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I. Introduction
The synchronous programming technology has turned  

into  a highly  successful approach in the design of embedded 
and reactive systems, in particular in the automotive and 
avionics industries and, more generally, in the design of 
safety–critical systems [1]. In these domains the success  
of  synchronous languages is equally owed  to  the fact 
that  they  are model–based and  high–level  but  above all  
because these languages are based on a simple and powerful 
execution model. This model is thought to be scheduled under 
the regime of an implicit global clock (which may be physical 
or logical) that delimits  a sequence of “present”  instants 
or macro–steps  by ticks. At  every macro–step, the system 
delivers a full  response to an external stimulus imposed by the 
environment. The  abstraction  that  governs  and  describes 
this interplay is the synchrony hypothesis or a maximal 
progress, run to completion scheduling scheme [2], [3]. This 
hypothesis assumes that the environment  is significantly  
slower  than the system itself. Specifically, in this canonical 
setting, there is no way in which the environment could 
bring under control or monitor any activity  of the system 
between two ticks. As a result, the reactions appear to the 
environment as atomic events in which the set of inputs and  
recognisable outputs are simultaneous. During an instant, 
however, internal subsystems interact interchanging  and 
combining  information that goes back and forward  until  
environment and system are able to synchronise again when 
the clock ticks. The postulate of the synchrony hypotheses 
abstracts all the internal signal exchanges and  low–level  
behaviour needed to produce a response and ensures that 
this internal  operation  eventually  stops completing a step 
response. This compactification  of the synchronous model 
reconciles concurrency and determinism, and makes up much 
of its algebraic appeal. For a more general introduction the 
reader is referred to [2], [4].

The  synchronous  reactive  macro–step abstraction can 
be explained through a system model built up from parallel 

(simultaneous) transitions (as implications)  of the form:
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1 INTRODUCTION

The synchronous programming technology has
turned into a highly successful approach in
the design of embedded and reactive systems,
in particular in the automotive and avionics
industries and, more generally, in the design of
safety–critical systems [1]. In these domains the
success of synchronous languages is equally
owed to the fact that they are model–based
and high–level but above all because these
languages are based on a simple and power-
ful execution model. This model is thought to
be scheduled under the regime of an implicit
global clock (which may be physical or logical)
that delimits a sequence of “present” instants
or macro–steps by ticks. At every macro–step,
the system delivers a full response to an ex-
ternal stimulus imposed by the environment.
The abstraction that governs and describes
this interplay is the synchrony hypothesis or a
maximal progress, run to completion scheduling
scheme [2], [3]. This hypothesis assumes that
the environment is significantly slower than
the system itself. Specifically, in this canonical
setting, there is no way in which the environ-
ment could bring under control or monitor any
activity of the system between two ticks. As a
result, the reactions appear to the environment
as atomic events in which the set of inputs and

recognisable outputs are simultaneous. During
an instant, however, internal subsystems inter-
act interchanging and combining information
that goes back and forward until environment
and system are able to synchronise again when
the clock ticks. The postulate of the synchrony
hypotheses abstracts all the internal signal ex-
changes and low–level behaviour needed to
produce a response and ensures that this in-
ternal operation eventually stops completing
a step response. This compactification of the
synchronous model reconciles concurrency and
determinism, and makes up much of its alge-
braic appeal. For a more general introduction
the reader is referred to [2], [4].

The synchronous reactive macro–step ab-
straction can be explained through a system
model built up from parallel (simultaneous)
transitions (as implications) of the form:

(p1 ∧ . . . pi ∧ ¬n1 ∧ · · · ∧ ¬nj) ⊃ (v1 ∧ · · · ∧ vk),

specifying the reaction “if all the signals pi are
present and all the signals nj are absent, then all of
the vk signals are emitted (become present)”. Thus,
inside the system, signals flood all over the
place where the transitions await for the ap-
propriate combination of them to get enabled
and emit new signals. The presence of negative
triggers (a source of non-monotonicity) has
resulted in various semantics. It is agreed, in

specifying the reaction “if all the signals pi are present and 
all the signals nj  are absent, then all of the vk signals are 
emitted  (become present)”. Thus, inside  the system, signals 
flood  all  over the place where the transitions  await  for  the 
appropriate combination of them to get enabled and emit 
new signals. The presence of negative triggers (a source of 
non-monotonicity)  has resulted in various semantics. It is 
agreed, in general terms, that a global scheduler selects some 
(at least one) of the enabled transitions (i.e., those for which 
“all its pi signals are present and all its nj signals are absent”) 
and executes them in parallel. The outcome is an emission 
(i.e., “then all of the vk signals are emitted”) that enables other 
transitions, some of which will be chosen by the scheduler to 
be executed and so on until the system stabilises (ideally) and 
produces a response. The main issue arises in how to deal 
with the inhibitive nature of negative triggering conditions 
(i.e., the signals that must be absent) in order to avoid 
inconsistences due to circular causality. As a simple example 
of the causality issue consider a system P consisting of the 
transitions t1 := ¬x É y and t2 := y É x. Assume P starts its 
execution with an empty stimulus (i.e., no signal is initially 
given by the environment). Inside P, when the instant begins, 
only transition t1 is enabled since x is absent. Thus, t1 is 
executed emitting signal y, then transition t2 gets enabled 
and fires resulting in the presence of signal x. Nevertheless, 
from outside P, t1 and t2 happen instantaneously. The problem 
is that the presence of x depends on the present status of y 
which, in turn, results from the absence of x at the same time.

There is not a single canonical way to handle this. Likely, 
the full range of possibilities have not been explored yet, but 
already the causality problem has motivated different solutions 
adopted in the literature on synchronous languages. Let us 
mention some of them. In Modecharts [5] negative triggers 
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are not allowed at all. Both (synchronous) Statemate [6] and 
UML [7] only schedule causally independent transitions 
preventing with this inter–transition communication in 
a macro–step. Negations with implicit delays refereing to 
the previous instant have been suggested in the context 
of concurrent constraint programming [8]. Syntactic 
restrictions in stratified logic programs that avoid recursion 
on negations are other possibility [9]. For Statecharts [10], 
the absence of signals is a local condition (for triggering 
transitions) that later in the same macro–step could become 
present leaving aside global consistency [11]. This is like in 
the example above, where x is assumed to be absent when 
triggering t1, but x is emitted later (in the same instant) by 
t2. Besides, also for Statecharts, global consistency has been 
considered an implicit trigger [12], [13]. More specifically, 
as the chain reaction of firing transitions evolves if it 
happens that an enabled transition emits a signal previously 
considered absent then this transition (although enabled) is 
not triggered. Thus, in the previous example neither t1 nor 
t2 would be triggered because t2 emits x that must be absent 
(in the first place) for triggering t1. Then, this would result in 
the absence of both signals x; y. The Statecharts semantics of  
Pnueli & Shalev [14] is based on a search of consistent 
scheduling sequences of transitions by speculating on the 
absence of signals and backtracking when required. In 
ESTEREL [2], [15], [16], [17], the language studied in this 
paper, synchrony and causality are treated separately, so 
only conflict–free and deterministic programs are accepted 
where negations are considered “positive” absences. This is in 
line with the view that consistency in computing a response 
should not depend on any particular cleverness of the 
scheduler. Scheduling under every possible input should be 
confluent and produce the same uniquely determined result.

The variety of semantics arising from the different 
options of handling negation cannot be simply carried 
out within the framework of classical logic or simple set-
theoretical models, which justifies the game–theoretic 
approach of this paper. This should be not surprising since 
classical logic is not fine enough to model all the intensional 
aspects of scheduling under inhibiting as well as enabling 
effects. For instance, the single truth–value false cannot 
adequately model the meaning of negation ¬x when x is 
initially absent but occurring later. What is surprising is 
that for certain coherent scheduling regimes it is possible 
to maintain the abstract propositional viewpoint, i.e., avoid 
the complications of modelling scheduling sequences in 
detail, simply by choosing a constructive (intuitionistic) 
logic interpretation. For instance, in [18] it was shown that 
the simple twist of replacing the classical two–valued by an 
intuitionistic interpretation of signals (specifically, three–
valued Gödel logic) suffices to obtain a fully abstract and 
compositional model for the original macro step semantics 
of Statecharts as given by Pnueli & Shalev [14]. Following a 
similar direction, the present paper explains the constructive 
semantics of ESTEREL naturally in terms of winning 
strategies in finite two—player games. This modelling shows 
how non–classical truth values induced by logic games can be 

used to characterise the constructive single–step semantics 
for ESTEREL–like languages.

The classical theory of games, originally developed in 
descriptive set theory, has emerged as a surprisingly versatile 
mathematical tool. Moreover, the intensionality of the game 
model has reconciliated the algebraic and operational views 
in the semantics of proofs and programming languages [19]. 
The power of the games model rests on its ability to 
handle combinatorially complex situations, such as the 
alternate nesting of quantifiers, in a natural and intuitive  
fashion [20]. Perhaps the most prominent examples of 
successful application are the game–theoretic solution of 
the full–abstraction problem for the functional language  
PCF [21] (which had been open for a long time) and the game–
theoretic analysis of proofs in multiplicative linear logic [22], 
[23], [24], [25]. This has led to new approaches in the field 
of control–flow analysis [26], integrating imperative, object–
oriented, higher–order functional, and concurrent features.

Games are a convincing metaphor not only in functional 
programming but also in the field of reactive–systems 
modeling. This is because the interaction between a reactive 
system and its environment has a strong analogy in the 
moves between a player and his or her opponent in a simple 
two–player maze game. This interaction problem is then 
solved by providing a winning strategy that in turn may be 
understood as a system reaction. In this paper we report on a 
novel application of this metaphor to the specific interaction 
problem that arises in synchronous programming under 
the synchrony hypothesis, namely the characterisation of 
present and absent signals within a system’s reaction under 
a given environment. Specifically, using Berry’s language  
ESTEREL [2] as an example, we prove that the underlying 
intricate constructive semantics of reactions can be captured 
in a very natural game–theoretic manner. Thus, the objective 
of this paper is to show that programs written in the kernel 
fragment of ESTEREL corresponding to combinational 
circuits can be understood very naturally as maze game 
boards, where signals are represented by rooms. Intuitively, 
the presence and absence of signals in the reaction instant 
that is described by a combinational program P, is “negotiated” 
between the system (the starting player) and its environment 
(the opponent). The system tries to prove a signal’s presence 
and the environment its absence. Thus, signal s must (cannot) 
be emitted in P if and only if room s in the maze M associated 
with P is a winning (losing) position. If the status of signal s 
is undefined, then and only then room s is a draw position.

2. Playing the Maze Game
In this section we present a two–player and perfect 

information game, called the maze game. A maze can be 
thought as a graph that encodes the transitions of a reactive 
(synchronous) component. The players take turns to move 
a token from room (vertex) to room through the corridors 
(edges) of the maze. The winning conditions define which 
rooms are winning, losing or draw positions, this allows us 
to classify signals as present, absent and non–constructive.

In the maze game, the board consists of rooms which 
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are connected by one–way corridors and the game figure is 
just a single token. Corridors can be of two types: visible and 
secret. Placing the token in some arbitrary room, the starting 
player, say Jaakko, may move the token from one room to 
the next through arbitrarily many secret corridors; however, 
as soon as Jaakko moves through a visible corridor, his turn 
ends. Control passes on to the opponent, say Leon, who may 
continue in a similar fashion from the current position of the 
token on the board1. If the token gets stuck in a dungeon, i.e., 
a room with no outgoing corridors, the current player loses 
and the opponent wins. Hence, the objective of the game is 
to drive the opponent into a dungeon. Obviously, a game 
board can be modeled as a finite directed graph, such as the 
one depicted in Fig. 1, where nodes are rooms, solid edges 
represent visible corridors, and dashed edges represent secret 
corridors.
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into a dungeon. Obviously, a game board can
be modeled as a finite directed graph, such as
the one depicted in Fig. 1, where nodes are
rooms, solid edges represent visible corridors,
and dashed edges represent secret corridors.

submaze 

submaze 

Fig. 1. Example game board Mex.

