
Programming – Lecture 13
Event-driven Programs (Chapter 10)
• Java event model
• Responding to mouse events
• Rubber-banding, dragging objects
• Keyboard events
• GUI control strips
• Swing interactor hierarchy
• Text fields
• Component hierarchy
• Layout managers

1

Chapter 10—Event-driven Programs

The Art and Science of

An Introduction
to Computer ScienceERIC S. ROBERTS

Java

Event-driven Programs
C H A P T E R 1 0

I claim not to have controlled events, but confess plainly that
events have controlled me.

10.1 The Java event model
10.2 A simple event-driven program
10.3 Responding to mouse events
10.4 Responding to keyboard events
10.5 Creating a simple GUI

—Abraham Lincoln, letter to Albert Hodges, 1864

10.6 The Swing interactor hierarchy
10.7 Managing component layout
10.8 Using the TableLayout class

The Java Event Model
• Graphical applications usually make it possible for the user to

control the action of a program by using an input device such
as a mouse. Programs that support this kind of user control
are called interactive programs.

• User actions such as clicking the mouse are called events.
Programs that respond to events are said to be event-driven.

• In modern interactive programs, user input doesn’t occur at
predictable times. A running program doesn’t tell the user
when to click the mouse. The user decides when to click the
mouse, and the program responds. Because events are not
controlled by the program, they are said to be asynchronous.

• When you write a Java program, you indicate the events to
which you wish to respond by designating some object as a
listener for that event. When the event occurs, a message is
sent to the listener, which triggers the appropriate response.

The Role of Event Listeners
• One way to visualize the role of a listener is to imagine that

you have access to one of Fred and George Weasley’s
“Extendable Ears” from the Harry Potter series.

ListenerExample

• Suppose that you wanted to use these magical listeners to
detect events in the canvas shown at the bottom of the slide.
All you need to do is send those ears into the room where,
being magical, they can keep you informed on anything that
goes on there, making it possible for you to respond.

Event Listeners
ListenerExample

addMouseListeners()

Mouse / keyboard / action events
Are asynchronous
Event-driven / interactive programs
Listener interface for each event type
Listener method parameters contain event info

5

Event Types
• Java events come in many different types. The event types

used in this book include the following:
– Mouse events, which occur when the user moves or clicks the mouse
– Keyboard events, which occur when the user types on the keyboard
– Action events, which occur in response to user-interface actions

• Each event type is associated with a set of methods that
specify how listeners should respond. These methods are
defined in a listener interface for each event type.

• As an example, one of the methods in the mouse listener
interface is mouseClicked. As you would expect, Java calls
that method when you click the mouse.

• Listener methods like mouseClicked take a parameter that
contains more information about the event. In the case of
mouseClicked, the argument is a MouseEvent indicating
the location at which the click occurred.

A Simple Event-driven Program

import acm.program.*;
import java.awt.event.*;

/** Draws a star whenever the user clicks the mouse */
public class DrawStarMap extends GraphicsProgram {

public void init() {
addMouseListeners();

}

public void mouseClicked(MouseEvent e) {
GStar star = new GStar(STAR_SIZE);
star.setFilled(true);
add(star, e.getX(), e.getY());

}

/* Private constants */
private static final double STAR_SIZE = 20;

}

The definitions for the standard event and listener classes are in
the package java.awt.event package, which means that you
need to import this package in interactive programs.

The init method is called automatically as part of the Program
start-up process.
In this example, the init method calls addMouseListeners,
which indicates that the program is prepared to listen for and
respond to mouse events.

When the user clicks the mouse, Java responds by invoking the
mouseClicked method in the listener. The argument e is a
MouseEvent object that describes the event.

The implementation of mouseClicked creates a GStar object
(as described in Chapter 9) and then adds it to the canvas at the
location of the mouse click.

The easiest way to illustrate event handling is by example. The
following program listens for mouse clicks and draws a star at the
point that each mouse click occurs:

import acm.program.*;
import java.awt.event.*;

/** Draws a star whenever the user clicks the mouse */
public class DrawStarMap extends GraphicsProgram {

public void init() {
addMouseListeners();

}

public void mouseClicked(MouseEvent e) {
GStar star = new GStar(STAR_SIZE);
star.setFilled(true);
add(star, e.getX(), e.getY());

}

/* Private constants */
private static final double STAR_SIZE = 20;

}

import acm.program.*;
import java.awt.event.*;

public class DrawStarMap extends
GraphicsProgram {

public void init() {
addMouseListeners();

}

public void mouseClicked(MouseEvent e) {
GStar star = new GStar(STAR_SIZE);
star.setFilled(true);
add(star, e.getX(), e.getY());

}

private static final double STAR_SIZE = 20;
}

For discussion on init() vs. run() vs. main():
https://cs.stanford.edu/people/eroberts/jtf/rationale/ProgramPackage.html

8

Abstract
Window
Toolkit

The DrawStarMap Program

DrawStarMap

This slide simulates the operation of the DrawStarMap program.
– The addMouseListeners call enables mouse-event reporting.
– Clicking the mouse generates a mouse clicked event.
– That event triggers a call to the mouseClicked method.
– The program responds by adding a new GStar to the canvas.
– Subsequent mouse clicks are treated in exactly the same way.

