
Five-Minute Review
1. What is a method? A static method?
2. What is the motivation for having

methods?
3. What role do methods serve in

expressions?
4. What are the mechanics of method

calling?
5. What are local variables?

1

Programming – Lecture 6

Objects and Classes (Chapter 6)

• Local/instance/class variables, constants
• Using existing classes: RandomGenerator
• The implementor’s perspective

• Javadoc: The client’s perspective

• Defining your own classes

2

Local/Instance/Class Variables
(See also Lec. 03)

public class Example {
int someInstanceVariable;
static int someClassVariable;
static final double PI = 3.14;

public void run() {
int someLocalVariable;
...

}
}

4

Local Variables
• Declared within method
• One storage (memory) location

per method invocation
• Stored on stack

public void run() {
int someLocalVariable;
...

}

5

Instance Variables
• Declared outside method
• One storage location per object
• A.k.a. ivars, member variables, or fields
• Stored on heap

int someInstanceVariable;

6

Class Variables
• Declared outside method,

with static modifier
• Only one storage location, for all objects
• Stored in static data segment

static int someClassVariable;
static final double PI = 3.14;

7

Constants
• Are typically stored in class variables
• final indicates that these are not

modified

static final double PI = 3.14;

8

this
• this refers to current object
• May use this to override shadowing of

ivars by local vars of same name

• Coding Advice: re-use variable names
(identifiers) in constructors and setters
(even though examples in book don't always do this ...)

public class Point {
public int x = 0, y = 0;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

9

Coding Advice – Getters and Setters
• A setter sets the value of an ivar
• Should be named setVarName

public void setX(int x) {
this.x = x;

}

• A getter returns the value of an ivar
• Should be named getVarName, except for boolean

ivars, which should be named isVarName
public int getX() {
return x;

}
10

Coding Advice – Getters and Setters

• To abstract from class implementation, clients of
a class should access object state only through
getters and setters

• Implementers of a class can access state
directly

• Eclipse can automatically generate generic
constructors, getters, setters

• However, should create only those
getters/setters that clients really need

11

Creating a Random Generator

15

private RandomGenerator rgen =
RandomGenerator.getInstance();

private RandomGenerator rgen =
new RandomGenerator();

RandomGenerator Class

16

int nextInt(int low, int high)
Returns a random int between low and high, inclusive.

int nextInt(int n)
Returns a random int between 0 and n-1.

double nextDouble(double low, double high)
Returns a random double d in the range low ≤ d < high.

double nextDouble()
Returns a random double d in the range 0 ≤ d < 1.

boolean nextBoolean()
Returns a random boolean value, which is true 50 percent of the time.

boolean nextBoolean(double p)
Returns a random boolean, which is true with probability p, where 0 ≤ p ≤ 1.

Color nextColor()
Returns a random color.

Methods of same name, but different signatures (overloading)

Exercises

1. Set the variable total to the sum of
two 6-sided dice.

18

int total = rgen.nextInt(2, 12);

This declaration makes 2 come up as often as 7.

int d1 = rgen.nextInt(1, 6);
int d2 = rgen.nextInt(1, 6);
int total = d1 + d2;

Exercises

2. Flip a weighted coin that comes up
heads 60% of the time.

19

String flip =
rgen.nextBoolean(0.6) ? "Heads" : "Tails";

Exercises

3. Change the fill color of rect to some
randomly generated color.

20

rect.setFillColor(rgen.nextColor());

public void run() {
int total = rollTwoDice();
if (total == 7 || total == 11) {

println("That's a natural. You win.");
} else if (total == 2 || total == 3 || total == 12) {

println("That's craps. You lose.");
} else {

int point = total;
println("Your point is " + point + ".");
while (true) . . .

