
Five-Minute Review
1. What are expression statements?

Compound statements?
2. What is a scope?
3. What are conditional statements in Java?

How about iterative statements?
4. In conditionals, why should we use

compound statements instead of simple
statements?

5. What is the repeat-until-sentinel pattern?
1

Guide to Success I
Throughout the semester:
1. Between lectures, go through slides, including those not

shown in class

2. For the material covered in the book (about 80% of class
content), work through corresponding book chapter, either
before or after material is covered in class

3. Align programming tasks with concepts in class/book;
ask for help whenever needed, but write your own code

4. At the end of each lecture/chapter, first answer review
questions in book yourself, then compare with solutions

5. Participate in practice exam (last Globalübung in
December)

6. Finally: JUST DO IT.
2

JUST DO IT.
• Becoming a programmer is like learning to ride a bike – it

does not suffice to watch other bikers, you just have to get
on the bike yourself and start pedaling.

• Thus, to become a programmer, and to pass the exam well,
“studying” (“Lernen”) alone will most likely not do the trick –
instead, you also need to spend plenty of time with actively
programming yourself.

• At the same time, to become a good programmer, you
should study other people’s code as well and try to get
advice from experts whenever possible.

• Same with Math, by the way – if you just stare at the lecture
material and problem solutions, you probably won’t progress
well. Instead, you have to wreck your own brain with trying
to solve practice problems, and take expert advice. 3

Guide to Success II
Get connected, join social media

Form study groups (ideal size: 2 – 3)
1. Ask each other if anything is unclear
2. Ask each other 5-Minute Review Questions from

slides, in random order
3. Ask each other review questions from book, in

random order; compare with solutions (slide
notes)

4. Ask each other questions on program
assignments

4

Guide to Success III
When studying for practice/final exam:
1. Start on time
2. Re-read chapter summaries
3. Go through lecture slides
4. Write notes, condense them to one page

5

Programming – Lecture 5

Methods (Chapter 5)
• Message paradigm
• Functions, Math class
• Writing methods
• Mechanics of method calls
• Decomposition, train example

public class HelloProgram extends GraphicsProgram {
public void run() {

GLabel label = new GLabel("hello, world", 100, 75);
label.setFont("SansSerif-36");
label.setColor(Color.RED);
add(label);

}
}

HelloProgram

hello, world

label

hello, worldhello, worldhello, world

skip simulation

public class HelloProgram extends GraphicsProgram {
public void run() {

GLabel label = new GLabel("hello, world", 100, 75);
label.setFont("SansSerif-36");
label.setColor(Color.RED);
add(label);

}
}

label

hello, world

Recall (Chapter 2):
Sending Messages to Objects

receiver.name(arguments);

8

Methods
Method call:
receiver.name(arguments);

Method definition:
modifier type name(parameter list) {

statements in the method body
}

• Calling, returning, result
• Arguments / actual parameters:

expressions passed in method call
• Parameters / formal parameters:

variables declared in method declaration
• Method signature: name + parameters (but not return type) 9

Methods
• Information hiding
• Methods vs. programs
• Role in expressions
• (Instance) methods – associated with

objects (the default)
• Static methods – associated with class,

denoted static

10

Math Class
Math.abs(x) Returns the absolute value of x
Math.min(x, y) Returns the smaller of x and y
Math.max(x, y) Returns the larger of x and y
Math.sqrt(x) Returns the square root of x
Math.log(x) Returns the natural logarithm of x (loge x)
Math.exp(x) Returns the value of e raised to the x power (ex)
Math.pow(x, y) Returns the value of x raised to the y power (x y)
Math.sin(theta) Returns the sine of theta, measured in radians
Math.cos(theta) Returns the cosine of theta
Math.tan(theta) Returns the tangent of theta
Math.asin(x) Returns the angle whose sine is x
Math.acos(x) Returns the angle whose cosine is x
Math.atan(x) Returns the angle whose tangent is x
Math.toRadians(degrees) Converts an angle from degrees to radians
Math.toDegrees(radians) Converts an angle from radians to degrees 15

Aside: Efficiency
for (int i = 0;

i <= Math.pow(2, n + 1) - 1;
i++) ...

Problems:
• Re-computes upper loop bound on every iteration
• Unneeded, costly method call to math library

int i_cnt = 1 << (n + 1);
for (int i = 0; i < i_cnt; i++) ...
Coding Advice:
• Pre-compute upper loop bound
• Use shift operation for fast integer op. when possible16

Coding Advice – Use Power of Shift
For integers i and n:

1 << n
corresponds to 2n
and is typically much faster than Math.pow(2, n)
E.g. 1 << 10 corresponds to 1024

i << n
corresponds to i * 2n
E.g. x << 3 corresponds to x * 8

i >> n
corresponds to i / 2n

As always, must keep sign/overflow issues in mind 17

return [expression];
private int max(int x, int y) {

if (x > y) {
return x;

} else {
return y;

}
}

procedures: methods with type void
• no expression in return statement
• implicit return at end of method 22

private int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}

24

Nonnumeric Methods
private String weekdayName(int day) {

switch (day) {
case 0: return "Sunday";
case 1: return "Monday";
case 2: return "Tuesday";
case 3: return "Wednesday";
case 4: return "Thursday";
case 5: return "Friday";
case 6: return "Saturday";
default: return "Illegal weekday";