mouse
clicked

DrawStarMap

DrawStarMap

addMouseListeners enables mouse-
event reporting
mouse clicked event
Call to mouseClicked
Add GStar to canvas

mouse
clicked

DrawStarMap

Responding to Mouse Events

• The most common mouse events are shown in the following
table, along with the name of the appropriate listener method:
mouseClicked(e)
mousePressed(e)
mouseReleased(e)
mouseMoved(e)
mouseDragged(e)

Called when the user clicks the mouse
Called when the mouse button is pressed
Called when the mouse button is released
Called when the user moves the mouse
Called when the mouse is dragged with the button down

The parameter e is a MouseEvent object, which provides more
data about the event, such as the location of the mouse.

• The DrawStarMap program on the preceding slide offers a
useful illustration of how you can make programs respond to
mouse events. The general steps you need are:
1. Define an init method that calls addMouseListeners.
2. Write new definitions of any listener methods you need.

mouseClicked(e)

mousePressed(e)

mouseReleased(e)

mouseMoved(e)

mouseDragged(e)

Called when user clicks mouse

Called when mouse button is
pressed
Called when mouse button is
released

Called when user moves mouse

Called when mouse is dragged
with button down

e: MouseEvent
12

Mouse Listeners in the ACM Libraries
• At a more detailed level, Java’s approach to mouse listeners is

not as simple as the previous slide implies. To maximize
efficiency, Java defines two distinct listener interfaces:
– The MouseListener interface responds to mouse events that happen

relatively infrequently, such as clicking the mouse button.
– The MouseMotionListener interface responds to the much more

rapid-fire events that occur when you move or drag the mouse.

• The packages in the ACM Java Libraries adopt the following
strategies to make mouse listeners easier to use:
– The GraphicsProgram class includes empty definitions for every

method in the MouseListener and the MouseMotionListener
interfaces. Doing so means that you don’t need to define all of these
methods but can instead simply override the ones you need.

– The GraphicsProgram class also defines the addMouseListeners
method, which adds the program as a listener for both types of events.

The net effect of these simplifications is that you don’t have to
think about the difference between these two interfaces.

A Simple Line-Drawing Program
Drawing a line using this program requires three actions: pressing
the mouse button at the starting point of the line, dragging the
mouse to the desired end point, and then releasing the mouse.

The mousePressed method responds to that event by creating a
new zero-length line that begins and ends at the current mouse
position.

Dragging the mouse results in a series of mouseDragged calls
that come in rapid succession each time the computer reads the
mouse position. Each call simply resets the end point of the line.

The effect of this strategy is that the user sees the line as it grows,
providing the necessary visual feedback to position the line
correctly.

As you drag the mouse, the line will stretch, contract, and change
direction as if the two points were connected by an elastic band.
This technique is therefore called rubber-banding.

public class DrawLines extends GraphicsProgram {
/* Initializes the program by enabling the mouse listeners */

public void init() {
addMouseListeners();

}

/* Called on mouse press to create a new line */
public void mousePressed(MouseEvent e) {

line = new GLine(e.getX(), e.getY(), e.getX(), e.getY());
add(line);

}

/* Called on mouse drag to extend the endpoint */
public void mouseDragged(MouseEvent e) {

line.setEndPoint(e.getX(), e.getY());
}

/* Private instance variables */
private GLine line;

}

In all likelihood, you have at some point used an application that
allows you to draw lines with the mouse. In Java, that program
takes less than a page of code.

public class DrawLines extends GraphicsProgram {
/* Initializes the program by enabling the mouse listeners */

public void init() {
addMouseListeners();

}

/* Called on mouse press to create a new line */
public void mousePressed(MouseEvent e) {

line = new GLine(e.getX(), e.getY(), e.getX(), e.getY());
add(line);

}

/* Called on mouse drag to extend the endpoint */
public void mouseDragged(MouseEvent e) {

line.setEndPoint(e.getX(), e.getY());
}

/* Private instance variables */
private GLine line;

}

Rubber-Banding
public class DrawLines extends GraphicsProgram {

public void init() {
addMouseListeners();

}

public void mousePressed(MouseEvent e) {
line = new GLine(e.getX(), e.getY(),
e.getX(), e.getY());

add(line);
}

public void mouseDragged(MouseEvent e) {
line.setEndPoint(e.getX(), e.getY());

}

private GLine line;
} 15

Simulating the DrawLines Program

DrawLines

– The addMouseListeners call in init enables mouse events.
– Depressing the mouse button generates a mouse pressed event.
– The mousePressed call adds a zero-length line to the canvas.
– Dragging the mouse generates a series of mouse dragged events.
– Each mouseDragged call extends the line to the new position.
– Releasing the mouse stops the dragging operation.
– Repeating these steps adds new lines to the canvas.

mouse
pressed

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

DrawLines

DrawLines

Call addMouseListeners in init

mousePressed adds zero-length line

Each mouseDragged extends line to new
position

mouse
pressed

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

mouse
dragged

DrawLines

Dragging Objects on the Canvas

DragObjects

– Pressing the mouse button selects an object.
– Dragging the mouse moves the selected object.
– Repeating these steps makes it possible to drag other objects.
– Clicking the mouse moves the selected object to the front.

