters, digits, or
underscores

« Must not be one of Java's reserved words:

for

goto

if
implements
import
instanceof
int
interface
long
native

new
package
private
protected
public
return
short
static
strictfp
super

switch
synchronized
this
throw
throws
transient
try
void
volatile
while

38

Coding Advice — Naming Conventions

Classes: UpperCamelCaseNouns
Methods: lowerCamelCaseVerbs
Constants: UPPER CASE
Variables: lowerCamelCase

Avoid single-character variable names, except for
"temporary" ones:

* Integers: i, j, k...
* char's:c,d, e ...

Try to use English names:
e.gd., use counter instead of zaehler

See also https://en.wikipedia.org/wiki/Naming convention (programming)
http://www.oracle.com/technetwork/java/codeconventions-135099.htmI#367

39

https://en.wikipedia.org/wiki/Naming_convention_(programming)
http://www.oracle.com/technetwork/java/codeconventions-135099.html

Variable Variations

[ocal variable: declared within method

Instance variable (or non-static field).
declared as part of a class (without static),
one per object

Class variables (or static field): declared as
part of class (with static), only one for class

43

Scoping
Scope: part of program where variable is visible

Scope of local variables: from declaration until end
of enclosing block (sequence of statements
enclosed in braces, see Lec. 4)

Shadowing (or hiding): multiple variables of same
name have overlapping scope.

In Java:

* |ocal variables shadow fields
(useful e.g. for setters, see later)

* no shadowing of local variables
(local variable names must be unique within

method, unlike e.g. for functions in C) »

Operators and Operands

Binary operators — take two operands

+ -/, % ==, <, > &&, ||, &, |, A, <<, >>, ...

Unary operators — take one operand

+ - ++ - |
) N

Ternary operator — takes three operands
?

45

Type Casts

int op int = 1int
int op double = double
double op double — double

100;

Casting: (type) expression
double f£f (double) 9 / 5 * ¢ + 32516

double c
double £

Aside: Expression Evaluation

Different operators may be ordered by precedence:

An operand between operators of different precedence is
bound to operator of higher precedence

* has higher precedence than +
2 + 3 %4 ==2 4+ (3 * 4) '= (2 + 3) * 4
3 bound to *, not to +

Operators of same precedence level ordered by associativity:
+ is left-associative, operands between +'s bound to left +

l1 + 1E100 + -1E100 == (1 + 1E100) + -1E100
'= 1 + (1E100 + -1E100)
false + true + "" == (false + true) + ""

1= false + (true + "")

1E100/true bound to left +, not to right +
See also http://introcs.cs.princeton.edu/java/11precedence/ >

L L o | e Ly

access array element

16 . access object member left to right
() parentheses
++ n ost-increment
15 Lnary postiner not associative
-= unary post-decrement
“t unary pre-increment
-- unary pre-decrement
+ unary plus
14 Y p right to left
- unary minus
! unary logical NOT
~ unary bitwise NOT
() cast
13 , , right to left
new object creation
12 */ % multiplicative left to right
= additive
11 . W _ left to right
+ string concatenation

[http://introcs.cs.princeton.edu/java/11precedence/]

<< >>

10
>>>
< <=
9 > >=
instanceof
8 '=
7 &
6 A
5 I
4 &&
3 [|
2 g
= 4= —=
*— /= o
1
&= A= | =

<<= >>= >55=

[http://introcs.cs.princeton.edu/java/11precedence/]

shift

relational

equality

bitwise AND

bitwise XOR
bitwise OR
logical AND
logical OR

temary

assignment

left to right

not associative

left to right

left to right
left to right
left to right
left to right
left to right

right to left

right to left

Aside: Expression Evaluation

Precendence and associativity ...

« govern which operands belong to which operator
« Imply paren's

« can be overridden by paren's

Precedence, associativity and paren's tell us how to
construct a fully parenthesized expression,

which makes all bindings of operands to operators explicit:

2 +3 * (44+45) = 2+ (3 * (4 +)5))

Once expression is fully parenthesized, don't need to
consider precedence and associativity any more.

54

Aside: Expression Evaluation

To perform an operation, we first evaluate operands, then
apply operator to results.