Given a game board and choosing an ini-
tial room for the token, this room may now
be classified according to whether the starting
player Jaakko (i) has the possibility always to
win (if he plays cleverly), (ii) must always lose
(no matter how cleverly he plays), or (iii) can
at best reach a draw by ensuring that Leon can
never force him into a dungeon. For instance,
using the board Mex illustrated in Fig. 1 and
initially placing the token in room b, Jaakko
can move the token to room t1 through a visible
corridor, thereby handing over control to Leon.
Now Leon can only move the token into dun-
geon d, again through a visible corridor, such
that control passes back to Jaakko who instan-
taneously loses. This implies that room b is a
losing position (for the starting player Jaakko).
However, if instead the token is initially placed
in room t3, then Jaakko has two strategies for
winning. On the one hand, Jaakko may move
the token through a visible corridor to room b
where, as we have just seen, player Leon will
necessarily lose after two more turns. On the
other hand, Jaakko may use the secret corridor
to move the token into room a and in the
same turn further into dungeon t0 via a visible
corridor, thus winning the game. Jaakko is said
to have a winning strategy from room t3, and t3

is referred to as a winning position. However,
a game may also end in a draw. For example,
suppose the token is placed initially in room t5.
Then Jaakko has several alternatives, but one of
these leaves him in the hands of Leon. Indeed,
if Jaakko moves the token to room b, Leon can
place the token into dungeon d. Observe that if
the token is instead placed in t6, the situation
is similar in the sense that moving the token
in room b will result in losing the game. Now,
assuming that both players want to win and
that they both know that placing the token in
room b is the worst option, it follows that they
will keep moving the token all the time through
submaze M2. of Fig. 1. Since inside M2 it is
always possible to avoid room b, the game can
continue indefinitely in this fashion leading to
a draw. Hence rooms e, g, t5 and t6 are referred
to as a draw positions.

3 PURE ESTEREL

Before turning our attention to game semantics,
it is first necessary to specify a language in
which these ideas can be realised. The language
we are going to employ, as an example through
the paper and as a vehicle of concretisation,
is the synchronous language ESTEREL [2]. This
section formally presents the combinational
fragment of ESTEREL which we are concerned
with and recalls its constructive behavioral se-
mantics as defined by Berry in [17].

3.1 The Language
ESTEREL is an imperative, textual and paral-
lel synchronous programming language, which
is tailored for programming control dominant
systems. An ESTEREL program has an interface
which distinguish input and output signals. The
information contained in a signal is restricted
to a presence or absence status. An environment
stimulus (or input event) defines the status of ev-
ery input signal and a system response (or output
event) gives status to all the output signals. The
abstract syntax of the ESTEREL fragment, which
specifies single reactions and will be used in
the remainder, is defined by the BNF of Fig. 2,
where s stands for a signal name taken from
some (finite) universe S .

Fig. 1 : Example game board Mex.

Given a game board and choosing an initial room for the 
token, this room may now be classified according to whether 
the starting player Jaakko (i) has the possibility always to 
win (if he plays cleverly), (ii) must always lose (no matter how 
cleverly he plays), or (iii) can at best reach a draw by ensuring 
that Leon can never force him into a dungeon. For instance, 
using the board Mex illustrated in Fig. 1 and initially placing 
the token in room b, Jaakko can move the token to room t1 
through a visible corridor, thereby handing over control to 
Leon. Now Leon can only move the token into dungeon d, 
again through a visible corridor, such that control passes back 
to Jaakko who instantaneously loses. This implies that room b 
is a losing position (for the starting player Jaakko). However, 
if instead the token is initially placed in room t3, then Jaakko 
has two strategies for winning. On the one hand, Jaakko may 
move the token through a visible corridor to room b where, as 
we have just seen, player Leon will necessarily lose after two 
more turns. On the other hand, Jaakko may use the secret 
corridor to move the token into room a and in the same turn 
further into dungeon t0 via a visible corridor, thus winning 
the game. Jaakko is said to have a winning strategy from 

room t3, and t3 is referred to as a winning position. However, 
a game may also end in a draw. For example, suppose the 
token is placed initially in room t5. Then Jaakko has several 
alternatives, but one of these leaves him in the hands of Leon. 
Indeed, if Jaakko moves the token to room b, Leon can place 
the token into dungeon d. Observe that if the token is instead 
placed in t6, the situation is similar in the sense that moving 
the token in room b will result in losing the game. Now, 
assuming that both players want to win and that they both 
know that placing the token in room b is the worst option, 
it follows that they will keep moving the token all the time 
through submaze M2 of Fig. 1. Since inside M2 it is always 
possible to avoid room b, the game can continue indefinitely 
in this fashion leading to a draw. Hence rooms e, g, t5 and t6 
are referred to as a draw positions.

3. Pure Esterel
Before turning our attention to game semantics, it is first 

necessary to specify a language in which these ideas can be 
realised. The language we are going to employ, as an example 
through the paper and as a vehicle of concretisation, is the 
synchronous language ESTEREL [2]. This section formally 
presents the combinational fragment of ESTEREL which we 
are concerned with and recalls its constructive behavioral 
semantics as defined by Berry in [17].

3.1 The Language

ESTEREL is an imperative, textual and parallel 
synchronous programming language, which is tailored for 
programming control dominant systems. An ESTEREL 
program has an interface which distinguish input and output 
signals. The information contained in a signal is restricted 
to a presence or absence status. An environment stimulus (or 
input event) defines the status of every input signal and a 
system response (or output event) gives status to all the output 
signals. The abstract syntax of the ESTEREL fragment, 
which specifies single reactions and will be used in the 
remainder, is defined by the BNF of Fig. 2, where s stands for 
a signal name taken from some (finite) universe S.
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P ::= 0 nothing
| !s emit s
| s+?(P ) present s then P end
| s−?(P ) present s else P end
| P |P P || P
| P ;P P ; P
| P \s signal s in P end

Fig. 2. ESTEREL fragment Syntax.

ESTEREL’s more general choice statement
“present s then P1 else P2 end” can be recov-
ered in our syntax by the term s+?(P1) |
s−?(P2) [18]. By default sequential composi-
tion (;) binds tighter than parallel composition
(|). As in many languages, square brackets
can be used to group statement arbitrary. The
language manipulates control flow and signal
status. The statement 0 has no effect and termi-
nates immediately. An emit statement !s broad-
cast instantaneously signal s (i.e., its status is
set to present) and terminates. The branching
of control s+?(P ) (s−?(P )) tests the status of
signal s, if this is present (absent) then P
is immediately executed. Parallel composition
P0 |P1 executes the statements of P1 and P2 in
parallel. If, at any given point in the execution,
one of the components terminates then the
computation continues with the other compo-
nent alone. The statement terminates instanta-
neously if and only if both P1 and P2 terminate.
Sequential composition P1 ;P2 executes P1 until
it terminates. If so, the control is transferred
instantaneously to P2 which determines the
behaviour of the full composition from then on.
In a local signal declaration P \s the statement
of P are executed with a fresh signal s that
overrides any other occurrence of s that might
already exists. This statement terminates when
P terminates but the status of the local signal
s is not available outside P [27].

In this paper we do away with input signals
i ∈ I = {i1, . . . , in} ⊆ S . This is possible since
the behavior of P under I is equivalent to
the behavior of P | !ij1 | · · · | !ijm , where the
indexes j1, . . . , jm ∈ {1, . . . , n} are exactly those
for which signal ijk is present in I [18]. Finally,
we further assume that the finite set S of

signals includes all signals of the combinational
ESTEREL programs that one wishes to reason
about. This restriction is a mere technical con-
venience and could be dropped by maintaining
for every program the finite set of relevant
signals, i.e., a “signal sort.”

3.2 Behavioural Semantics

The behavioural semantics for ESTEREL consid-
ers statuses of signals. Each signal s ∈ S can ei-
ther be known to be present, i.e., have status s+,
or known to be absent, i.e., have status s−, or
have an unknown status. For any set S ⊆ S
we let S+ stand for {s+ | s ∈ S} and S−

for {s− | s ∈ S}. Consistent sets E ⊆ S+ ∪ S− of
signal statuses such that � ∃s. s+ ∈ E and s− ∈ E
are referred to as events, with E denoting the set
of all events.

Given a combinational ESTEREL program P
and an event E, to compute the signal sta-
tuses we need three functions: must(P,E),
cannot(P,E) and t(P,E). The first two func-
tions determine the sets of signals that must
and cannot be emitted (i.e., be present or ab-
sent) in P , respectively, relative to the knowl-
edge of the signal statuses in E. The must and
cannot computations are displayed in Fig. 3
and 4. Note that the cannot+ has the same
definition as the cannot except for P \ s. The
predicate t(P,E) is true if P is known to
terminate in environment E. This predicate is
defined in Fig. 5. Notice that ; and | have almost
the same definition, except that must(P1 ;P2, E)
depends on a termination condition as given
by the predicate t(P1, E).

The functions must , cannot and t are mono-
tonic in E for subset inclusion. Since (E ,⊆ ) is
a finite ∩–semi–lattice, the function

esterel(P )(E) := must(P,E)+ ∪ cannot(P,E)−

has a least fixed point

µesterel(P ) =
⋃
i∈N

esterel(P )i(∅)

this least fixed point defines the behavioral
semantics of P .

In [17] the construction of absent signals
is based on the complement of the cannot

Fig. 2 : ESTEREL fragment Syntax.

ESTEREL’s more general choice statement “present s 
then P1 else P2 end” can be recovered in our syntax by the 
term s+?(P1) | s–?(P2) [18]. By default sequential composition 
(;) binds tighter than parallel composition (|). As in many 

1 The players are named after the logicians Jaakko Hintikka, who pioneered the field of semantic games for logic, and Leon Henkin, 
who first introduced game–theoretic interpretations of quantifiers.
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languages, brackets can be used to group statement arbitrary. 
The language manipulates control flow and signal status. 
The statement 0 has no effect and terminates immediately. 
An emit statement !s broadcast instantaneously signal s (i.e., 
its status is set to present) and terminates. The branching 
of control s+?(P) (s–?(P)) tests the status of signal s, if this is 
present (absent) then P is immediately executed. Parallel 
composition P1 | P2 executes the statements of P1 and P2 in 
parallel. If, at any given point in the execution, one of the 
components terminates then the computation continues 
with the other component alone. The statement terminates 
instantaneously if and only if both P1 and P2 terminate. 
Sequential composition P1 ;P2 executes P1 until it terminates. 
If so, the control is transferred instantaneously to P2 which 
determines the behaviour of the full composition from then 
on. In a local signal declaration P\s the statement of P 
are executed with a fresh signal s that overrides any other 
occurrence of s that might already exist. This statement 
terminates when P terminates but the status of the local 
signal s is not available outside P [27].

In this paper we do away with input signals i Î I = {i1, 
. . .  , in} Í S. This is possible since the behavior of P under I 
is equivalent to the behavior of P | !ij1

 | . . . | !ijm
, where the 

indexes j1; . . . ; jm Î {1, . . . , n} are exactly those for which 
signal ijk

 is present in I [18]. Finally, we further assume 
that the finite set S of signals includes all signals of the 
combinational ESTEREL programs that one wishes to reason 
about. This restriction is a mere technical convenience and 
could be dropped by maintaining for every program the finite 
set of relevant signals, i.e., a “signal sort.”

3.2 Behavioural Semantics

The behavioural semantics for ESTEREL considers 
statuses of signals. Each signal s Î S can either be known 
to be present, i.e., have status s+, or known to be absent, 
i.e., have status s–, or have an unknown status. For any set  
S  Í S we let S+ stand for {s+ | s Î S} and S– for {s– | s Î S}. 
Consistent sets E Í S+ È S– of signal statuses such that 
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P ::= 0 nothing
| !s emit s
| s+?(P ) present s then P end
| s−?(P ) present s else P end
| P |P P || P
| P ;P P ; P
| P \s signal s in P end

Fig. 2. ESTEREL fragment Syntax.

ESTEREL’s more general choice statement
“present s then P1 else P2 end” can be recov-
ered in our syntax by the term s+?(P1) |
s−?(P2) [18]. By default sequential composi-
tion (;) binds tighter than parallel composition
(|). As in many languages, square brackets
can be used to group statement arbitrary. The
language manipulates control flow and signal
status. The statement 0 has no effect and termi-
nates immediately. An emit statement !s broad-
cast instantaneously signal s (i.e., its status is
set to present) and terminates. The branching
of control s+?(P ) (s−?(P )) tests the status of
signal s, if this is present (absent) then P
is immediately executed. Parallel composition
P0 |P1 executes the statements of P1 and P2 in
parallel. If, at any given point in the execution,
one of the components terminates then the
computation continues with the other compo-
nent alone. The statement terminates instanta-
neously if and only if both P1 and P2 terminate.
Sequential composition P1 ;P2 executes P1 until
it terminates. If so, the control is transferred
instantaneously to P2 which determines the
behaviour of the full composition from then on.
In a local signal declaration P \s the statement
of P are executed with a fresh signal s that
overrides any other occurrence of s that might
already exists. This statement terminates when
P terminates but the status of the local signal
s is not available outside P [27].