The DragObjects program on the next slide uses mouse events
to drag objects around the canvas.

DragObjects

Pressing mouse button selects object

Dragging mouse moves selected object

Clicking mouse moves selected object to front

import acm.graphics.*;
import acm.program.*;
import java.awt.*;
import java.awt.event.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragObjects extends GraphicsProgram {

/* Initializes the program */
public void init() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);
addMouseListeners();

}

Dragging Objects

skip codepage 1 of 2
20

import acm.graphics.*;
import acm.program.*;
import java.awt.*;
import java.awt.event.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragObjects extends GraphicsProgram {

/* Initializes the program */
public void init() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);
addMouseListeners();

}

/* Called on mouse press to record the coordinates of the click */
public void mousePressed(MouseEvent e) {

last = new GPoint(e.getPoint());
gobj = getElementAt(last);

}

/* Called on mouse drag to reposition the object */
public void mouseDragged(MouseEvent e) {

if (gobj != null) {
gobj.move(e.getX() - last.getX(), e.getY() - last.getY());
last = new GPoint(e.getPoint());

}
}

/* Called on mouse click to move this object to the front */
public void mouseClicked(MouseEvent e) {

if (gobj != null) gobj.sendToFront();
}

/* Private instance variables */
private GObject gobj; /* The object being dragged */
private GPoint last; /* The last mouse position */

}

Dragging Objects

skip codepage 2 of 2
21

import acm.graphics.*;
import acm.program.*;
import java.awt.*;
import java.awt.event.*;

public class DragObjects extends GraphicsProgram
{
public void init() {
GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);
addMouseListeners();

} 22

public void mousePressed(MouseEvent e) {
last = new GPoint(e.getPoint());
gobj = getElementAt(last);

}

public void mouseDragged(MouseEvent e) {
if (gobj != null) {
gobj.move(e.getX() - last.getX(),

e.getY() - last.getY());
last = new GPoint(e.getPoint());

}
}

public void mouseClicked(MouseEvent e) {
if (gobj != null) gobj.sendToFront();

}

private GObject gobj;
private GPoint last;

}
23

Responding to Keyboard Events

• The most common key events are:
keyPressed(e)
keyReleased(e)
keyTyped(e)

Called when the user presses a key
Called when the key comes back up
Called when the user types (presses and releases) a key

In these methods, e is a KeyEvent object, which indicates
which key is involved along with additional data to record
which modifier keys (SHIFT, CTRL, and ALT) were down at the
time of the event.

• The general strategy for responding to keyboard events is
similar to that for mouse events, even though the events are
different. Once again, you need to take the following steps:
1. Define an init method that calls addKeyListeners.
2. Write new definitions of any listener methods you need.

Keyboard Events

keyPressed(e)

keyReleased(e)

keyTyped(e)

Called when user presses key
Use e.getKeyChar()

Called when key comes back up
Use e.getKeyCode()

Called when user types
(presses and releases) key
Use e.getKeyCode()

e: KeyEvent, indicates key + modifier keys
(SHIFT, CTRL, ALT)

See https://docs.oracle.com/javase/8/docs/
api/java/awt/event/KeyEvent.html 25

Identifying the Key
• The process of determining which key generated the event

depends on the type of key event you are using.
• If you are coding the keyTyped method, the usual strategy is

to call getKeyChar on the event, which returns the character
generated by that key. The getKeyChar method takes
account of modifier keys, so that typing the a key with the
SHIFT key down generates the character 'A'.

• When you implement the keyPressed and keyReleased
methods, you need to call getKeyCode instead. This method
returns an integer code for one of the keys. Common
examples include the ENTER key (VK_ENTER), the arrow keys
(VK_LEFT, VK_RIGHT, VK_UP, VK_DOWN), and the function
keys (VK_F1 through VK_F12).

Using the Arrow Keys
• Adding the following method to the DragObjects program

makes it possible to adjust the position of the selected object
using the arrow keys:

• This method has no effect unless you enable key events in the
program by calling addKeyListeners in the init method.

public void keyPressed(KeyEvent e) {
if (gobj != null) {

switch (e.getKeyCode()) {
case KeyEvent.VK_UP: gobj.move(0, -1); break;
case KeyEvent.VK_DOWN: gobj.move(0, +1); break;
case KeyEvent.VK_LEFT: gobj.move(-1, 0); break;
case KeyEvent.VK_RIGHT: gobj.move(+1, 0); break;

}
}

}

DragObjects + Arrow Keys

Must call
addKeyListeners
in init

public void keyPressed(KeyEvent e) {
if (gobj != null) {
switch (e.getKeyCode()) {
case KeyEvent.VK_UP:
gobj.move(0, -1); break;

case KeyEvent.VK_DOWN:
gobj.move(0, +1); break;

case KeyEvent.VK_LEFT:
gobj.move(-1, 0); break;

case KeyEvent.VK_RIGHT:
gobj.move(+1, 0); break;

}
}

}

28

Creating a Simple GUI
• There is more to creating a modern interactive program than

responding to mouse and keyboard events. Most application
programs today include a graphical user interface or GUI
(pronounced gooey) consisting of buttons and other on-screen
controls. Collectively, these controls are called interactors.

