
Five-Minute Review
1. How do we construct a GPolygon object?
2. How does GCompound support

decomposition for graphical objects?
3. What does algorithmic complexity mean?
4. Which operations does a HashMap

support?
5. What is an efficient way to implement it?

1

Programming – Lecture 12

Files, Exception handling (Chapter 12.4)

• Text files vs. strings

• Opening a file
• Reading characters/lines

• Exception handling

• Selecting files interactively
• Scanner class

• Writing files

2

Text Files vs. Strings

• Both contain character data
• Permanent storage vs. temporary

existence
• Sequential vs. random access

5

Text Files
• Contain plain character data, encoded in

ASCII or Unicode
• Typically have file extension .txt
• Can be edited with notepad, emacs, vi, …
• Not to be confused with e.g. files produced by

Word etc. (file extension .doc, .docx)
• On console (a.k.a. shell, terminal), can dump

text file with cat command
• And can read/write text files with your Java

program!
6

7

$ ls -l
-rw-r--r--@ 1 rvh staff 1183315 Jan 13:28 foo.docx
-rw-r--r-- 1 rvh staff 2715 Jan 13:25 foo.txt
$ cat foo.txt
Some text
with
three lines
$ cat foo.docx
P ߤ! ?lZ[Content_Types].xml ?(????n?0E?????Ub袪*?>?-
R?{V??Ǽ??QU?
l"%3??3Vƃ ښ? l ?w%?=???^i7+???-d&?0?A?6?l4??L60#?Ò?S

...

Sample dialog on console

File sizes
Prompt

User
command

Directory Structure
• Each file resides in some directory

(“Verzeichnis”)
• Directory is specified by path

– Absolute path: begins with root directory (“/”)
or home directory (“~”)

– Relative path: starts at working directory,
i.e., does not begin with “/” or “~”

• Usually, when referring to name of file, we
may or may not prefix file name with path

• If no path is specified, look for file in working
directory

8

Sample Directory Structure

9

/

Users System …

rvh guest …

tmp Desktop …

foo.txt foo.docx …

Root directory

Home directory (“~”)

Working directory (“.”)

Equivalent alternatives for filename:
• /Users/rvh/tmp/foo.txt // With absolute path
• ~/tmp/foo.txt // With absolute path
• ./foo.txt // With relative path
• ../tmp/foo.txt // “..” goes one level up
• foo.txt // Without path

Opening a File

filenamemay or may not include a path.
Alternatives for finding the file:
1. Specify path (may use pwd to find out)
2. Put file into default working directory; see Run → Run

Configurations → Arguments → Working directory
Note: workspace_loc is location of work space; for a
project, see Properties → Resource → Linked Resources
→ Path Variables

3. Change working directory to directory of file

import java.io.*;

BufferedReader rd =
new BufferedReader(
new FileReader(filename));

10

Reading Characters

int nLetters = 0;
while (true) {

int ch = rd.read();
if (ch == -1) break;
if (Character.isLetter(ch))

nLetters++;
}

14

Reading Lines
int maxLength = 0;
while (true) {

String line = rd.readLine();
if (line == null) break;
maxLength =

Math.max(maxLength,
line.length());

}

16

Exception Handling

try {
code in which an exception might occur

} catch (type identifier) {
code to respond to the exception

}

19

private void checkExpression(String prefixExp) {
try {
String infixExp = new PNParser(prefixExp).toString();
println(prefixExp + " => " + infixExp);

} catch (IllegalArgumentException ex) {
println("\"" + prefixExp + "\" caused " + ex);

}
}

public void run() {
checkExpression("1");
checkExpression("+");
checkExpression("1 + 2");
checkExpression("+ 1 2");

}

1 => 1
"+" caused java.lang.IllegalArgumentException: Premature
end of tokens!

"1 + 2" caused java.lang.IllegalArgumentException: Too
many tokens!

+ 1 2 => 1 + 2
20

Unchecked exceptions

21

Object

Throwable

IndexOutOfBoundsException

IllegalArgumentException

RuntimeException
IOException

Thrown by e.g.
java.io !

FileNotFoundException

ExceptionError

OutOfMemoryError

Checked
exceptions

Must catch (try-catch)
or propagate (throws) !