In this paper we do away with input signals
i ∈ I = {i1, . . . , in} ⊆ S . This is possible since
the behavior of P under I is equivalent to
the behavior of P | !ij1 | · · · | !ijm , where the
indexes j1, . . . , jm ∈ {1, . . . , n} are exactly those
for which signal ijk is present in I [18]. Finally,
we further assume that the finite set S of

signals includes all signals of the combinational
ESTEREL programs that one wishes to reason
about. This restriction is a mere technical con-
venience and could be dropped by maintaining
for every program the finite set of relevant
signals, i.e., a “signal sort.”

3.2 Behavioural Semantics

The behavioural semantics for ESTEREL consid-
ers statuses of signals. Each signal s ∈ S can ei-
ther be known to be present, i.e., have status s+,
or known to be absent, i.e., have status s−, or
have an unknown status. For any set S ⊆ S
we let S+ stand for {s+ | s ∈ S} and S−

for {s− | s ∈ S}. Consistent sets E ⊆ S+ ∪ S− of
signal statuses such that � ∃s. s+ ∈ E and s− ∈ E
are referred to as events, with E denoting the set
of all events.

Given a combinational ESTEREL program P
and an event E, to compute the signal sta-
tuses we need three functions: must(P,E),
cannot(P,E) and t(P,E). The first two func-
tions determine the sets of signals that must
and cannot be emitted (i.e., be present or ab-
sent) in P , respectively, relative to the knowl-
edge of the signal statuses in E. The must and
cannot computations are displayed in Fig. 3
and 4. Note that the cannot+ has the same
definition as the cannot except for P \ s. The
predicate t(P,E) is true if P is known to
terminate in environment E. This predicate is
defined in Fig. 5. Notice that ; and | have almost
the same definition, except that must(P1 ;P2, E)
depends on a termination condition as given
by the predicate t(P1, E).

The functions must , cannot and t are mono-
tonic in E for subset inclusion. Since (E ,⊆ ) is
a finite ∩–semi–lattice, the function

esterel(P )(E) := must(P,E)+ ∪ cannot(P,E)−

has a least fixed point

µesterel(P ) =
⋃
i∈N

esterel(P )i(∅)

this least fixed point defines the behavioral
semantics of P .

In [17] the construction of absent signals
is based on the complement of the cannot

s. s+ 
Î E and s– Î E are referred to as events, with e denoting the 
set of all events.

Given a combinational ESTEREL program P and 
an event E, to compute the signal statuses we need three 
functions: must(P,E), cannot(P,E) and t(P,E). The first two 
functions determine the sets of signals that must and cannot 
be emitted (i.e., be present or absent) in P, respectively, 
relative to the knowledge of the signal statuses in E. The 
must and cannot computations are displayed in Fig. 3 and 4. 
Note that the cannot+ has the same definition as the cannot 
except for P\s. The predicate t(P,E) is true if P is known to 
terminate in environment E. This predicate is defined in  
Fig. 5. Notice that ; and | have almost the same definition, 
except that must(P1 ; P2, E) depends on a termination 
condition as given by the predicate t(P,E).

The functions must, cannot and t are monotonic in E for 
subset inclusion. Since (e, Í) is a finite Ç–semi–lattice, the 
function

esterel(P)(E) := must(P,E)+ È cannot(P,E)–

has a least fixed point
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P ::= 0 nothing
| !s emit s
| s+?(P ) present s then P end
| s−?(P ) present s else P end
| P |P P || P
| P ;P P ; P
| P \s signal s in P end

Fig. 2. ESTEREL fragment Syntax.

ESTEREL’s more general choice statement
“present s then P1 else P2 end” can be recov-
ered in our syntax by the term s+?(P1) |
s−?(P2) [18]. By default sequential composi-
tion (;) binds tighter than parallel composition
(|). As in many languages, square brackets
can be used to group statement arbitrary. The
language manipulates control flow and signal
status. The statement 0 has no effect and termi-
nates immediately. An emit statement !s broad-
cast instantaneously signal s (i.e., its status is
set to present) and terminates. The branching
of control s+?(P ) (s−?(P )) tests the status of
signal s, if this is present (absent) then P
is immediately executed. Parallel composition
P0 |P1 executes the statements of P1 and P2 in
parallel. If, at any given point in the execution,
one of the components terminates then the
computation continues with the other compo-
nent alone. The statement terminates instanta-
neously if and only if both P1 and P2 terminate.
Sequential composition P1 ;P2 executes P1 until
it terminates. If so, the control is transferred
instantaneously to P2 which determines the
behaviour of the full composition from then on.
In a local signal declaration P \s the statement
of P are executed with a fresh signal s that
overrides any other occurrence of s that might
already exists. This statement terminates when
P terminates but the status of the local signal
s is not available outside P [27].

In this paper we do away with input signals
i ∈ I = {i1, . . . , in} ⊆ S . This is possible since
the behavior of P under I is equivalent to
the behavior of P | !ij1 | · · · | !ijm , where the
indexes j1, . . . , jm ∈ {1, . . . , n} are exactly those
for which signal ijk is present in I [18]. Finally,
we further assume that the finite set S of

signals includes all signals of the combinational
ESTEREL programs that one wishes to reason
about. This restriction is a mere technical con-
venience and could be dropped by maintaining
for every program the finite set of relevant
signals, i.e., a “signal sort.”

3.2 Behavioural Semantics

The behavioural semantics for ESTEREL consid-
ers statuses of signals. Each signal s ∈ S can ei-
ther be known to be present, i.e., have status s+,
or known to be absent, i.e., have status s−, or
have an unknown status. For any set S ⊆ S
we let S+ stand for {s+ | s ∈ S} and S−

for {s− | s ∈ S}. Consistent sets E ⊆ S+ ∪ S− of
signal statuses such that � ∃s. s+ ∈ E and s− ∈ E
are referred to as events, with E denoting the set
of all events.

Given a combinational ESTEREL program P
and an event E, to compute the signal sta-
tuses we need three functions: must(P,E),
cannot(P,E) and t(P,E). The first two func-
tions determine the sets of signals that must
and cannot be emitted (i.e., be present or ab-
sent) in P , respectively, relative to the knowl-
edge of the signal statuses in E. The must and
cannot computations are displayed in Fig. 3
and 4. Note that the cannot+ has the same
definition as the cannot except for P \ s. The
predicate t(P,E) is true if P is known to
terminate in environment E. This predicate is
defined in Fig. 5. Notice that ; and | have almost
the same definition, except that must(P1 ;P2, E)
depends on a termination condition as given
by the predicate t(P1, E).

The functions must , cannot and t are mono-
tonic in E for subset inclusion. Since (E ,⊆ ) is
a finite ∩–semi–lattice, the function

esterel(P )(E) := must(P,E)+ ∪ cannot(P,E)−

has a least fixed point

µesterel(P ) =
⋃
i∈N

esterel(P )i(∅)

this least fixed point defines the behavioral
semantics of P .

In [17] the construction of absent signals
is based on the complement of the cannot

this least fixed point defines the behavioral semantics of 
P.

In [17] the construction of absent signals is based on the 
complement of the cannot sets, called can sets. Our equivalent
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must(0, E) := ∅
must(!s, E) := {s}

must(s+?(P ), E) :=

{
must(P,E) if s+ ∈ E

∅ otherwise

must(s−?(P ), E) :=

{
must(P,E) if s− ∈ E

∅ otherwise

must(P1 |P2, E) := must(P1, E) ∪must(P2, E)

must(P1 ;P2, E) :=

{
must(P1 |P2, E) if t(P1, E)

must(P1, E) otherwise

must(P \s, E) :=




must(P,E ∪ {s+})\s if s ∈ must(P,E\s)
must(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
must(P,E\s)\s otherwise

Fig. 3. ESTEREL Must.

sets, called can sets. Our equivalent formu-
lation brings out an important structural in-
variant. Firstly, cannot(P,E) is the logical dual
of must(P,E), obtained by interchanging ∩
for ∪, ∅ for S , and {s} for S \ {s}. Secondly,
must and cannot are exclusive: must(P,E) ∩
cannot(P,E) = ∅, for any event E. In general,
however, must(P,E) ∪ cannot(P,E) �= S , so
must and cannot are not necessarily comple-
ments. This is analogous to the situation in
two–player games: we will show below that
must (cannot) corresponds to the construction
of winning (losing) positions for the starting
player. Elements neither in must(P,E) nor in
cannot(P,E) indicate draw positions.

4 FORMALISING MAZES

This section formalises our two–player maze
games introduced in Section 2.

4.1 Mazes
Mazes are essentially finite graphs with two
kinds of directed edges, namely visible and
secret edges. For our purposes, it is convenient
to formally represent these graphs as systems of
unfolding rules M := (x⇐mx)x∈V in a language

cannot(0, E) := S
cannot(!s, E) := S\{s}

cannot(s+?(P ), E) :=

{
S if s− ∈ E

cannot(P,E) otherwise

cannot(s−?(P ), E) :=

{
S if s+ ∈ E

cannot(P,E) otherwise

cannot(P1 |P2, E) := cannot(P1, E) ∩ cannot(P2, E)
cannot(P1 ;P2, E) := cannot(P1, E) ∩ cannot(P2, E)

cannot(P \s, E) :=
{
cannot(P,E ∪ {s−})\s if s ∈ cannot(P,E\s)
cannot(P,E\s)\s otherwise

cannot+(P \s, E) :=




cannot+(P,E ∪ {s+})\s if s ∈ must(P,E\s)
cannot+(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
cannot+(P,E\s)\s otherwise

Fig. 4. ESTEREL Cannot.

t(0, E) := true
t(!s, E) := true

t(s+?(P ), E) :=




t(P,E) if s+ ∈ E

true if s− ∈ E

false otherwise

t(s−?(P ), E) :=





t(P,E) if s− ∈ E

true if s+ ∈ E

false otherwise

t(P1 |P2, E) := t(P1, E) ∧ t(P2, E)
t(P1 ;P2, E) := t(P1, E) ∧ t(P2, E)
t(P \s, E) := t(P,E\s)

Fig. 5. Termination Predicate.

of mazes, for some finite set V of variables
representing rooms and maze terms mx. Maze
terms are defined in a process–algebraic fash-
ion, which provides us with sufficient structure
for proving the paper’s main results. The syn-
tax of maze terms is given by the following
BNF:

m ::= 0 | x | ι.m | τ.m |
∑
i∈I

mi | µx.m.

Fig. 3. ESTEREL Must

formulation brings out an important structural invariant. 
Firstly, cannot(P,E) is the logical dual of must(P,E), obtained 
by interchanging Ç for È, Æ for S, and {s} for S \ {s}. Secondly, 
must and cannot are exclusive: must(P,E) Ç cannot(P,E) = Æ 
for any event E. In general, however, must(P,E) È cannot(P,E) 
¹ S, so must and cannot are not necessarily complements. 
This is analogous to the situation in two–player games: 
we will show below that must (cannot) corresponds to the 
construction of winning (losing) positions for the starting 
player. Elements neither in must(P,E) nor in cannot(P,E) 
indicate draw positions.

4. Formalising Mazes
This section formalises our two–player maze games 

introduced in Section 2.

4.1 Mazes

Mazes are essentially finite graphs with two kinds 
of directed edges, namely visible and secret edges. For our 
purposes, it is convenient to formally represent these graphs 
as systems of unfolding rules M := (xÜmx)xÎV in a language
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must(0, E) := ∅
must(!s, E) := {s}

must(s+?(P ), E) :=

{
must(P,E) if s+ ∈ E

∅ otherwise

must(s−?(P ), E) :=

{
must(P,E) if s− ∈ E

∅ otherwise

must(P1 |P2, E) := must(P1, E) ∪must(P2, E)

must(P1 ;P2, E) :=

{
must(P1 |P2, E) if t(P1, E)

must(P1, E) otherwise

must(P \s, E) :=




must(P,E ∪ {s+})\s if s ∈ must(P,E\s)
must(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
must(P,E\s)\s otherwise

Fig. 3. ESTEREL Must.

sets, called can sets. Our equivalent formu-
lation brings out an important structural in-
variant. Firstly, cannot(P,E) is the logical dual
of must(P,E), obtained by interchanging ∩
for ∪, ∅ for S , and {s} for S \ {s}. Secondly,
must and cannot are exclusive: must(P,E) ∩
cannot(P,E) = ∅, for any event E. In general,
however, must(P,E) ∪ cannot(P,E) �= S , so
must and cannot are not necessarily comple-
ments. This is analogous to the situation in
two–player games: we will show below that
must (cannot) corresponds to the construction
of winning (losing) positions for the starting
player. Elements neither in must(P,E) nor in
cannot(P,E) indicate draw positions.