}
}

Note: no break required after return 26

Methods Returning
Graphical Objects

private GOval createFilledCircle
(int x, int y, int r, Color color) {
GOval circle = new GOval(x - r,

y - r, 2 * r, 2 * r);
circle.setFilled(true);
circle.setColor(color);
return circle;

}

28

Predicate Methods
private boolean isDivisibleBy(

int x, int y) {
return x % y == 0;

}

for (int i = 1; i <= 100; i++) {
if (isDivisibleBy(i, 7)) {

println(i);
}

}
30

for (int i = 1; i <= 100; i++) {
if (isDivisibleBy(i, 7)

== true) {
println(i);

}
}

Write instead:

for (int i = 1; i <= 100; i++) {
if (isDivisibleBy(i, 7)) {

println(i);
}

} 31

Coding Advice – Booleans
Avoid comparisons with boolean literals!

Bad: if (flag == true)
Bad: if (flag != false)
Good: if (flag)

Bad: if (flag == false)
Bad: if (flag != true)
Good: if (!flag) 32

private boolean isDivisibleBy(
int x, int y) {

if (x % y == 0) {
return true;

} else {
return false;

}
}

Coding advice: don't re-compute booleans!

private boolean isDivisibleBy(
int x, int y) {

return x % y == 0;
} 33

Testing Powers of Two

private boolean isPowerOfTwo(int n) {
if (n < 1) {

return false;
}
while (n > 1) {

if (n & 1 == 1) {
return false;

}
n >>= 1;

}
return true;

} 34

Mechanics of Method Calling

1. Evaluate arguments
2. Copy arg values to parameters,

in stack frame
3. Execute statements in method body
4.return substitutes value in place of call
5. Discard stack frame, return from callee to

caller

35

How many ways are there to select two coins?

penny + nickel
penny + dime
penny + quarter
penny + dollar

nickel + dime
nickel + quarter
nickel + dollar

dime + quarter
dime + dollar

quarter + dollar

36

C(n, k) =
n !

k ! x (n – k) !

private int combinations(
int n, int k) {

return factorial(n) /
(factorial(k) * factorial(n - k));

}

37

At this point, the program calls the combinations method, as follows:
1. Evaluate the arguments n and k to get the integers 5 and 2.
2. Create a new frame for the combinations method.
3. Initialize the parameter variables n and k to the argument values.

public void run() {
int n = readInt("Enter number of objects in the set (n): ");
int k = readInt("Enter number to be chosen (k): ");
println("C(" + n + ", " + k + ") = " + combinations(n, k));

}

Combinations

n k10

Enter number of objects in the set (n): 5

C(5, 2) = 10
Enter number to be chosen (k):

25

2

private int combinations(int n, int k) {
return factorial(n) / (factorial(k) * factorial(n - k));

}

n k
25

120 2 6

The program now calls the factorial method, applying the same process.
The factorial method returns the value 120 to its caller.

The program makes another call to factorial, with k as its argument.
This call to factorial returns the value 2.

The program calls factorial yet again with n - k as its argument.
The final call to factorial returns the value 6.

skip simulation

private int factorial(int n) {
int result = 1;
for (int i = 1 ; i <= n ; i++) {

result *= i;
}
return result;

}

n result
5

i
1 12 26 324 4120 56

private int factorial(int n) {
int result = 1;
for (int i = 1 ; i <= n ; i++) {

result *= i;
}
return result;

}

n result
2

i
1 12 23

private int factorial(int n) {
int result = 1;
for (int i = 1 ; i <= n ; i++) {

result *= i;
}
return result;

}

n result
3

i
1 12 26 34

public void run() {
int n = readInt("Enter number of objects in the set (n): ");
int k = readInt("Enter number to be chosen (k): ");
println("C(" + n + ", " + k + ") = " + combinations(n, k));

}
n k

25

38

Decomposition

Complete Task

Subtask 1 Subtask 2 Subtask 3

Subtask 2a Subtask 2b

39

public void run() {
Draw the engine.
Draw the boxcar.
Draw the caboose.

}

DrawTrain

41

Parameters
Assumptions
• Caller supplies location of each car
• Train cars are same size, have same structure
• Engines are black
• Boxcars come in many colors
• Cabooses are red
private void drawEngine(

double x, double y)
private void drawBoxcar(

double x, double y, Color color)
private void drawCaboose(

double x, double y)

DrawTrain

44

Commonalities
• Frame, wheels, connector
• Drawn by drawCarFrame

Differences
• Engine: black, adds smokestack, cab, cowcatcher
• Boxcar: colored as specified by caller, adds doors
• Caboose: red, adds cupola.

DrawTrain

45

Summary
• Motivation for methods:

– Code re-use
– Decomposition
– Information hiding

• Mental models of method call:
– Message exchange
– Functional evaluation

• Different methods may have local variables with
same name

• Method calls usually involve a receiving object;
static methods are associated only with class

51

Please visit
pingo.upb.de/

643250

https://xkcd.com/2228