}
}

Craps

point total
6 6396

while (true) {
total = rollTwoDice();
if (total == point) {

println("You made your point. You win.");
break;

} else if (total == 7) {
println("That's a 7. You lose.");
break;

}
}

d1 d2 total

private int rollTwoDice() {
int d1 = rgen.nextInt(1, 6);
int d2 = rgen.nextInt(1, 6);
int total = d1 + d2;
println("Rolling dice: " + d1 + " + " + d2 + " = " + total);
return total;

}

4 6

Rolling dice: 4 + 2 = 6

2

Your point is 6.
Rolling dice: 2 + 1 = 3
Rolling dice: 3 + 6 = 9
Rolling dice: 3 + 3 = 6
You made your point. You win.

skip simulation

2 31

public void run() {
int total = rollTwoDice();
if (total == 7 || total == 11) {

println("That's a natural. You win.");
} else if (total == 2 || total == 3 || total == 12) {

println("That's craps. You lose.");
} else {

int point = total;
println("Your point is " + point + ".");
while (true) . . .

}
}

point total
6 6

Simulating the Game of Craps

21

Aside: Polymorphism

Definitions vary, but we here distinguish

• Static polymorphism

– Method overloading

• Dynamic polymorphism

– Method overriding

• Parametric polymorphism

– Generics (see later)

https://docs.oracle.com/javase/tutorial/java/IandI/override.html

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

https://docs.oracle.com/javase/tutorial/java/IandI/override.html

https://www.sitepoint.com/quick-guide-to-polymorphism-in-java/

22

Static Polymorphism

• Method overloading
• Methods of same name but with different

parameters
• Aka static binding

boolean nextBoolean()
boolean nextBoolean(double p)

23

Dynamic Polymorphism
• Method overriding
• Subclass implements method of same signature,

i.e. same name and with same parameters, as in
superclass

• Aka dynamic binding
• For static methods: method hiding

toString()
• is implemented in java.lang.Object
• may be overridden, e.g. to change how object is

printed by println 24

Two Perspectives

1. Implementor
“How does this thing work internally?”

2. Client
“How do I use this thing?”

25

Information Hiding ➡ Similar to methods!

Class Hierarchy

• Clients don’t care where methods are
implemented

• This design is called a
Layered Abstraction

27

Random

RandomGenerator

Packages

import acm.util.RandomGenerator

Not:
import java.util.Random

29

java.util.Random

acm.util.RandomGenerator

Simulating Randomness

• Computers are not random
➟ Pseudorandom numbers

• Initialized with a seed value
• Explicit seed:

setSeed(long seed)

31

Aside: What is null?

• Variables with primitive type have to
have a value before being used.
char, byte, short, int,
long, float, double, boolean

• Variables with object type don’t.
Wubbel myWubbel = new Wubbel();
Wubbel noWubbel = null;

36

if (noWubbel != null) …

Two Perspectives

1. Implementor
“How does this thing work internally?”

2. Client
“How do I use this thing?”

37

Information Hiding ➡ Similar to methods!

Defining Classes

Class body has following types of entries:
• Class var's, constants
• Instance variables

Object state
38

public class name [extends superclass] {

class body

}

• Constructors
• Methods

Access Control/Visibility for Entries

40

public int nextInt();

public

access modifier

private

protected

(no keyword) Visible in same package only, not in
subclasses. (“package-private”)

Visible in same package and subclasses
and subclasses thereof, etc.

Visible in same class only.

Visible to everyone. (“exported”)

Coding advice: make visibilities as restrictive as possible,
preferably private

41

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
(default) Y Y N N
private Y N N N

public int publicIvar;
protected int protectedIvar;
int packagePrivateIvar;
private int privateIvar;

Example: Student Class

Encapsulate these properties:
• ID
• Name
• Credit points
• Paid tuition fee?

43

/**
* The Student class keeps track of the following pieces of data
* about a student: the student's name, ID number, the number of
* credits the student has earned toward graduation, and whether
* the student is paid up with respect to university bills.
* All of this information is entirely private to the class.
* Clients can obtain this information only by using the various
* methods defined by the class.
*/

public class Student {

/**
* Creates a new Student object with the specified name and ID.
* @param name The student's name as a String
* @param id The student's ID number as an int
*/

public Student(String name, int id) {
studentName = name;
studentID = id;

}

The Student Class
This comment describes the class as a whole.

The class header defines Student as a direct subclass of Object.

This comment describes the constructor.