4 FORMALISING MAZES

This section formalises our two–player maze
games introduced in Section 2.

4.1 Mazes
Mazes are essentially finite graphs with two
kinds of directed edges, namely visible and
secret edges. For our purposes, it is convenient
to formally represent these graphs as systems of
unfolding rules M := (x⇐mx)x∈V in a language

cannot(0, E) := S
cannot(!s, E) := S\{s}

cannot(s+?(P ), E) :=

{
S if s− ∈ E

cannot(P,E) otherwise

cannot(s−?(P ), E) :=

{
S if s+ ∈ E

cannot(P,E) otherwise

cannot(P1 |P2, E) := cannot(P1, E) ∩ cannot(P2, E)
cannot(P1 ;P2, E) := cannot(P1, E) ∩ cannot(P2, E)

cannot(P \s, E) :=
{
cannot(P,E ∪ {s−})\s if s ∈ cannot(P,E\s)
cannot(P,E\s)\s otherwise

cannot+(P \s, E) :=




cannot+(P,E ∪ {s+})\s if s ∈ must(P,E\s)
cannot+(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
cannot+(P,E\s)\s otherwise

Fig. 4. ESTEREL Cannot.

t(0, E) := true
t(!s, E) := true

t(s+?(P ), E) :=




t(P,E) if s+ ∈ E

true if s− ∈ E

false otherwise

t(s−?(P ), E) :=




t(P,E) if s− ∈ E

true if s+ ∈ E

false otherwise

t(P1 |P2, E) := t(P1, E) ∧ t(P2, E)
t(P1 ;P2, E) := t(P1, E) ∧ t(P2, E)
t(P \s, E) := t(P,E\s)

Fig. 5. Termination Predicate.

of mazes, for some finite set V of variables
representing rooms and maze terms mx. Maze
terms are defined in a process–algebraic fash-
ion, which provides us with sufficient structure
for proving the paper’s main results. The syn-
tax of maze terms is given by the following
BNF:

m ::= 0 | x | ι.m | τ.m |
∑
i∈I

mi | µx.m.

Fig. 4 : ESTEREL Cannot.
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must(0, E) := ∅
must(!s, E) := {s}

must(s+?(P ), E) :=

{
must(P,E) if s+ ∈ E

∅ otherwise

must(s−?(P ), E) :=

{
must(P,E) if s− ∈ E

∅ otherwise

must(P1 |P2, E) := must(P1, E) ∪must(P2, E)

must(P1 ;P2, E) :=

{
must(P1 |P2, E) if t(P1, E)

must(P1, E) otherwise

must(P \s, E) :=




must(P,E ∪ {s+})\s if s ∈ must(P,E\s)
must(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
must(P,E\s)\s otherwise

Fig. 3. ESTEREL Must.

sets, called can sets. Our equivalent formu-
lation brings out an important structural in-
variant. Firstly, cannot(P,E) is the logical dual
of must(P,E), obtained by interchanging ∩
for ∪, ∅ for S , and {s} for S \ {s}. Secondly,
must and cannot are exclusive: must(P,E) ∩
cannot(P,E) = ∅, for any event E. In general,
however, must(P,E) ∪ cannot(P,E) �= S , so
must and cannot are not necessarily comple-
ments. This is analogous to the situation in
two–player games: we will show below that
must (cannot) corresponds to the construction
of winning (losing) positions for the starting
player. Elements neither in must(P,E) nor in
cannot(P,E) indicate draw positions.

4 FORMALISING MAZES

This section formalises our two–player maze
games introduced in Section 2.

4.1 Mazes
Mazes are essentially finite graphs with two
kinds of directed edges, namely visible and
secret edges. For our purposes, it is convenient
to formally represent these graphs as systems of
unfolding rules M := (x⇐mx)x∈V in a language

cannot(0, E) := S
cannot(!s, E) := S\{s}

cannot(s+?(P ), E) :=

{
S if s− ∈ E

cannot(P,E) otherwise

cannot(s−?(P ), E) :=

{
S if s+ ∈ E

cannot(P,E) otherwise

cannot(P1 |P2, E) := cannot(P1, E) ∩ cannot(P2, E)
cannot(P1 ;P2, E) := cannot(P1, E) ∩ cannot(P2, E)

cannot(P \s, E) :=
{
cannot(P,E ∪ {s−})\s if s ∈ cannot(P,E\s)
cannot(P,E\s)\s otherwise

cannot+(P \s, E) :=




cannot+(P,E ∪ {s+})\s if s ∈ must(P,E\s)
cannot+(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
cannot+(P,E\s)\s otherwise

Fig. 4. ESTEREL Cannot.

t(0, E) := true
t(!s, E) := true

t(s+?(P ), E) :=




t(P,E) if s+ ∈ E

true if s− ∈ E

false otherwise

t(s−?(P ), E) :=




t(P,E) if s− ∈ E

true if s+ ∈ E

false otherwise

t(P1 |P2, E) := t(P1, E) ∧ t(P2, E)
t(P1 ;P2, E) := t(P1, E) ∧ t(P2, E)
t(P \s, E) := t(P,E\s)

Fig. 5. Termination Predicate.

of mazes, for some finite set V of variables
representing rooms and maze terms mx. Maze
terms are defined in a process–algebraic fash-
ion, which provides us with sufficient structure
for proving the paper’s main results. The syn-
tax of maze terms is given by the following
BNF:

m ::= 0 | x | ι.m | τ.m |
∑
i∈I

mi | µx.m.

Fig. 5 : Termination Predicate.

of mazes, for some finite set V of variables representing rooms 
and maze terms mx. Maze terms are defined in a process–
algebraic fashion, which provides us with sufficient structure 
for proving the paper’s main results. The syntax of maze 
terms is given by the following BNF:
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must(0, E) := ∅
must(!s, E) := {s}

must(s+?(P ), E) :=

{
must(P,E) if s+ ∈ E

∅ otherwise

must(s−?(P ), E) :=

{
must(P,E) if s− ∈ E

∅ otherwise

must(P1 |P2, E) := must(P1, E) ∪must(P2, E)

must(P1 ;P2, E) :=

{
must(P1 |P2, E) if t(P1, E)

must(P1, E) otherwise

must(P \s, E) :=





must(P,E ∪ {s+})\s if s ∈ must(P,E\s)
must(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
must(P,E\s)\s otherwise

Fig. 3. ESTEREL Must.

sets, called can sets. Our equivalent formu-
lation brings out an important structural in-
variant. Firstly, cannot(P,E) is the logical dual
of must(P,E), obtained by interchanging ∩
for ∪, ∅ for S , and {s} for S \ {s}. Secondly,
must and cannot are exclusive: must(P,E) ∩
cannot(P,E) = ∅, for any event E. In general,
however, must(P,E) ∪ cannot(P,E) �= S , so
must and cannot are not necessarily comple-
ments. This is analogous to the situation in
two–player games: we will show below that
must (cannot) corresponds to the construction
of winning (losing) positions for the starting
player. Elements neither in must(P,E) nor in
cannot(P,E) indicate draw positions.

4 FORMALISING MAZES

This section formalises our two–player maze
games introduced in Section 2.

4.1 Mazes
Mazes are essentially finite graphs with two
kinds of directed edges, namely visible and
secret edges. For our purposes, it is convenient
to formally represent these graphs as systems of
unfolding rules M := (x⇐mx)x∈V in a language

cannot(0, E) := S
cannot(!s, E) := S\{s}

cannot(s+?(P ), E) :=

{
S if s− ∈ E

cannot(P,E) otherwise

cannot(s−?(P ), E) :=

{
S if s+ ∈ E

cannot(P,E) otherwise

cannot(P1 |P2, E) := cannot(P1, E) ∩ cannot(P2, E)
cannot(P1 ;P2, E) := cannot(P1, E) ∩ cannot(P2, E)

cannot(P \s, E) :=
{
cannot(P,E ∪ {s−})\s if s ∈ cannot(P,E\s)
cannot(P,E\s)\s otherwise

cannot+(P \s, E) :=





cannot+(P,E ∪ {s+})\s if s ∈ must(P,E\s)
cannot+(P,E ∪ {s−})\s if s ∈ cannot+(P,E\s)
cannot+(P,E\s)\s otherwise

Fig. 4. ESTEREL Cannot.

t(0, E) := true
t(!s, E) := true

t(s+?(P ), E) :=




t(P,E) if s+ ∈ E

true if s− ∈ E

false otherwise

t(s−?(P ), E) :=




t(P,E) if s− ∈ E

true if s+ ∈ E

false otherwise

t(P1 |P2, E) := t(P1, E) ∧ t(P2, E)
t(P1 ;P2, E) := t(P1, E) ∧ t(P2, E)
t(P \s, E) := t(P,E\s)

Fig. 5. Termination Predicate.

of mazes, for some finite set V of variables
representing rooms and maze terms mx. Maze
terms are defined in a process–algebraic fash-
ion, which provides us with sufficient structure
for proving the paper’s main results. The syn-
tax of maze terms is given by the following
BNF:

m ::= 0 | x | ι.m | τ.m |
∑
i∈I

mi | µx.m.

Intuitively, 0 represents a dungeon, i.m (t.m) 
represents a room with a visible (secret) corridor to room m.  

Term SiÎI mi represents a room that merges all the rooms mi with  
i Î I and we write m1 + m2 for SiÎ{1,2} mi. Also if xÜmx is the 
unfolding rule defining x then x corresponds to the term mx and 
µx.mx is the least fixed–point solution for x. In the remainder, 
we let M stand for the set of all maze terms. Besides we write 
m{m´/x} for the syntactic substitution operation that replaces 
all free occurrences of x by term m´ in m.

For each room x in any given maze M we would like 
to determine whether it is a winning position (for the 
starting player). The game–theoretic semantics of maze M  
requires the introduction of a labeled transition system  
áM, {i, t},
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x
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m{µx.m/x} γ−→ m′

µx.m
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Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

ñ, where M is the set of states (or rooms),  
{i, t} is the alphabet with i encoding a visible action and t a 
secret action, and 
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rooms and are represented implicitly as subterms
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Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

 Í M x {i, t} x M is the transition relation 
representing valid moves (or corridors) between rooms. The 
transition relation is defined by the rules in Fig. 6, where g 
ranges over {i, t}.
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Fig. 6 : Transition Relation of Mazes.

Essentially, this labeled transition system reflects the 
game graphs of Section. 2, with dungeons being traps that 
have no outgoing transition. In the following, we write m 
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is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.
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we would like to determine whether it is a
winning position (for the starting player). The
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(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.
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Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=




turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

 
for 
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and we write m1 + m2 for
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if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=




turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

 Note that operators “.”, “S”,“Ü” and “m” 
correspond to the process–algebraic operators prefix, choice, 
recursion and fixed-point. As it may be expected a dungeon is 
the identity (neutral) element of the choice operator since 0 
has no transitions and, moreover, 
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represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=




turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

Example 1 : Let us specify the maze in Fig. 1 relative to 
the program’s signals, also called named rooms, i.e., V = {a, 
b, c, d, e, f, g, h}. The other rooms {t0, t1, . . . , t6} are referred 
to as unnamed rooms and are represented implicitly as 
subterms in the corresponding system of unfolding rules Mex :=  
(xÜmx)xÎV with:
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

Observe that, for any xÜmx, applying the operational 
rules to mx results in the part of the graph starting from 
room x. Specifically, for f Ü mf and mf = i. (t.d + i.a), the first 
i in the term corresponds to the visible corridor connecting f 
and the unnamed room t2 = t.d + i.a. From t2, either a secret 
corridor  can be taken to dungeon d, or a visible corridor i can 
be followed reaching room a.