• Java defines many types of interactors, most of which are part
of a collection called the Swing library, which is described in
section 10.6. You create a GUI by constructing the Swing
interactors you need and then arranging them appropriately in
the program window.

• The text outlines two strategies for arranging interactors on
the screen. The simple approach is to create a control strip
along one of the edges of the window, as described on the
next slide. You can, however, create more general GUIs by
using Java’s layout managers, as described in section 10.7.

Creating a Control Strip
• When you create an instance of any Program subclass, Java

divides the window area into five regions as follows:

• The CENTER region is typically where the action takes place.
A ConsoleProgram adds a console to the CENTER region,
and a GraphicsProgram puts a GCanvas there.

CENTER

NORTH

SOUTH

W
E
S
T

E
A
S
T

• The other regions are visible only if you add an interactor to
them. The examples in the text use the SOUTH region as a
control strip containing a set of interactors, which are laid
out from left to right in the order in which they were added.

GUI – Control Strips

CENTER

NORTH

SOUTH

W
E
S
T

E
A
S
T

31

Creating a GUI with a Single Button

Please do not press this button again.
Please do not press this button again.

Arthur listened for a short while, but being unable to understand the vast
majority of what Ford was saying he began to let his mind wander, trailing
his fingers along the edge of an incomprehensible computer bank, he reached
out and pressed an invitingly large red button on a nearby panel. The panel
lit up with the words “Please do not press this button again.”

—Douglas Adams, Hitchhiker’s Guide to the Galaxy, 1979

The HitchhikerButton program on the next slide uses this
vignette from Hitchhiker’s Guide to the Galaxy to illustrate the
process of creating a GUI without focusing on the details. The
code creates a single button and adds it to the SOUTH region. It
then waits for the user to click the button, at which point the
program responds by printing a simple message on the console.

HitchhikerButton

Red

Please do not press this button again.
Please do not press this button again.

HitchhikerButton

Red

33

The HitchhikerButton Program
import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

/*
* This program puts up a button on the screen, which triggers a
* message inspired by Douglas Adams's novel.
*/

public class HitchhikerButton extends ConsoleProgram {

/* Initializes the user-interface buttons */
public void init() {

add(new JButton("Red"), SOUTH);
addActionListeners();

}

/* Responds to a button action */
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals("Red")) {
println("Please do not press this button again.");

}
}

}

import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

public class HitchhikerButton
extends ConsoleProgram {

public void init() {
add(new JButton("Red"), SOUTH);
addActionListeners();

}

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("Red")) {
print("Please do not press ");
println("this button again.");

}
}

}
35

The Swing Interactor Hierarchy
The following diagram shows the Swing classes used in this text.
With the exception of IntField and DoubleField, all of these
classes live in the javax.swing package.

JComponent

AbstractButton JSlider JLabel JComboBox

JButton JToggleButton

JTextComponent

JCheckBox JRadioButton

JTextField

IntField DoubleField

acm.gui

ButtonGroup

Swing Interactor Hierarchy

JComponent

AbstractButton JSlider JLabel JComboBox

JButton JToggleButton

JTextComponent

JCheckBox JRadioButton

JTextField

IntField DoubleField

acm.gui

ButtonGroup

37

The JButton Class
• The most common interactor in GUI-based applications is an

on-screen button, which is implemented in Swing by the class
JButton. A JButton object looks something like

• When you click on a button, Java generates an action event,
which in turn invokes a call to actionPerformed in any
listeners that are waiting for action events.

• The constructor for the JButton class is

where label is a string telling the user what the button does.
The button shown earlier on this slide is therefore created by

new JButton(label)

JButton pushMeButton = new JButton("Push Me");

Push Me

Detecting Action Events
• Before you can detect action events, you need to enable an

action listener for the buttons on the screen. The easiest
strategy is to call addActionListeners at the end of the
init method. This call adds the program as a listener to all
the buttons on the display.

• You specify the response to a button click by overriding the
definition of actionPerformed with a new version that
implements the correct actions for each button.

• If there is more than one button in the application, you need to
be able to tell which one caused the event. There are two
strategies for doing so:
1. Call getSource on the event to obtain the button itself.

2. Call getActionCommand on the event to get the action
command string, which is initially set to the button label.

Adding Features to DrawStarMap
• The text illustrates the various Swing interactors by adding

new features to the DrawStarMap application. The first step
is adding a Clear button that erases the screen.