The constructor sets the instance variables.

skip codepage 1 of 4

/**
* The Student class keeps track of the following pieces of data
* about a student: the student's name, ID number, the number of
* credits the student has earned toward graduation, and whether
* the student is paid up with respect to university bills.
* All of this information is entirely private to the class.
* Clients can obtain this information only by using the various
* methods defined by the class.
*/

public class Student {

/**
* Creates a new Student object with the specified name and ID.
* @param name The student's name as a String
* @param id The student's ID number as an int
*/

public Student(String name, int id) {
studentName = name;
studentID = id;

}

/**
* Gets the name of this student.
* @return The name of this student
*/

public String getName() {
return studentName;

}

/**
* Gets the ID number of this student.
* @return The ID number of this student
*/

public int getID() {
return studentID;

}

/**
* Sets the number of credits earned.
* @param credits The new number of credits earned
*/

public void setCredits(double credits) {
creditsEarned = credits;

}

The Student Class

These methods retrieve the value of
an instance variable and are called
getters. Because the student name
and ID number are fixed, there are
no corresponding setters.

This method changes the value of
an instance variable and is called a
setter.

skip codepage 2 of 4

/**
* Gets the name of this student.
* @return The name of this student
*/

public String getName() {
return studentName;

}

/**
* Gets the ID number of this student.
* @return The ID number of this student
*/

public int getID() {
return studentID;

}

/**
* Sets the number of credits earned.
* @param credits The new number of credits earned
*/

public void setCredits(double credits) {
creditsEarned = credits;

}

/**
* Gets the number of credits earned.
* @return The number of credits this student has earned
*/

public double getCredits() {
return creditsEarned;

}

/**
* Sets whether the student is paid up.
* @param flag The value true or false indicating paid-up status
*/

public void setPaidUp(boolean flag) {
paidUp = flag;

}

/**
* Returns whether the student is paid up.
* @return Whether the student is paid up
*/

public boolean isPaidUp() {
return paidUp;

}

The Student Class

Names for getter methods usually
begin with the prefix get. The only
exception is for getter methods that
return a boolean, in which case
the name typically begins with is.

skip codepage 3 of 4

/**
* Gets the number of credits earned.
* @return The number of credits this student has earned
*/

public double getCredits() {
return creditsEarned;

}

/**
* Sets whether the student is paid up.
* @param flag The value true or false indicating paid-up status
*/

public void setPaidUp(boolean flag) {
paidUp = flag;

}

/**
* Returns whether the student is paid up.
* @return Whether the student is paid up
*/

public boolean isPaidUp() {
return paidUp;

}

/**
* Creates a string identifying this student.
* @return The string used to display this student
*/

public String toString() {
return studentName + " (#" + studentID + ")";

}

/* Public constants */

/** The number of credits required for graduation */
public static final double CREDITS_TO_GRADUATE = 32.0;

/* Private instance variables */
private String studentName; /* The student's name */
private int studentID; /* The student's ID number */
private double creditsEarned; /* The number of credits earned */
private boolean paidUp; /* Whether student is paid up */

}

The Student Class
The toString method
tells Java how to display
a value of this class. All
of your classes should
override toString.

Classes often export named constants.

These declarations define the instance
variables that maintain the internal
state of the class. All instance variables
used in the text are private.

skip codepage 4 of 4

A Class Design Strategy

1. Which instance variables do I need?
2. Which of them can be changed?
3. Which constructors make sense?
4. Which methods do I need?

50

Example: Employee class
Download this presentation to see the
next few slides, not shown in class

Example: Rational Class
Encapsulate these properties:
• Numerator
• Denominator
Provides these operations:

Note: can view this as specification of an ADT 58

a
b + c

d = ad + bc
bd

a
b – c

d = ad – bc
bd

a
b x c

d = ac

a
b

c
d =..

bd

ad
bc

Addition:

Subtraction:

Multiplication:

Division:

A Rationale for Rational

59

1
2

1
3

1
6

+ + = 1Math:

Java:

Even worse:

1.0/2.0 + 1.0/3.0 + 1.0/6.0 = 0.999999999999999

0.1 + 0.1 + 0.1 = 0.30000000000000004

Wait a minute ...