4.2 Game–Theoretic Semantics

We now turn our attention to the game–theoretic 
semantics of our two-player maze game. For convenience, we 
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will name the players simply A and B. We begin by defining 
the notions dungeon, path, and turn. Firstly, room m is a 
dungeon if m 
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=




turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

. Secondly, a path p  through a maze M 
is a sequence of transitions 
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

, where k Î 
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

 È {w} is referred to as the length |p| of p. We say that 
p is finite in case k < w; otherwise, p is infinite. A path p is 
maximal if it is either infinite, or if it is finite and 
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.

−−
γ.m

γ−→ m

mj
γ−→ m′

j j ∈ I∑
i∈I mi

γ−→ m′
j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
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Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

. We 
abbreviate p’s finite prefix 
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∑
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room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.
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j

m
γ−→ m′

x⇐m
x

γ−→ m′
m{µx.m/x} γ−→ m′

µx.m
γ−→ m′

Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

 of length j Î 
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remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
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representing valid moves (or corridors) between
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flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=




turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

 
by  pj. Finally, given a finite (prefix of a) path p and assuming 
player A always starts off the game, we can determine the 
player turn(p) whose turn it is in the final room m|p| as 
follows, where A

—
 := B and B

—
 := A:
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represents a room with a visible (secret) cor-
ridor to room m. Term

∑
i∈I mi represents a

room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.
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Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

A maze play is determined by the players’ strategies. 
A strategy is a (partial) function  a : M 
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Intuitively, 0 represents a dungeon, ι.m (τ.m)
represents a room with a visible (secret) cor-
ridor to room m. Term

∑
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room that merges all the rooms mi with i ∈ I
and we write m1 + m2 for

∑
i∈{1,2} mi. Also

if x⇐mx is the unfolding rule defining x
then x corresponds to the term mx and µx.mx

is the least fixed–point solution for x. In the
remainder, we let M stand for the set of all
maze terms. Besides we write m{m′/x} for the
syntactic substitution operation that replaces
all free occurrences of x by term m′ in m.

For each room x in any given maze M
we would like to determine whether it is a
winning position (for the starting player). The
game–theoretic semantics of maze M requires
the introduction of a labeled transition system
〈M, {ι, τ},−→〉, where M is the set of states
(or rooms), {ι, τ} is the alphabet with ι encod-
ing a visible action and τ a secret action, and
−→⊆ M×{ι, τ} ×M is the transition relation
representing valid moves (or corridors) between
rooms. The transition relation is defined by the
rules in Fig. 6, where γ ranges over {ι, τ}.
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Fig. 6. Transition Relation of Mazes.

Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

{i, t} x M such 
that, for all m Î M, if a (m) = (a1(m); a2(m)) is defined then  
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all free occurrences of x by term m′ in m.
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winning position (for the starting player). The
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〈M, {ι, τ},−→〉, where M is the set of states
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Essentially, this labeled transition system re-
flects the game graphs of Section. 2, with
dungeons being traps that have no outgoing
transition. In the following, we write m −→
for ∃m′ ∃γ. m γ−→ m′. Note that operators “.”,
“
∑

”,“⇐” and “µ” correspond to the process–
algebraic operators prefix, choice, recursion and
fixed–point. As it may be expected a dungeon is
the identity (neutral) element of the choice op-
erator since 0 has no transitions and, moreover,
0 =

∑
i∈∅ mi.

Example 1. Let us specify the maze in Fig. 1
relative to the program’s signals, also called named
rooms, i.e., V = {a, b, c, d, e, f, g, h}. The other
rooms {t0, t1, . . . , t6} are referred to as unnamed

rooms and are represented implicitly as subterms
in the corresponding system of unfolding rules
Mex := (x⇐mx)x∈V with:

a⇐ ι.0 e⇐ ι.(τ.b+ ι.g)
b⇐ ι.ι.d f ⇐ ι.(τ.d+ ι.a)
c⇐ ι.(ι.b+ τ.a) g⇐ ι.(τ.b+ ι.e)
d⇐ 0 h⇐ ι.(ι.e+ τ.a)

Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph
starting from room x. Specifically, for f ⇐mf

and mf = ι.(τ.d + ι.a), the first ι in the term
corresponds to the visible corridor connecting f and
the unnamed room t2 = τ.d+ ι.a. From t2, either a
secret corridor τ can be taken to room d, or a visible
corridor ι can be followed reaching dungeon d.

4.2 Game–Theoretic Semantics
We now turn our attention to the game–
theoretic semantics of our two–player maze
game. For convenience, we will name the play-
ers simply A and B. We begin by defining the
notions dungeon, path, and turn. Firstly, room m
is a dungeon if m �−→. Secondly, a path π
through a maze M is a sequence of transitions
(mi

γi−→ mi+1)0≤i<k, where k ∈ N ∪ {ω} is
referred to as the length |π| of π. We say that π
is finite in case k < ω; otherwise, π is infinite.
A path π is maximal if it is either infinite, or if
it is finite and m|π| �−→. We abbreviate π’s finite
prefix (mi

γi−→ mi+1)0≤i<j of length j ∈ N by πj .
Finally, given a finite (prefix of a) path π and
assuming player A always starts off the game,
we can determine the player turn(π) whose
turn it is in the final room m|π| as follows,
where A := B and B := A:

turn(π) :=





turn(π′) if |π| > 0 and π = π′· τ−→
turn(π′) if |π| > 0 and π = π′· ι−→
A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’
strategies. A strategy is a (partial) function
α : M ⇀ {ι, τ} × M such that, for all
m ∈ M, if α(m) = (α1(m), α2(m)) is defined
then m

α1(m)−→ α2(m). Note that a strategy of
a player does not depend on the opponent’s
strategy or on a play’s history. Given strate-
gies α and β for players A and B, respectively,
the play playM(α, β,m) in maze M starting in

. Note that a strategy of a player does not 
depend on the opponent’s strategy or on a play’s history. 
Given strategies a and b for players A and B, respectively, the 
play playM(a, b, m) in maze M starting in room m with player 
A is a maximal path p  = (mi 
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

 mi+1)0i<k in M such that m0 = 
m, mi+1 = a2(mi) and 
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

 = a1(mi) if turn(pi) = A, or mi+1 = b2(mi), 
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

 = b1(mi) if turn(pi) = B.
The operational semantics of maze M = (xÜmx)xÎV 

considers, for each room x, whether player A or B has a 
winning strategy, or neither of them. Intuitively, A (B) 
has a winning strategy, if he or she is always able to drive 
player B (A) into a dungeon, no matter which strategy B (A) 
employs and always assuming that player A starts off the 
game. Formally, player A has a winning strategy for room x 
in M if $a"b. |playM(a,b,x)| < w and B = turn(playM(a, b, x)). 
Dually, player B has a winning strategy for room x in M if 
$b"a. |playM(a,b,x)| < w and A = turn(playM(a, b, x)). If the 
selected starting player A has a winning strategy for room x, 
then x is simply called a winning position. If player B has a 
winning strategy, then x is a losing position. If both players 
can always avoid dungeons, thus engaging in infinite plays, 
neither player wins and the play ends in a draw. Accordingly, 
a position that is neither a winning nor a losing position is 
referred to as a draw position.

Example 2. Consider again maze Mex of Fig. 1. Suppose 
that the strategy a of player A is chosen such that A moves 
the token, through a secret corridor whenever there is one. The 
strategy b of player B is that B prefers overall visible corridors 
whenever possible. For example, a(t4) = a, a(a) = t0, a(t5) = b, 
a(b) = t1, a(t6) = b, b(e) = t5, b(g) = t6 and b(t1) = d. Thus, the 
play playMex (a, b, t4) is the path t4 
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

 a 
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

 t0, along which 
A wins. In contrast, if player A chooses e in the first turn, B 
would have selected the move to t5, from where A moves to b and 
then to t1, from where B moves to the dungeon d and player A 
loses. The play in that case would be t4 
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

e
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

t5
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

b
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

t1
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

d. The best player A can do under this circumstances 
is to change his preferences for secret corridors and thus set 
a(t5) = g and a(t6) = e. In that case the play amounts to a draw 

along the infinite path h
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

e

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 8

room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

t5
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

g
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

t6
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

e
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

 t5
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

g... .

4.3 Strategies and Esterel

Technically, strategies within a maze M correspond to 
the must– and cannot–analysis for the associated program 
P, which is at the heart of ESTEREL’s behavioral semantics. 
A simple way to make the connection is to read each visible 
(secret) corridor as a present–else statement (present–then 
statement). We then get an exact correlation between 
ESTEREL’s declarative computation of must– and cannot–
sets of signals [17] and an inductive computation of winning 
and losing positions in the game graph. We illustrate this 
correspondence using the sub–maze M1 in our example of  
Fig. 1. The program P1 associated with M1 is:
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room m with player A is a maximal path π =

(mi
γi−→ mi+1)0≤i<k in M such that m0 = m,

mi+1 = α2(mi) and γi = α1(mi) if turn(πi) = A,
or mi+1 = β2(mi), γi = β1(mi) if turn(πi) = B.

The operational semantics of maze M =
(x⇐mx)x∈V considers, for each room x,
whether player A or B has a winning strategy,
or neither of them. Intuitively, A (B) has a
winning strategy, if he or she is always able
to drive player B (A) into a dungeon, no mat-
ter which strategy B (A) employs and always
assuming that player A starts off the game.
Formally, player A has a winning strategy for
room x in M if ∃α ∀β . |playM(α, β, x)| < ω
and B = turn(playM(α, β, x)). Dually, player B
has a winning strategy for room x in M
if ∃β ∀α . |playM(α, β, x)| < ω and A =
turn(playM(α, β, x)). If the selected starting
player A has a winning strategy for room x,
then x is simply called a winning position. If
player B has a winning strategy, then x is a
losing position. If both players can always avoid
dungeons, thus engaging in infinite plays, nei-
ther player wins and the play ends in a draw.
Accordingly, a position that is neither a win-
ning nor a losing position is referred to as a
draw position.

Example 2. Consider again maze Mex of Fig. 1.
Suppose that the strategy α of player A is chosen
such that A moves the token, through a secret
corridor whenever there is one. The strategy β of
player B is that B prefers overall visible corri-
dors whenever possible. For example, α(t4) = a,
α(a) = t0, α(t5) = b, α(b) = t1, α(t6) = b,
β(e) = t5, β(g) = t6 and β(t1) = d. Thus, the
play playMex

(α, β, t4) is the path t4
τ−→ a

ι−→
t0, along which A wins. In contrast, if player A
chooses e in the first turn, B would have selected
the move to t5, from where A moves to b and
then to t1, from where B moves to the dungeon d
and player A loses. The play in that case would
be t4

ι−→ e
ι−→ t5

τ−→ b
ι−→ t1

ι−→ d. The
best player A can do under this circumstances is to
change his preferences for secret corridors and thus
set α(t5) = g and α(t6) = e. In that case the play
amounts to a draw along the infinite path h

ι−→
e

ι−→ t5
ι−→ g

ι−→ t6
ι−→ e

τ−→ t5
ι−→ g · · · .