• Adding the button is accomplished in the init method:
public void init() {

add(new JButton("Clear"), SOUTH);
addActionListeners();

}

• The response to the button appears in actionPerformed:

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("Clear")) {

removeAll();
}

}

Exercise: Interactive Stoplight
Using the GStoplight class defined in the slides for Chapter 9,
write a GraphicsProgram that creates a stoplight and three
buttons labeled Red, Yellow, and Green, as shown in the sample
run below. Clicking on a button should send a message to the
stoplight to change its state accordingly.

GStoplightGUI

Red Yellow Green

Interactive Stoplight

GStoplightGUI

Red Yellow Green

42

public class GStoplightGUI extends GraphicsProgram {

public void init() {
stoplight = new GStoplight();
add(stoplight, getWidth() / 2, getHeight() / 2);
add(new JButton("Red"), SOUTH);
add(new JButton("Yellow"), SOUTH);
add(new JButton("Green"), SOUTH);
addActionListeners();

}

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("Red")) {

stoplight.setState(Color.RED);
} else if (cmd.equals("Yellow")) {

stoplight.setState(Color.YELLOW);
} else if (cmd.equals("Green")) {

stoplight.setState(Color.GREEN);
}

}

/* Private instance variables */
private GStoplight stoplight;

} 43

The JToggleButton Class
• The JToggleButton class is another type of button that is

similar to JButton but maintains an on/off state. On the
screen, a JToggleButton looks just like a JButton except
for the fact that it stays on after you release the mouse button.

• As its name suggests, a JToggleButton toggles back and
forth between on and off when it is clicked. Clicking the first
time turns it from off to on; clicking a second time turns it off.

Toggle

• You can determine whether a JToggleButton is on by
calling isSelected, which returns true if the button is on.

• The JToggleButton class itself is not used as much as two
of its subclasses, JCheckBox and JRadioButton, which are
described on the next two slides.

The JCheckBox Class
• The JCheckBox class is a subclass of JToggleButton and

therefore inherits its behavior.

• In terms of its operation, a JCheckBox works exactly like an
instance of its parent class. The only difference is in what the
button looks like on the screen. In a JCheckBox, the button
label appears to the right of a small square that either contains
or does not contain a check mark, like this:

• Because a JCheckBox is a JToggleButton, you can call
the isSelected method to determine its state.

• Like a JButton, a JCheckBox generates action events when
it is clicked. Both of these classes inherit this behavior from
AbstractButton, which is their common superclass.

CheckBox

The JRadioButton Class
• The JRadioButton class also extends JToggleButton and

behaves in much the same way. In this case, the button is
displayed as a circle that is tinted and marked with a dot when
it is selected, as follows:

• Radio buttons are ordinarily not used individually but instead
as a set. If you create a ButtonGroup object and then add
several radio buttons to it, the Swing libraries make sure that
only one of those buttons is selected at a time.

• Grouped radio buttons are used to allow the user to choose
among several mutually exclusive options. As an example,
the text extends the DrawStarMap program to allow the user
to choose the size of the star by selecting a radio button:

Radio button

Small Medium Large

The JSlider Class
• In many applications, you want to let the user adjust a value

over a wide range instead of selecting among a set of options.

• The simplest form of the JSlider constructor looks like this:

new JSlider(min, max, value)

where min and max are integers giving the minimum and
maximum values of the slider and value is the initial value.

• You can retrieve the current value by calling getValue.

• The Swing libraries include several different interactors that
allow the user to adjust a parameter. The text uses the
JSlider class, which appears on the screen like this:

The user can adjust a JSlider by dragging the slider knob.

The JLabel Class
• The interactors you display on the screen sometimes don’t

provide the user with enough information. In such cases, it is
useful to include JLabel objects, which appear as text strings
in the user interface but do not respond to any events.

DrawStarMap

Small Large

• As an example, if you wanted to label a slider so that it was
clear it controlled size, you could use the following code to
produce the control strip shown at the bottom of the screen:

add(new JLabel("Small"), SOUTH);
add(sizeSlider, SOUTH);
add(new JLabel("Large"), SOUTH);

The JComboBox Class
• In some applications, you may need to allow the user to chose

among a set of options that would take up too much space on
the screen if you listed them all. In such situations, you can
use the JComboBox class, which lists the available options in
a popup menu that goes away once the selection is made.

• A JComboBox used to select T-shirt sizes might look like this
on the screen:

• From the user’s point of view, a JComboBox works like this:

Small
Medium
Large
X-Large

X-Large

– Depressing the mouse brings up a popup menu.
– Dragging the mouse selects from the different options.
– Releasing the mouse sets the state to the current option.

X-Large

• From the user’s point of view, a JComboBox works like this:

• Given that its purpose is to offer the user a choice of options,
the JComboBox interactor is sometimes called a chooser.

Using the JComboBox Interactor
• The standard constructor for a JComboBox creates an empty

interactor that contains no options; you then add the desired
options by calling the addItem method for each one.

• The items in a JComboBox need not be strings but can instead
be any object. The label that appears in the popup menu is
determined by applying the object’s toString method.

• The getSelectedItem and setSelectedItem methods
allow you to determine and set which item is selected.