(Special case: short-circuit evaluation for &&, || — see later)

Do this recursively: if evaluating an operand entails
performing an operation, the same rule applies again.

Operands of operator ordered by evaluation direction:
Java evaluates left-to-right (undefined in C or C++!)

This matters when operand evaluation has side effects
(such as assigning new values to variables)

With i initially 0: i + 2 * +4+4i == 2
Wait a minute ... * has higher precedence than +,
but operands of * are evaluated after left operand of +?

Explanation: evaluation direction, see next slide

Aside: Expression Evaluation

What happens exactly:

* Fully parenthesized expression: i + (2 * (++1i))

 We thus have a sum with 2 operands.

« To compute sum, we first evaluate the left operand, then
evaluate the right operand, then compute the sum of both.

1. Evaluating left operand i yields 0 + (2 * (++i))

2. Right operand 2 * (++i) is a product, with again 2
operands — thus recursively apply left-to-right rule:

1. Left operand 2 of product is already evaluated: 0 + (2 * (++i))

2. Evaluating right operand ++i of product sets i to 1 (pre-increment),
andyields 0 + (2 * 1)

3. Computing product yields 0 + 2
3. Computing sum yields 2

56

Exercise: Precedence Evaluation

o

<

(@1 +2) 53)*4)+HG *06)/ 7)) (8% 9)+ 10

To get started: we have a sum (root of parse tree), whose left operand

is another sum, whose left operand is a product, whose left operand is
a modulo operation, whose left operand is the sum "1 + 2".

30

o\°
A

o7

Coding Advice — Naming, Paren's

» Use meaningful variable names

* Don't use "magic numbers",
use named constants instead

* Add paren's if precedence may not be obvious

Example: Replace
help || me == read && that !'= thing

by
help || ((me == read) && (that '= thing))

58

Assignments

variable = expression;

Shorthand assignment:

variable op= expression;

int x = 0; x += 1.0; isequivalentto
int x = 0; x = (int) (x + 1.0);
Omitting the (int) cast would result in an error

Pre-increment Post-increment

++variable ; variable++ ;

++x; equivalenttox += 1; x++; equivalenttox += 1;
y = ++x; equivalentto y = x++; equivalentto

x +=1;, y = x; y = xX; x += 1;

59

Assignment Expressions

« Assignments are also expressions, with assignment operator
(=, +=, etc.)

« Left operand must be an “L-Value”, i.e., something that points
to a storage location, i.e., a variable

« Assigned value is also value of assignment expression

int x, y=(x=1) + (y = 2) + (x += 3);
resultsinx=4,y=7

Coding advice: don’t use shorthand assignments (including
pre/post-increment etc.) as expressions

Bad: y = x++;

Good: x++; y = X;
60

Booleans

George Boole
(1791-1871)

Boolean values: true, false

Logical operators on Booleans:
&& ||

These short-circuit:
right operand evaluated only when needed

Other logical operators on Booleans:

= 1= 1 § | A

These don't short-circuit

Relational operators producing Booleans:
< <= == >= > I=

64

Coding Advice — Don't confuse "=" and "=="

if (oneFlag = otherFlag) {

}

If you really mean this, write instead:
oneFlag = otherFlag;
if (oneFlag) {

}

But what was probably meant:
if (oneFlag == otherFlag) {

}

70

Summary

Expressions = terms + operators
Primitive data types: int, double, ...
Simplest terms: constants, variables
Declarations: type name = value;

Expression evaluation: paren's, precedence,
associativity and (in Java) left-to-right evaluation

Assignments: variable = expression;
Relational operators produce Booleans

Can operate on Booleans

71

From Next Week Onwards —
We Will Move!

* For both Vorlesung and Globaliibung

» Old: https://uni-
Kiel.zoom.us/|/856254555677?pwd=SFh
GbTcrdGZNVndzenZXdiVmdO9GUTO09

* New: https://uni-
Kiel.zoom.us/|/879238342057?pwd=SmV
3TDJWWig2bklycXVTVWR3bIEWUT09

72

https://uni-kiel.zoom.us/j/85625455567?pwd=SFhGbTcrdGZNVndzenZXdjVmd09GUT09
https://uni-kiel.zoom.us/j/87923834205?pwd=SmV3TDJWWjg2bkIycXVTVWR3blEwUT09