4.3 Strategies and ESTEREL

Technically, strategies within a maze M cor-
respond to the must– and cannot–analysis for
the associated program P , which is at the
heart of ESTEREL’s behavioral semantics. A
simple way to make the connection is to read
each visible (secret) corridor as a present–else
statement (present–then statement). We then get
an exact correlation between ESTEREL’s declar-
ative computation of must– and cannot–sets
of signals [17] and an inductive computation
of winning and losing positions in the game
graph. We illustrate this correspondence using
the sub–maze M1 in our example of Fig. 1. The
program P1 associated with M1 is:

t−2 ?(!f) |d+?(!t2) |a−?(!t2) | t−0 ?(!a)

We reason along the fixed–point computa-
tion of P1’s declarative semantics and start with
the empty environment in which no signal is
known to be present or absent, thus, must0 =
cannot0 = ∅. Since no emission is unguarded,
the first iteration yields no present signals,
i.e., must1 = ∅; but since there are no emit
statements for d or t0, we get cannot1 = {d, t0}
immediately. In game terms this corresponds
to identifying both rooms d and t0 in M1 as
positions in which A loses right away. The fact
that a is connected to t0 by a visible corridor
means that A now has a strategy to win a,
because A can move into t0 where B loses.
In the computation of ESTEREL’s declarative
semantics for P1, this is the second iteration
step: since t0 is known as absent, the emit
statement in t−0 ?(!a) is executed and a becomes
present. We thus get must2 = {a} and cannot2 =
{d, t0}. Additionally, we know that the state-
ment d+?(!t2) is not executed in the current
instant. In the game, this amounts to marking
the secret corridor from t2 to d as useless for
any winning strategy for t2. There is no point
for any player in going across to d since the
player keeps the turn and thus loses in d. It
may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and

We reason along the fixed–point computation of P1’s 
declarative semantics and start with the empty environment 
in which no signal is known to be present or absent, thus, 
must0 = cannot0 = Æ. Since no emission is unguarded, the first 
iteration yields no present signals, i.e., must1 = Æ; but since 
there are no emit statements for d or t0, we get cannot1 = {d,t0} 
immediately. In game terms this corresponds to identifying 
both rooms d and t0 in M1 as positions in which A loses right 
away. The fact that a is connected to t0 by a visible corridor 
means that A now has a strategy to win a, because A can 
move into t0 where B loses. In the computation of ESTEREL’s 
declarative semantics for P1, this is the second iteration step: 
since t0 is known as absent, the emit statement in t–

0?(!a) is 
executed and a becomes present. We thus get must2 = {a} and 
cannot2 = {d, t0}. Additionally, we know that the statement 
d+?(!t2) is not executed in the current instant. In the game, 
this amounts for marking the secret corridor from t2 to d as 
useless for any winning strategy for t2. There is no point for 
any player in going across to d since the player keeps the 
turn and thus loses in d. It may still be possible to win by 
moving from t2 to a. However, with the extra information just 
obtained, namely that a is a winning position, we conclude 
that t2 is in fact a losing position. For moving from t2 to a does 
not help either since the opponent would get the turn in a 
and win. In the ESTEREL approximation sequence, t2 indeed 
enters the cannot set in the third iteration step: cannot3 = {d, 
t0, t2}. This is clear since a Î must2 and d Î cannot2. Hence 
the only two statements that could emit t2 in P1 are both 
switched off. The must set does not change, so must3 = must2 
= {a}. The fourth iteration step identifies f as emitted from the 
fact that t2 Î cannot3. For this means, the statement t

–

2 ?(!f ) is 
executed. In game terms, room f is clearly a winning position 
as t2 is a losing position. Hence, we obtain must4 = {a, f } and 
cannot4 = cannot3 = {d, t0, t2} as the fixed point of ESTEREL’s 
constructive analysis for P1. To sum up, we see that mustn+1 
(cannotn+1) is the set of rooms that can be won (must be lost) 
by the starting player in at most n moves.

The example in Fig. 1 also illustrates how constructiveness 
of ESTEREL reactions is reflected in the game model. We 
have seen above that the submaze M2 of Mex contains only 
draw positions. The associated ESTEREL program P2 can be 
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written as a parallel composition of four present statements, 
as suggested above, or equivalently in a more compact form 
as:

g+?(!e)|e+?(!g)
where the two rooms t5 and t6 are no longer represented as 
signals but are implicit in the nested present statements. As 
an aside, we will see below that our intermediate states ti in 
game graphs are necessary to express conjunctive behavior. 
The must– and cannot–analysis for P2 indeed leaves signals e 
and g constructively undecided. To justify emission of either 
e or g, both e and g would have to be present in the first place 
to activate the outmost present statements, which is causally 
unreasonable. We cannot justify the absence of e and g, 
causally, either. For example, in order to deactivate the inner 
emits through one of the outer guarding present conditions 
we would need that one of e and g is absent, which is causally 
problematic. Overall, there is only one logically coherent 
solution, namely that both e and g are absent, yet this solution 
is not causal. Since this is the only logically coherent solution, 
the logical behavioral semantics of ESTEREL would return 
this as the response, whereas the constructive semantics 
rejects it. In our maze game, a logically coherent solution 
amounts to a “speculative” assignment of 0 (losing) and 1 
(winning) markings to rooms so that (i) a room is marked 1 
exactly if one of its successor rooms that is accessible via a 
visible corridor is marked 0, or if a successor room connected 
via a secret corridor is marked 1; and (ii) a room is marked 0 
if all rooms connected via visible corridors are marked 1 and 
if all rooms connected through a secret corridor are marked 0. 
In Fig. 1, e = g = 0 and t5 = t6 = 1 is the only logically coherent 
marking for M2. Although this might suggest that both e and 
g are losing positions for the starting player, it is clear that 
this cannot be realized by any finite strategy of the opponent.

5. Programs and Mazes
This section first formally presents a translation of 

combinational ESTEREL programs P into mazes M with 
the property that winning (losing) positions in M correspond 
exactly to signals that must (cannot) be emitted in P. Also this 
section provides an alternative denotational characterisation 
of the operational notion of winning, losing and draw positions.

5.1 Representing Programs as Mazes

With each ESTEREL program P, we associate a maze  
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may still be possible to win by moving from t2
to a. However, with the extra information just
obtained, namely that a is a winning position,
we conclude that t2 is in fact a losing position.
For moving from t2 to ta does not help either
since the opponent would get the turn in a and
win. In the ESTEREL approximation sequence,
t2 indeed enters the cannot set in the third
iteration step: cannot3 = {d, t0, t2}. This is clear
since a ∈ must2 and d ∈ cannot2. Hence the only
two statements that could emit t2 in P1 are both
switched off. The must set does not change, so
must3 = must2 = {a}. The fourth iteration step
identifies f as emitted from the fact that t2 ∈
cannot3. For this means, the statement t−2 ?(!f)
is executed. In game terms, room f is clearly
a winning position as t2 is a losing position.
Hence, we obtain must4 = {a, f} and cannot4 =
cannot3 = {d, t0, t2} as the fixed point of ES-
TEREL’s constructive analysis for P1. To sum
up, we see that mustn+1 (cannotn+1) is the set
of rooms that can be won (must be lost) by the
starting player in at most n moves.

The example in Fig. 1 also illustrates how
constructiveness of ESTEREL reactions is re-
flected in the game model. We have seen above
that the submaze M2 of Mex contains only draw
positions. The associated ESTEREL program P2

can be written as a parallel composition of
four present statements, as suggested above,
or equivalently in a more compact form as:

g+?(!e) |e+?(!g)

where the two rooms t5 and t6 are no longer
represented as signals but are implicit in the
nested present statements. As an aside, we will
see below that our intermediate states ti in
game graphs are necessary to express conjunc-
tive behavior. The must– and cannot–analysis
for P2 indeed leaves signals e and g con-
structively undecided. To justify emission of
either e or g, both e and g would have to
be present in the first place to activate the
outmost present statements, which is causally
unreasonable. We cannot justify the absence
of e and g, causally, either. For example, in
order to deactivate the inner emits through
one of the outer guarding present conditions
we would need that one of e and g is absent,
which is causally problematic. Overall, there

is only one logically coherent solution, namely
that both e and g are absent, yet this solution
is not causal. Since this is the only logically
coherent solution, the logical behavioral semantics
of ESTEREL would return this as the response,
whereas the constructive semantics rejects it. In
our maze game, a logically coherent solution
amounts to a “speculative” assignment of 0
(losing) and 1 (winning) markings to rooms so
that (i) a room is marked 1 exactly if one of its
successor rooms that is accessible via a visible
corridor is marked 0, or if a successor room
connected via a secret corridor is marked 1; and
(ii) a room is marked 0 if all rooms connected
via visible corridors are marked 1 and if all
rooms connected through a secret corridor are
marked 0. In Fig. 1, e = g = 0 and t5 = t6 = 1
is the only logically coherent marking for M2.
Although this might suggest that both e and g
are losing positions for the starting player, it is
clear that this cannot be realized by any finite
strategy of the opponent.

5 PROGRAMS AND MAZES

This section first formally presents a trans-
lation of combinational ESTEREL programs P
into mazes M with the property that winning
(losing) positions in M correspond exactly to
signals that must (cannot) be emitted in P .
Also this section provides an alternative de-
notational characterisation of the operational
notion of winning, losing and draw positions.

5.1 Representing Programs as Mazes

With each ESTEREL program P , we associate
a maze 〈〈P 〉〉 := (a⇐〈〈P 〉〉a{0/δ})a∈S∪{λ} where
the elements in the set S ∪ {λ, δ} play the role
of term variables representing distinguished
rooms. Note that in 〈〈P 〉〉 there is no rule of the
form δ⇐〈〈P 〉〉δ for the connecting variable δ. In
general, term 〈〈P 〉〉a with a ∈ S ∪ {λ} describes
the game conforming to P that can be played
starting in room a modulo some conditions
(dependencies) yet to be defined where the
instances of δ (if any) appear. Let us call a
term open when it has occurrences of δ, oth-
erwise it is closed. The game description of
an open term 〈〈P 〉〉a can still be extended from

 where the elements in the 
set S È {l, d} play the role of term variables representing 
distinguished rooms. Note that in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 there is no rule of the 
form d Ü
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}
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〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a
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〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.
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{
ι.δ if s = a
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〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}
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〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

d
 for the connecting variable. In general, term 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise
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〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S
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〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a with a Î S È {l} describes the game conforming to P 
that can be played starting in room a modulo some conditions 
(dependencies) yet to be defined where the instances of d (if 
any) appear. Let us call a term open when it has occurrences of 
d, otherwise it is closed. The game description of an open term 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}
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〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a can still be extended from some connecting rooms (i.e., 
the d’s) to other rooms. This is done by a syntactic substitution 

that replaces all the instances of d by a fresh term m. If this m 
is open then the substitution can continue in the same fashion 
until d gets replaced by a closed term. Observe that each term of  
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a
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{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a {0/d} from 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.
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{
ι.δ if s = a
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Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 is closed. Henceforth, connecting rooms 
are schematically represented as dashed nodes.

Example 3. Let 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0
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{
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〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

x be the open term i.d and let us 
compute:
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

step by step as in Fig.7. From the resulting closed term  
i.(t.b + i.a), it follows that room x is a winning position iff room 
a is winning too and room b is losing. From this configuration 
(i.e., a is winning and b is losing), two observations can be 
made: (i) room x becomes a losing position if the status of either 
a or b is switched from winning (losing) to losing (winning) 
and (ii) room x becomes a draw when a or b are set to draw. It 
is worth observing that the obtained closed term corresponds 
to 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a+?(b–?(!x))
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

x{0/d}.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

Fig. 7 : Connecting Rooms

For any given program P, the termination variable l in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l corresponds to a room whose winning (draw) status 
indicates whether P terminates (or not). By construction, 
room l can never be a losing position. Formally, 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a for  
a Î S and 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l are defined along the structure of P in Fig. 8 
and 9 respectively.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

Fig. 8 : Maze terms for a signal a 2 S
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0
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{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 of the ESTEREL 
program
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0
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{
ι.δ if s = a
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{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

generates the unfolding rules of Example 1 and thus the maze 
in Fig. 1. Note that these have been slightly optimised using 
the equivalence m º t.m + S t.0, as well as not including the 
unfolding rule l
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S . Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l {0/d} in the representations.

Nothing and Emission

Intuitively, program 0 that cannot emit any signal, must 
correspond to a dungeon in which player A loses right from 
the start. In the maze 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

0
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 we have that a
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S . Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0 for all a Î S, 
so every room a is a losing position which corresponds to the 
cannot set for 0.

The forced emission of a signal a leads to immediately 
success for A in room a and loss in any other room. The 

reason is that in the behavioural semantics of !a, signal a is 
in the must set and all the other signals are in the cannot set. 
The maze 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

!a
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 reflects this by letting a
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 i.d{0/d}= i.0 and  
b
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0{0/d}=0 for any b ¹ a with a, b Î S.
For both programs 0 and !a, room l
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

i.d+ t.0 {0/d} = 
i.0+ t.0 is a winning position which indicates termination. In 
general, the status of l  (from any 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l) can only be winning 
or draw. For 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

0
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l and 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

!a
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l, we can see that any substitution 
of d in i.d+ t.0 by a term corresponding to a winning or losing 
position would give winning status to l. Substituting d in  
i.d+ t.0 by a term resulting in a draw would make l also a draw 
and this will indicate that the program does not terminate.