JComboBox sizeChooser = new JComboBox();
sizeChooser.addItem("Small");
sizeChooser.addItem("Medium");
sizeChooser.addItem("Large");
sizeChooser.addItem("X-Large");
sizeChooser.setEditable(false);

• The code to create the T-shirt size chooser looks like this:

The last line prevents the user from typing in some other size.

The JTextField Class
• Although Swing’s set of interactors usually make it possible

for the user to control an application using only the mouse,
there are nonetheless some situations in which keyboard input
is necessary.

• You can accept keyboard input in a user interface by using the
JTextField class, which provides the user with an area in
which it is possible to enter a single line of text.

HelloGUI

Name

Hello, world.
Hello, Eric.

• The HelloGUI program on the next slide illustrates the use
of the JTextField class in a ConsoleProgram that prints a
greeting each time a name is entered in the text field.

worldEric

JTextField

HelloGUI

Name

Hello, world.

Hello, InfProgOO.

worldInfProgOO

52

import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

public class HelloGUI extends ConsoleProgram {

public void init() {
nameField = new JTextField(10);
add(new JLabel("Name"), SOUTH);
add(nameField, SOUTH);
nameField.addActionListener(this);

}

public void actionPerformed(ActionEvent e) {
if (e.getSource() == nameField) {
println("Hello, " + nameField.getText());

}
}
private JTextField nameField;

} 53

Notes on the JTextField Class
• The constructor for the JTextField class has the form

new JTextField(columns)

where columns is the number of text columns assigned to the
field. The space often appears larger than one might expect,
because Java reserves space for the widest characters.

• A JTextField generates an action event if the user presses
the ENTER key in the field. If you want your program to
respond to that action event, you need to register the program
as an action listener for the field. In the HelloGUI example,
the action listener is enable by the statement

nameField.addActionListener(this);

• You can get and set the string entered in a JTextField by
calling the getText and setText methods.

Numeric Fields
• The acm.gui package includes two JTextField subclasses

that simplify the process of reading numeric input within a
graphical user interface. The IntField class interprets its
text string as an int; the DoubleField class interprets the
text string as a double.

• In addition to the usual operations on a JTextField, the
IntField and DoubleField classes export getValue and
setValue methods that get and set the numeric value of the
field.

• Although it is beyond the scope of the text, the IntField
and DoubleField classes support numeric formatting so that
you can control the number of digits in the display. The
methods that support this capability are described in the
javadoc documentation for these classes.

Managing Component Layout
• Although using a control strip along the edge of a program is

useful for simple applications, creating a more sophisticated
user interface requires you to be able to place interactors
anywhere inside a window.

• Arranging interactors to form an elegant, easy-to-use interface
is a difficult design challenge. One of the factors that
complicates this type of design is the fact that the size of the
program window can change over time. A layout that makes
sense for a large window may not be appropriate for a small
one.

• Java seeks to solve the problem of changing window size by
using layout managers, which are responsible for arranging
interactors and other components when the windows that
contain them change size.

Components and Containers
• Understanding how layout managers work is significantly

easier if you first understand the relationship between two
classes—Component and Container—that are fundamental
to Java’s windowing system.

• The Component class forms the root of Java’s window
system hierarchy in the sense that anything that appears in a
window is a subclass of Component.

• The Container class is a subclass of Component that can
contain other Components, thereby making it possible to nest
components inside structures of arbitrary depth.

• As you can see from the hierarchy diagram on the next slide,
many of the classes you have seen in the text are subclasses of
both Component and Container. In particular, all Swing
interactors, the GCanvas class, and the Program class are
both components and containers.

Component Hierarchy
Component

Panel JComponent

Container

WindowGCanvas IOConsole

Applet

JApplet

Program

JPanel Frame

JFrame
Swing

interactor
classes

58Each Container has Layout Manager

Layout Managers
• In Java, each Container has a layout manager, which is an

object that takes responsibility for arranging the components
in that container.

• The layout manager for a container is invoked automatically
when the size of the container changes. Although automatic
invocation is sufficient for most applications, you may at
some point encounter situations in which you need to invoke
the layout process by calling validate on the container.

• A layout manager uses the following factors to arrange the
components in a container:
– The specific policy set by the layout manager
– The amount of space available in the container
– The preferred size of each component
– Any constraints specified when a component was added

Assigning a New Layout Manager
• You can assign a new layout manager to a Container by

calling the setLayout method with a new layout manager
object that is usually constructed specifically for that purpose.

• The Program class overrides the definition of setLayout so
it forwards the request to the CENTER region of the program
rather than setting the layout for the program itself. This
strategy makes it possible to use a control strip even if you
call setLayout.

• Although it is possible to write layout managers of your own,
you can usually rely on the standard layout managers supplied
with Java’s libraries. The next few slides describe the
BorderLayout, FlowLayout, and GridLayout managers.
The more flexible TableLayout manager is covered in the
slides for section 10.8.

The BorderLayout Manager
• A BorderLayout manager divides its container into five

regions, as follows:

CENTER

NORTH

SOUTH

W
E
S
T

E
A
S
T

• A BorderLayout manager creates the layout by giving the
NORTH and SOUTH components their preferred space and then
doing the same for the WEST and EAST components. Any
remaining space is then assigned to the CENTER component.