See also https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

import acm.program.*;
import acm.util.*;
import java.io.*;
import java.util.*;

/** This program prints the lines from a file in reverse order */
public class ReverseFile extends ConsoleProgram {

public void run() {
println("This program reverses the lines in a file.");
BufferedReader rd = openFileReader("Enter input file: ");
String[] lines = readLineArray(rd);
for (int i = lines.length - 1; i >= 0; i--) {

println(lines[i]);
}

}

/*
* Implementation note: The readLineArray method on the next slide
* uses an ArrayList internally because doing so makes it possible
* for the list of lines to grow dynamically. The code converts
* the ArrayList to an array before returning it to the client.
*/

ReverseFile

skip codepage 1 of 3

import acm.program.*;
import acm.util.*;
import java.io.*;
import java.util.*;

/** This program prints the lines from a file in reverse order */
public class ReverseFile extends ConsoleProgram {

public void run() {
println("This program reverses the lines in a file.");
BufferedReader rd = openFileReader("Enter input file: ");
String[] lines = readLineArray(rd);
for (int i = lines.length - 1; i >= 0; i--) {

println(lines[i]);
}

}

/*
* Implementation note: The readLineArray method on the next slide
* uses an ArrayList internally because doing so makes it possible
* for the list of lines to grow dynamically. The code converts
* the ArrayList to an array before returning it to the client.
*/

/*
* Reads all available lines from the specified reader and returns
* an array containing those lines. This method closes the reader
* at the end of the file.
*/

private String[] readLineArray(BufferedReader rd) {
ArrayList<String> lineList = new ArrayList<String>();
try {

while (true) {
String line = rd.readLine();
if (line == null) break;
lineList.add(line);

}
rd.close();

} catch (IOException ex) {
throw new ErrorException(ex);

}
String[] result = new String[lineList.size()];
for (int i = 0; i < result.length; i++) {

result[i] = lineList.get(i);
}
return result;

}

ReverseFile

skip codepage 2 of 3

/*
* Reads all available lines from the specified reader and returns
* an array containing those lines. This method closes the reader
* at the end of the file.
*/

private String[] readLineArray(BufferedReader rd) {
ArrayList<String> lineList = new ArrayList<String>();
try {

while (true) {
String line = rd.readLine();
if (line == null) break;
lineList.add(line);

}
rd.close();

} catch (IOException ex) {
throw new ErrorException(ex);

}
String[] result = new String[lineList.size()];
for (int i = 0; i < result.length; i++) {

result[i] = lineList.get(i);
}
return result;

}

/*
* Requests the name of an input file from the user and then opens
* that file to obtain a BufferedReader. If the file does not
* exist, the user is given a chance to reenter the file name.
*/

private BufferedReader openFileReader(String prompt) {
BufferedReader rd = null;
while (rd == null) {

try {
String name = readLine(prompt);
rd = new BufferedReader(new FileReader(name));

} catch (IOException ex) {
println("Can't open that file.");

}
}
return rd;

}

}

ReverseFile

page 3 of 3

Selecting Files Interactively
import javax.swing.*;

int result;
JFileChooser chooser;
do {

chooser = new JFileChooser();
result = chooser.

showOpenDialog(this);
} while (result !=

JFileChooser.APPROVE_OPTION);
27

Selecting Files Interactively

try {
BufferedReader rd = new

BufferedReader(new FileReader(
chooser.getSelectedFile()));

} catch (IOException ex) {
println("Can't open that file.");

}

28

Scanner

Creates a new Scanner object from the reader.

Returns the next whitespace-delimited token as a string.

Reads the next integer and returns it as an int.

Reads the next number and returns it as a double.

Reads the next Boolean value (true or false).

Returns true if the scanner has any more tokens.

Returns true if the next token scans as an integer.

Returns true if the next token scans as a number.

new Scanner(reader)

next()

nextInt()

nextDouble()

nextBoolean()

hasNext()

hasNextInt()

hasNextDouble()

Returns true if the next token is either true or false.

Closes the scanner and the underlying reader.

hasNextBoolean()

close()
29

Returns rest of line as string.nextLine()

Scanning Input

// ACM Java
String name = readLine(”What’s your name? ");
println("Hello, " + name);

// "Standard" Java
Scanner in = new Scanner(System.in);
System.out.print("What’s your name? ");
name = in.nextLine();
in.close();
System.out.println("Way to go, " + name);

30

Writing Files

PrintWriter wr =
new PrintWriter(

new FileWriter(filename));

wr.println("My first line");

wr.close();

32

Summary
• There are different types of files, we are particularly

interested in text files
• Files are permanently stored, accessed sequentially
• A file must first be opened, and later be closed
• The Scanner class facilitates to read in data
• Exceptions are caught and handled with try/catch
• Thrown exceptions are propagated up the call stack

until the next enclosing handler
• Exceptions outside of the RuntimeException

hierarchy, such as IOException, must be caught
by the application

33