Signal Test and Choice

Room a Î S is a winning position in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.
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{
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〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

s+?(P)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a if player A 
has winning strategy for both room s in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

s+?(P)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a and room a 
in 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)
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〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a. The latter condition implies that there is at least one 
!a that is executed inside the structure of P. From Fig. 8, any 
such 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

!a
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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winning (draw) status indicates whether P
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can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a give us i.d and this d can be replaced just in two 
ways, namely 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 and 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.
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τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
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of the form ι.(δ +
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So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
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+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 for some s Î S. Thus 
any emission of a occurring in P will turn in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
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0 otherwise
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〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a
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{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S
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〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a into a room, 
say 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

, of the form i. 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

with  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 and  
Æ Í I Í S. The case when I = Æ refers to the term i.d on which 
no substitution of d has been performed yet. From any such  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

, player A (using the visible corridor i) can pass the turn 
to B in a room, say 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

, representing 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

. In 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a{0/d}, 
any such 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 (
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

) becomes a room, say 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0 (
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0), of the shape  
t.
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

. Moreover, in
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

s+?(P)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a{0/d}, any 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 
turns into a room 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

1 of the form t.
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test 

and any 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 becomes room  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

1 of the shape  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0+t.s. So player 
A in  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

1 first gives the control to B in  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

1, who in turn freely 
decides whether A must continue with his play in s or in 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0. 
Therefore,  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

1 is a winning position when room s is winning 
and  
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0 is losing. However, that 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0 is losing immediately 
implies that 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).
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room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
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in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0 is winning in the maze corresponding to P. 
This encoding of conjunction into mazes is justified by the 
observation that signal a is in the must set of s+?(P) when 
s is known to be present and a is also in the must set for P. 
Analogously, a program s–?(P) that is negatively guarded by 
signal s must emit a if, in room a, player B has a winning 
strategy for s in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a+?(P)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a, and if player A has a winning 
strategy for a in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a.
In the computation of terms for termination of Fig. 9, 

there is just one form on which the connecting variable d 
could be introduced (i.e., i.d+ t.d) and two ways on which d 
can be replaced. These substitutions correspond precisely 
to the positive and negative tests of signal status, namely 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

s+?(P)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l  and 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

s–?(P)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l .
In order to illustrate the mechanics described 

in Fig. 9, consider a program Pcond of the form s+
0? 

(s–
1 ?(. . . s–

n–1?(s+
n ?(!x)))) and let Spos = {s0, . . . , sn} and Sneg =  

{s1, . . . , sn–1} be the sets of all testing signals positively or 
negatively guarded in Pcond respectively. Then obtain  
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

Pcond
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l{0/d} as in Fig. 10, where an acyclic submaze is 
identified as D. The set of deciding rooms in D is Z = {zi = t.si 
| si Î Sposg } È {zi = i.si | si Î Sneg}. The set of corridors (all i) 
among the rooms in Z are the deciding corridors that belong 
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to submaze D.
For explaining the purpose of the deciding rooms, let 

us assume, for the moment, that the deciding corridors are 
not in D. Thus, zi = t.si is winning (losing) when si is winning 
(losing) and positively guarded. Conversely, zi = i.si is winning 
(losing) when si is losing (winning) and negatively guarded. 
Otherwise, zi =
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

.si with 
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〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S . Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding

 is draw when si is a 
draw independently of the guard. That is to say the status 
of a deciding room zi indicates whether the test on signal 
si succeeds. This encoding establishes the basic elements 
required by the termination predicate from Fig. 5. In other 
words, a program of the form s+?(P) must terminate when 
s is known to be absent (test fails) or if s is present (test 
succeeds) and P terminates. Otherwise (i.e., the status of s is 
not decided), the program does not terminate (a draw). The 
case for s–?(P) is symmetric.
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………

Submaze of deciding 
rooms and corridors

………

Fig. 10. Termination for nested tests of signals

fails) or if s is present (test succeeds) and P
terminates. Otherwise (i.e., the status of s is
not decided), the program does not terminate
(a draw). The case for s−?(P ) is symmetric.

The role of the deciding corridors has to
do with determining termination from a se-
quence of nested conditionals like the one in
program Pcond. Deciding corridors can be struc-
tured around the sets Z<

i = {zk ∈ Z | k < i}
and Z>

i = {zk ∈ Z | k > i} relative to some
arbitrary deciding room zi. Thus, from any zi ∈
Z there is a deciding corridor to every room
in Z<

i . As a consequence, there is a decid-
ing corridor from every room in Z>

i to zi. If
all deciding rooms are winning, this means
that all positive and negative signal tests have
succeeded. Moreover, in this case, the decid-
ing corridors do not affect in any manner
the status of any deciding room. For exam-
ple, take zj = τ.sj with sj ∈ Spos

2 where sj
must be winning since we assume that all tests
should be successful. But then zj is winning
(i.e., the corresponding player can move to si
and win from there) independently of the fact
that every zi ∈ Z<

i is also a winning position.
So, when every deciding room is winning, the
room identified as ρ in Fig. 10 is a losing po-
sition which makes λ a winning position. This
indicates that program Pcond terminates when

2. Henceforth, we are going to take an arbitrary deciding
room zj = τ.sj with sj ∈ Spos. That is the deciding room corre-
sponding to a signal that is positively guarded in the program.
The cases for zk = ι.sk with sk ∈ Sneg are symmetrical.

every si ∈ Spos is present and every si ∈ Sneg is
absent.

For a deciding room to be a losing position,
say zj = τ.sj with sj ∈ Spos, sj has to be losing
and every zi ∈ Z<

i must be winning. If so, every
room zi ∈ Z>

i becomes automatically winning.
This means that if there is a deciding room
which is losing, then all the other deciding
rooms are winning. Observe that this losing
(deciding) room zj will correspond to the test
failure of sj and this will be the first to occur
in the sequence of tests s+0 ?(s

−
1 ?(. . . )) of the

program Pcond. Also the losing status of zj will
make ρ a winning position which, in turn,
implies that λ is a winning room in this case.
This says that Pcond terminates as soon as a
signal test fails independently of the other tests
that have not yet been performed which exactly
corresponds to what the termination predicate
defines in Fig. 5.

From the structure of D, if a deciding room zj
is a draw then it has to be the case that any
room zi ∈ Z<

i is either winning or draw.
Otherwise (i.e., zi ∈ Z<

i is losing), zj will be
a winning position. A room zi ∈ Z>

i cannot
be a losing position because from this posi-
tion a player can always take the deciding
corridor to the draw position zj and avoid
losing from zi. Hence each room zi ∈ Z>

i is
a winning or a draw position. Therefore, if one
of the deciding rooms is a draw then every
other deciding room is a winning position or
a draw. If there are several draws among the
deciding rooms, take the first draw zj = τ.sj
in the sequence z0, z1, . . . ordered according to
the succession of tests s+0 ?(s

−
1 ?(. . . )) of Pcond.

So, all the rooms zi ∈ Z<
i have to be winning,

otherwise either zj will not be the first draw
occurring in the sequence or zj will not be
a draw at all. Because zj is a draw and all
its deciding successors are winning position
then sj has to be a draw. This means that it is
not known whether the status of sj is present
or absent. Therefore, Pcond does not terminate
as it is suggested by the termination predicate
of Fig. 9. In the maze of Fig. 10, if all deciding
rooms are winning positions or draws then
both ρ and λ are draws. As we have already
mentioned, the condition of no termination for
a program is precisely witnessed when λ is a

Fig. 10 : Termination for nested tests of signals

The role of the deciding corridors has to do with 
determining termination from a sequence of nested 
conditionals like the one in program Pcond. Deciding corridors 
can be structured around the sets Zi

< = {zk Î Z | k < i} and 
Zi

> = {zk Î Z | k > i } relative to some arbitrary deciding room 
zi. Thus, from any zi Î Z there is a deciding corridor to every 
room in Zi

<. As a consequence, there is a deciding corridor 
from every room in Zi

>  to zi. If all deciding rooms are winning, 
this means that all positive and negative signal tests have 
succeeded. Moreover, in this case, the deciding corridors do 
not affect in any manner the status of any deciding room. For 
example, take zj = t.sj with sj Î Spos

2 where sj must be winning 
since we assume that all tests should be successful. But then 
zj is winning (i.e., the corresponding player can move to si and 
win from there) independently of the fact that every zi Î Zi

< 

is also a winning position. So, when every deciding room is 
winning, the room identified as r in Fig. 10 is a losing position 

which makes  l winning position. This indicates that program 
Pcond terminates when every si Î Spos is present and every si 
Î Sneg is absent.

For a deciding room to be a losing position, say zj = t.sj  
with sj Î Spos, sj has to be losing and every zi Î Zi 

< must be 
winning. If so, every room zi Î Z >

i becomes automatically 
winning. This means that if there is a deciding room which is 
losing, then all the other deciding rooms are winning. Observe 
that this losing (deciding) room zj will correspond to the test 
failure of sj and this will be the first to occur in the sequence of 
tests s+

0?(s–
1 ?(. . . )) of the program Pcond. Also the losing status of 

zj will make r a winning position which, in turn, implies that l 
is a winning room in this case. This says that Pcond terminates 
as soon as a signal test fails independently of the other tests 
that have not yet been performed which exactly corresponds 
to what the termination predicate defines in Fig. 5.

From the structure of D, if a deciding room zj is a draw 
then it has to be the case that any room zi Î Z <

i is either 
winning or draw. Otherwise (i.e., zi Î Z <

i  is losing), zj will be 
a winning position. A room zi Î Z >

i  cannot be a losing position 
because from this position a player can always take the 
deciding corridor to the draw position zj and avoid losing from 
zi. Hence each room zi Î Z >

i  is a winning or a draw position. 
Therefore, if one of the deciding rooms is a draw then every 
other deciding room is a winning position or a draw. If there 
are several draws among the deciding rooms, take the first 
draw zj = t.sj in the sequence z0, z1, . . . ordered according to 
the succession of tests s+

0 ?(s–
1 ?(. . . )) of Pcond. So, all the rooms 

zi Î Z <

i  have to be winning, otherwise either zj will not be the 
first draw occurring in the sequence or zj will not be a draw 
at all. Because zj is a draw and all its deciding successors are 
winning position then sj has to be a draw. This means that 
it is not known whether the status of sj is present or absent. 
Therefore, Pcond does not terminate as it is suggested by the 
termination predicate of Fig. 9. In the maze of Fig. 10, if all 
deciding rooms are winning positions or draws then both r 
and l are draws. As we have already mentioned, the condition 
of no termination for a program is precisely witnessed when  
l is a draw.

Sequential and Parallel Composition.

In a parallel composition P1 | P2, an emission of a signal 
a may occur in either component P1 or P2. Thus, this is 
encoded in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1| P2 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a by a free choice for the leading player. 
Specifically, the term t.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a + t.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a of a for the parallel 
composition corresponds to a room which will be winning if 
the room representing a of either P1 or P2 is winning. This 
models the must computation for the parallel composition 
(Fig. 3) which basically establishes that a signal is present 
if it is present in either component. The same room a of the 
parallel composition is losing when both rooms representing 
a of P1 and P2 are losing. This matches the cannot analysis of 
the parallel composition (Fig. 4) that says that a signal cannot 

2. Henceforth, we are going to take an arbitrary deciding room zj = t.sj with sj Î Spos. That is the deciding room corresponding to a signal 
that is positively guarded in the program. The cases for zk = i.sk with sk Î Sneg are symmetrical.
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be emitted by the parallel composition when it cannot be 
emitted by both components. The case of a draw for the room 
a of this construct occurs when the room representing a of 
either P1 or P2 is losing and the other is draw or when both are 
draws. This reflects the fact that a signal is neither present or 
absent when it is not emitted by any of the components and it 
cannot be emitted by at most one of the components.

The game of a sequential composition 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1 ; P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a 
starting from room a will have the structure presented in 
Fig.11. Here, a1 (a2) indicates the starting room of 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a  
(
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a), room t corresponds to the termination of  P1 and a¢2 
is an intermediate representation that acts as a witness for 
a2 with respect to t. The idea is that the path between a and 
a2 acts like a t corridor as long as  P1 terminates or room a2 
is not a winning position. For verifying this assume that the 
play always goes from a to a¢2, i.e., forget about the t corridor 
from a to a1 for the moment. First, fix t to be winning: (i) if a2 
is winning (losing) then a¢2 is losing (winning) and a must be 
winning (losing) and (ii) when a2 is a draw then a¢2 and a2 are 
also draws. Second, let t be a draw: if a2 is losing (draw) then 
witness a¢2 is winning (draw) and, therefore, a is losing (draw). 
If we take into account the  corridor from a to a1 and since 
the path between a and a2 can be interpreted as a  corridor, 
we will have the same structure as the one of the parallel 
composition. This basically implies that a given signal a is in 
the must (cannot) set of both P1 ; P2 and P1 | P2 when (i) P1 
terminates or (ii) signal a is not in the must set of P2 which is 
another way of expressing the analysis of Fig. 3 and 4 for the 
cases covered so far. On the other hand, if t is a draw and a2 is 
a winning position, this will make room a¢2 a draw. Then room 
a can only be a winning position if a1 is a winning position too. 
Otherwise, a becomes a draw. This says that the must set of 
P1 ; P2 is the must set of P1 when P1 does not terminate which 
exactly corresponds to the definition of Fig. 3.
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draw.