• When you add a component to a container managed by a
BorderLayout, you need to specify the region, as in

container.add(component, BorderLayout.SOUTH);

The FlowLayout Manager
• The FlowLayout manager is in many ways the simplest

manager to use and is particularly convenient for getting
programs running quickly.

• The FlowLayout manager arranges its components in rows
from top to bottom and then from left to right within each
row. If there is space within the current row for the next
component, the FlowLayout manager puts it there. If not,
the layout manager centers the components on the current row
and starts the next one. The FlowLayout manager also
leaves a little space between each component so that the
components don’t all run together.

• The problem with the FlowLayout manager is that it has no
way to make sure that the divisions between the lines come at
appropriate places, as illustrated by the example on the next
slide.

Limitations of FlowLayout
• The following program creates a slider and two labels:

• If the program window is wide enough, everything looks fine.

public class FlowLayoutSlider extends Program {
public void init() {

setLayout(new FlowLayout());
add(new JLabel("Small"));
add(new JSlider(0, 100, 50));
add(new JLabel("Large"));

}
}

FlowLayoutSlider

Small Large

• If, however, you make the program window very narrow, the
break between the interactors comes at an awkward place.

FlowLayoutSlider

Small
Large

public class FlowLayoutSlider
extends Program {

public void init() {
setLayout(new FlowLayout());
add(new JLabel("Small"));
add(new JSlider(0, 100, 50));
add(new JLabel("Large"));

}
}

FlowLayoutSlider

Small Large

FlowLayoutSlider

Small
Large

64

The GridLayout Manager
• The GridLayout manager is easiest to illustrate by example.

The following init method arranges six buttons in a grid
with two rows and three columns:

public void init() {
setLayout(new GridLayout(2, 3));
for (int i = 1; i <= 6; i++) {

add(new JButton("Button " + i));
}

}

• If you change the size of the program window, the buttons
adjust so that they continue to fill the space.

GridLayoutExample

Button 1 Button 2 Button 3

Button 4 Button 5 Button 6

GridLayoutExample

Button 1 Button 2 Button 3

Button 4 Button 5 Button 6

• As you can see from the sample run at the bottom of the slide,
the buttons are expanded to fill the cell in which they appear.

public void init() {
setLayout(new GridLayout(2, 3));
for (int i = 1; i <= 6; i++) {

add(new JButton("Button " + i));
}

}

GridLayoutExample

Button 1 Button 2 Button 3

Button 4 Button 5 Button 6

GridLayoutExample

Button 1 Button 2 Button 3

Button 4 Button 5 Button 6

66

The Inadequacy of Layout Managers
• The main problem with Java’s layout managers is that none of

the library classes offer the right combination of simplicity
and flexibility.

• The simple managers—BorderLayout, FlowLayout, and
GridLayout—don’t have enough power to design effective
user-interface layouts. Unfortunately, the GridBagLayout
manager, which has the necessary flexibility to create good
layout designs, is extremely difficult to use.

• To address the lack of a simple but powerful layout manager,
the ACM Java Task Force designed a new TableLayout
manager, which offers all the power of GridBagLayout but
is much easier to use. The TableLayout manager and its
features are covered in the next few slides.

Using the TableLayout Class
• The TableLayout manager has much in common with the

GridLayout manager. Both managers arrange components
into a two-dimensional grid.

• Like GridLayout, the TableLayout constructor takes the
number of rows and columns in the grid:

new TableLayout(rows, columns)

• The most noticeable difference between GridLayout and
TableLayout is that TableLayout does not expand the
components to fit the cells. Thus, if you changed the earlier
six-button example to use TableLayout, you would see

TableLayoutExample

Button 1 Button 2 Button 3

Button 4 Button 5 Button 6

Specifying Constraints
• The real advantage of the TableLayout manager is that it

allows clients to specify constraints that control the layout.
The constraints are expressed as a string, which is passed as a
second parameter to the add method.

• For example, to add a component c to the current table cell
and simultaneously indicate that the column should have a
minimum width of 100 pixels, you could write

add(c, "width=100");

• To add a label that spans three columns (as a header would
likely do), you could write

add(new JLabel("Heading"), "gridwidth=3");

• The TableLayout constraints are listed on the next slide.

A Temperature Conversion Program
The TemperatureConverter program on the next slide uses
the TableLayout manager to create a simple user interface for a
program that converts temperatures back and forth from Celsius
to Fahrenheit. The steps involved in using the program are:

TemperatureConverter

F -> CDegrees Fahrenheit

C -> FDegrees Celsius

32

0

Enter an integer into either of the numeric fields.1.
Hit ENTER or click the conversion button.2.
Read the result from the other numeric field.3.