60

public class RationaleForRational extends ConsoleProgram
{
public void run() {
double oneHalf = 1.0 / 2.0;
double oneThird = 1.0 / 3.0;
double oneSixth = 1.0 / 6.0;
double oneTenth = 1.0 / 10.0;

double threeThirds = oneThird + oneThird + oneThird;
println("threeThirds = " + threeThirds);

// Output: "threeThirds = 1.0"
double sixSixths = oneHalf + oneThird + oneSixth;
println("sixSixths = " + sixSixths);

// Output: "sixSixths = 0.9999999999999999"
double threeTenths = oneTenth + oneTenth + oneTenth;
println("threeTenths = " + threeTenths);

// Output: "threeTenths = 0.30000000000000004"
}

}

IEEE 754 Floating Point
Numerical Form: –1s M 2E

• Sign bit s
• Significand M normally fractional value in [1.0,2.0)
• Exponent E weighs value by power of two

Encoding

• s is sign bit
• exp field encodes E
• frac field encodes M

For much more detail, see https://en.wikipedia.org/wiki/IEEE_754
61

s exp frac

1.0000 0000 000016 / A16 =
0.1999 9999 999916

.
62

binary point

63

Computers (usually) cannot represent
repeating decimals (such as 0.310)

Computers (usually) cannot represent
repeating binaries either (such as 0.12)

Some non-repeating decimals (such as 0.110)
correspond to repeating binaries (0.000112);
thus computers cannot (easily) represent 0.1!

How about the converse? (Exercise)

_

_

Coding Advice – Floating Point

64

double x = 0, max = 5, step = 0.1;
do {

x = x + step;
println("Applied " + x + " x-ray units.");

} while (x != max);

WARNING: this would never terminate!

Use instead: while (x <= max)

In general, avoid (in-)equality checks with floating point,

use <= or >= instead!

Adding Three Rational Values

c sumba

public void run() {
Rational a = new Rational(1, 2);
Rational b = new Rational(1, 3);
Rational c = new Rational(1, 6);
Rational sum = a.add(b).add(c);
println(a + " + " + b + " + " + c + " = " + sum);

}

TestRational

5
6

1
2

1
3

1
6

1
1

temporary
result

1/2 + 1/3 + 1/6 = 1

skip simulation

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 1 2 1
1
2

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 1 3 1
1
3

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 1 6 1
1
6

public Rational add(Rational r) {

return new Rational(this.num * r.den + r.num * this.den ,
this.den * r.den);

}

this
num

den
1
2

r
num

den
1
3

6

5

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 5 6 1
5
6

public Rational add(Rational r) {

return new Rational(this.num * r.den + r.num * this.den ,
this.den * r.den);

}

this
num

den
5
6

r
num

den
1
6

36

36

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 36 36 36
1
1

Immutable Classes

Rational is immutable
• No method can change internal state
• No setters
• Instance variables are private

Another immutable class: String
Not-immutable classes are mutable

73

Extending Classes

FilledRect is filled by default
User can supply a fill color to the constructor

74

GRect

FilledRect

Constructors Calling ...
super(...) invokes constructor of
superclass
this(...) invokes constructor of this class
If none of these calls are made, constructors
implicitly call super()
Default constructor:
• is provided automatically if no other

constructor is provided
• does nothing, except call super()

75

FilledRect
/**
* This class is a GObject subclass that is almost identical
* to GRect except that it starts out filled instead of outlined.
*/

public class FilledRect extends GRect {

/** Creates a new FilledRect with the specified bounds. */
public FilledRect(double x, double y,

double width, double height) {
super(x, y, width, height);
setFilled(true);

}

/** Creates a new FilledRect with the specified bounds and color. */
public FilledRect(double x, double y,

double width, double height, Color color) {
this(x, y, width, height);
setColor(color);

}

}

This syntax calls the superclass constructor.

This syntax calls another constructor in this class.

Summary
• Two perspectives on classes

– Implementor
– Client

• Javadoc produces documentation
• Classes consist of entries
• Classes can be mutable or immutable
• Entries can be public, private, protected,

and package-private
• Constructors of extended classes always call a

superclass constructor (explicitly or implicitly)

80