1

212

10100

TemperatureConverter

F -> CDegrees Fahrenheit

C -> FDegrees Celsius

32

01

212

10100

71

TemperatureConverter

F -> CDegrees Fahrenheit

C -> FDegrees Celsius

32

01

212

10100

skip codepage 1 of 2

public class TemperatureConverter
extends Program {

public void init() {
setLayout(new TableLayout(2, 3));
fahrenheitField = new IntField(32);
fahrenheitField.setActionCommand("F -> C");
fahrenheitField.addActionListener(this);
celsiusField = new IntField(0);
celsiusField.setActionCommand("C -> F");
celsiusField.addActionListener(this);
add(new JLabel("Degrees Fahrenheit"));
add(fahrenheitField);
add(new JButton("F -> C"));
add(new JLabel("Degrees Celsius"));
add(celsiusField);
add(new JButton("C -> F"));
addActionListeners();

}
72

skip codepage 2 of 2

/* Listens for a button action */
public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("F -> C")) {
int f = fahrenheitField.getValue();
int c = GMath.round((5.0 / 9.0)*(f - 32));
celsiusField.setValue(c);

} else if (cmd.equals("C -> F")) {
int c = celsiusField.getValue();
int f = GMath.round((9.0 / 5.0) * c + 32);
fahrenheitField.setValue(f);

}
}

/* Private instance variables */
private IntField fahrenheitField;
private IntField celsiusField;

}

73

Layout for the Calculator Program
• As a second example of the TableLayout manager, the text

develops a program that implements a simple four-function
calculator, as shown at the bottom of this slide.

Calculator

0

• Although the entire Calculator program is interesting as an
example of object-oriented design, this chapter focuses on the
user interface, which is created by the init method on the
next slide.

7 8 9 +

4 5 6 –

1 2 3 x

C 0 = /

11722542

Calculator

0

7 8 9 +

4 5 6 –

1 2 3 x

C 0 = /

11722542

75

public void init() {
setLayout(new TableLayout(5, 4));
display = new CalculatorDisplay();
add(display,
"gridwidth=4 height=" + BUTTON_SIZE);

addButtons();
addActionListeners();

}

private void addButtons() {
String constraint = "width=" + BUTTON_SIZE +

" height=" + BUTTON_SIZE;
add(new DigitButton(7), constraint);
add(new DigitButton(8), constraint);
add(new DigitButton(9), constraint);
add(new AddButton(), constraint);
add(new DigitButton(4), constraint);
add(new DigitButton(5), constraint);
add(new DigitButton(6), constraint);
add(new SubtractButton(), constraint);
...

} 76

TableLayout Constraints
gridwidth=columns or gridheight=rows
Indicates that this table cell should span the indicated number of columns or rows.
width=pixels or height=pixels
The width specification indicates that the width of this column should be at least
the specified number of pixels. The height specification similarly indicates the
minimum row height.
weightx=weight or weighty=weight
If the total size of the table is less than the size of its enclosure, TableLayout
will ordinarily center the table in the available space. If any of the cells, however,
are given nonzero weightx or weighty values, the extra space is distributed
along that axis in proportion to the weights specified.
fill=fill
Indicates how component in this cell should be resized if its preferred size is
smaller than cell size. Legal values are NONE, HORIZONTAL, VERTICAL, and
BOTH, indicating the axes along which stretching should occur; default is BOTH.
anchor=anchor
If a component is not being filled along a particular axis, the anchor specification
indicates where component should be placed in its cell. Default value is CENTER,
but you may also use any of the standard compass directions (NORTH, SOUTH,
EAST, WEST, NORTHEAST, NORTHWEST, SOUTHEAST, or SOUTHWEST). 77

public class MovingRect extends Program {
public void init() {
MyCanvas canvas = new MyCanvas();
add(canvas);
}
} 78

MovingRect

Resizing, Component Listeners

class MyCanvas extends GCanvas
implements ComponentListener {

public MyCanvas() {
addComponentListener(this);
rect = new GRect(BOX_WIDTH, BOX_HEIGHT);
rect.setFilled(true);

}

public void update() {
removeAll();
add(rect, (getWidth() - BOX_WIDTH) / 2,
(getHeight() - BOX_HEIGHT) / 2);

}

79

public void componentResized(
ComponentEvent e) {

update();
}

public void componentHidden(
ComponentEvent e) { }

public void componentMoved(
ComponentEvent e) { }

public void componentShown(
ComponentEvent e) { }

private GRect rect;
private static final double BOX_WIDTH = 200;
private static final double BOX_HEIGHT = 100;

} 80

Summary I
• Events: user actions that happen outside of normal

sequential program flow
• Java programs respond to events by designating

objects as listeners to particular event types
• Event listeners must implement interface defined in
java.awt.event (MouseListener, ...)

• Program class implements these interfaces by
supplying empty methods, e.g., mouseClicked –
which are overridden by own methods

• The init method specifies initialization code, e.g.
addMouseListeners

81

• javax.swing and acm.gui define classes whose
instances are interactors

• To determine which button caused an action event
e, can call e.getSource, which returns object that
caused the event, or e.getActionCommand, which
returns a string

• Easiest way to add interactors is to add them to a
control bar along borders of program window

• Arranging interactors in interior usually requires
layout manager

• The TableLayout manager allows to specify
constraints on layout 82

Summary II