Sequential and Parallel Composition.
In a parallel composition P1 |P2, an emission

of a signal a may occur in either component P1

or P2. Thus, this is encoded in 〈〈P1 |P2 〉〉a by a
free choice for the leading player. Specifically,
the term τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a of a for the paral-
lel composition corresponds to a room which
will be winning if the room representing a of
either P1 or P2 is winning. This models the
must computation for the parallel composition
(Fig. 3) which basically establishes that a signal
is present if it is present in either component.
The same room a of the parallel composition
is losing when both rooms representing a of
P1 and P2 are losing. This matches the cannot
analysis of the parallel composition (Fig. 4) that
says that a signal cannot be emitted by the
parallel composition when it cannot be emitted
by both components. The case of a draw for the
room a of this construct occurs when the room
representing a of either P1 or P2 is losing and
the other is draw or when both are draws. This
reflects the fact that a signal is neither present
or absent when it is not emitted by any of the
components and it cannot be emitted by at most
one of the components.

The game of a sequential composi-
tion 〈〈P1 ;P2 〉〉a starting from room a will
have the structure presented in Fig. 11.
Here, a1 (a2) indicates the starting room
of 〈〈P1 〉〉a (〈〈P2 〉〉a), room t corresponds to the
termination of P1 and a′2 is an intermediate
representation that acts as a witness for a2
with respect to t. The idea is that the path
between a and a2 acts like a τ corridor as long
as P1 terminates or room a2 is not a winning
position. For verifying this assume that the
play always goes from a to a′2, i.e., forget about
the τ corridor from a to a1 for the moment.
First, fix t to be winning: (i) if a2 is winning
(losing) then a′2 is losing (winning) and a must
be winning (losing) and (ii) when a2 is a draw
then a′2 and a2 are also draws. Second, let t be
a draw: if a2 is losing (draw) then witness a′2
is winning (draw) and, therefore, a is losing
(draw). If we take into account the τ corridor
from a to a1 and since the path between a
and a2 can be interpreted as a τ corridor, we

will have the same structure as the one of the
parallel composition. This basically implies
that a given signal a is in the must (cannot)
set of both P1 ; P2 and P1 | P2 when (i) P1

terminates or (ii) signal a is not in the must set
of P2 which is another way of expressing the
analysis of Fig. 3 and 4 for the cases covered
so far. On the other hand, if t is a draw
and a2 is a winning position, this will make
room a′2 a draw. Then room a can only be a
winning position if a1 is a winning position
too. Otherwise, a becomes a draw. This says
that the must set of P1 ;P2 is the must set of P1

when P1 does not terminate which exactly
corresponds to the definition of Fig. 3.

W W
L W
L D W D
L D L L
L D D D
D D D

)

Fig. 11. Sequential Composition

The table in Fig. 11 summarises all possible
combinations of statuses for the rooms in the
maze. Winning, losing and draw appear there
as W, L and D respectively. Variable χ corre-
sponds to any of these three statuses. Notice
that the table does not take into account the
cases when a1 is a draw and t is winning.
The reason is that program P1 cannot terminate
when a signal in there is neither present or
absent. Hence if a1 is a draw then t must be
also a draw which is reflected in the last row
of the table.

Termination for parallel and sequential com-
positions is straightforward. For both con-
structs, λ gets defined by ι.(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ).
This means that the player A can give the turn
to player B in ι.〈〈P1 〉〉λ+ ι.〈〈P2 〉〉λ who can choose
to make A play from 〈〈P1 〉〉λ or 〈〈P2 〉〉λ. In this

Fig. 11 : Sequential Composition

The table in Fig. 11 summarises all possible combinations 
of statuses for the rooms in the maze. Winning, losing and 
draw appear there as W, L and D respectively. Variable X 
corresponds to any of these three statuses. Notice that the 

table does not take into account the cases when a1 is a draw 
and t is winning. The reason is that program P1 cannot 
terminate when a signal in there is neither present or absent. 
Hence if a1 is a draw then t must be also a draw which is 
reflected in the last row of the table.

Termination for parallel and sequential compositions 
is straightforward. For both constructs, l gets defined by  
i.(i.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l+ i.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l). This means that the player A can give 
the turn to player B in i.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l+ i.
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l who can choose to 
make A play from 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l or 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l. In this form, l could only 
be a winning position if the starting rooms of 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l and  
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l are winning position. This codification specifies that 
parallel (sequential) composition terminates when both of its 
component terminate.

Local Signals.

A signal declaration P\s introduces a locally defined 
signal s that is available for broadcast inside program P 
only. As an example consider the program P := (P1 \ s) 
| P2 where P1 := s+?(!a) | !s and P2 := s+?(!b). In P2, signal 
s refers to a different incarnation than the one used inside 
P1\s, whose scope is restricted by the local signal declaration. 
Consequently, the internal emission of s in P1\s will trigger 
the emission of signal a in P1 but not that of signal b in P2.

The simplest way of interpreting local signal declarations 
in terms of mazes is to rename signal s in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 into some fresh 
signal name s¢, and to make sure that s¢ is never used outside 
of 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P\s
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

. While this “naming–apart” technique is a simple 
solution for a compiler, the technique employed in the paper 
is algebraically more satisfactory. Intuitively, 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P\s
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}
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〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 is the 
same as solving the recursive unfoldings characterising maze 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ
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generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
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m ≡ τ.m +
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τ.0, as well as not including the

 with respect to signal s. If s
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

ms is the unfolding rule 
defining s, the least fixed– point solution for s is µs.ms. This 
recursive term for the game starting in room s is then used, 
or substituted, wherever s is referenced in the unfoldings 
defined by 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
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ESTEREL program
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generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
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∑
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P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:
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step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
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made: (i) room x becomes a losing position if the
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ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
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〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 for all the other rooms different from s. Thus, 
s gets eliminated. In addition, the unfolding for s in 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 is 
“reset” to 0.

Example 4. Consider again the programs P1 and P2 from 
our previous discussion. Fig. 12 and 13 present, respectively, 
the maze corresponding to 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1 | P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 and 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

(P1\s) |P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

 without 
considering termination. Nevertheless, the exclusion of l in 

these mazes does not affect the status obtained for the rooms 
since the programs are composed in parallel. Also, in these 
mazes, for any signal, say a, room a1 (a2) is the initial room 
of 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a (
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a). As it can be seen in Fig. 12, the emission of 
s in the program makes the three rooms a, b and s winning 
positions. However, in the maze of Fig. 13, the emission in P1 of 
(local) s is completely encapsulated, so this uniquely affects the 
part of the maze corresponding to P1. Thus, room a becomes a 
winning position. The signal name s remaining in the maze 
now refers to a fresh signal that is per default not emitted and 
hence a losing position which makes room b a losing position 
too.
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form, λ could only be a winning position if the
starting rooms of 〈〈P1 〉〉λ and 〈〈P2 〉〉λ are winning
position. This codification specifies that parallel
(sequential) composition terminates when both
of its component terminate.

Local Signals.
A signal declaration P\s introduces a locally

defined signal s that is available for broadcast
inside program P only. As an example consider
the program P := (P1 \ s) | P2 where P1 :=
s+?(!a) | !s and P2 := s+?(!b). In P2, signal s
refers to a different incarnation than the one
used inside P1\s, whose scope is restricted by
the local signal declaration. Consequently, the
internal emission of s in P1\s will trigger the
emission of signal a in P1 but not that of signal b
in P2.

The simplest way of interpreting local signal
declarations in terms of mazes is to rename sig-
nal s in 〈〈P 〉〉 into some fresh signal name s′, and
to make sure that s′ is never used outside of
〈〈P \s 〉〉. While this “naming–apart” technique is
a simple solution for a compiler, the technique
employed in the paper is algebraically more
satisfactory. Intuitively, 〈〈P \s 〉〉 is the same as
solving the recursive unfoldings characterising
maze 〈〈P 〉〉 with respect to signal s. If s⇐ms is
the unfolding rule defining s, the least fixed–
point solution for s is µs.ms. This recursive
term for the game starting in room s is then
used, or substituted, wherever s is referenced
in the unfoldings defined by 〈〈P 〉〉 for all the
other rooms different from s. Thus, s gets elim-
inated. In addition, the unfolding for s in 〈〈P 〉〉
is “reset” to 0.

Example 4. Consider again the programs P1

and P2 from our previous discussion. Fig. 12
and 13 present, respectively, the maze corresponding
to 〈〈P1 |P2 〉〉 and 〈〈 (P1\s) |P2 〉〉 without considering
termination. Nevertheless, the exclusion of λ in
these mazes does not affect the status obtained
for the rooms since the programs are composed
in parallel. Also, in these mazes, for any signal,
say a, room a1 (a2) is the initial room of 〈〈P1 〉〉a
(〈〈P2 〉〉a). As it can be seen in Fig. 12, the emission
of s in the program makes the three rooms a, b
and s winning positions. However, in the maze of
Fig. 13, the emission in P1 of (local) s is completely
encapsulated, so this uniquely affects the part of the

maze corresponding to P1. Thus, room a becomes
a winning position. The signal name s remaining
in the maze now refers to a fresh signal that is
per default not emitted and hence a losing position
which makes room b a losing position too.
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Fig. 12. Maze 〈〈P1 |P2 〉〉.

local  global 
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emit 

Fig. 13. Maze 〈〈 (P1\s) |P2 〉〉.

Note that treating local signal declara-
tions via fixed–point operators has required
a slightly more general translation of s+?(P )
and s−?(P ) than the one given in []. This
observation has already been made by Berry
in [17]. Consider, e.g., a positive guard c+?(P\s)
which makes winning inside P\s dependent on
winning signal c. This implies that any room
in the maze of P\s can only be won under the
extra condition that c can be won as well. This
applies to all rooms inside P \ s, even to the

Fig. 12 : Maze  
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1 | P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the
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form, λ could only be a winning position if the
starting rooms of 〈〈P1 〉〉λ and 〈〈P2 〉〉λ are winning
position. This codification specifies that parallel
(sequential) composition terminates when both
of its component terminate.

Local Signals.
A signal declaration P\s introduces a locally

defined signal s that is available for broadcast
inside program P only. As an example consider
the program P := (P1 \ s) | P2 where P1 :=
s+?(!a) | !s and P2 := s+?(!b). In P2, signal s
refers to a different incarnation than the one
used inside P1\s, whose scope is restricted by
the local signal declaration. Consequently, the
internal emission of s in P1\s will trigger the
emission of signal a in P1 but not that of signal b
in P2.

The simplest way of interpreting local signal
declarations in terms of mazes is to rename sig-
nal s in 〈〈P 〉〉 into some fresh signal name s′, and
to make sure that s′ is never used outside of
〈〈P \s 〉〉. While this “naming–apart” technique is
a simple solution for a compiler, the technique
employed in the paper is algebraically more
satisfactory. Intuitively, 〈〈P \s 〉〉 is the same as
solving the recursive unfoldings characterising
maze 〈〈P 〉〉 with respect to signal s. If s⇐ms is
the unfolding rule defining s, the least fixed–
point solution for s is µs.ms. This recursive
term for the game starting in room s is then
used, or substituted, wherever s is referenced
in the unfoldings defined by 〈〈P 〉〉 for all the
other rooms different from s. Thus, s gets elim-
inated. In addition, the unfolding for s in 〈〈P 〉〉
is “reset” to 0.

Example 4. Consider again the programs P1

and P2 from our previous discussion. Fig. 12
and 13 present, respectively, the maze corresponding
to 〈〈P1 |P2 〉〉 and 〈〈 (P1\s) |P2 〉〉 without considering
termination. Nevertheless, the exclusion of λ in
these mazes does not affect the status obtained
for the rooms since the programs are composed
in parallel. Also, in these mazes, for any signal,
say a, room a1 (a2) is the initial room of 〈〈P1 〉〉a
(〈〈P2 〉〉a). As it can be seen in Fig. 12, the emission
of s in the program makes the three rooms a, b
and s winning positions. However, in the maze of
Fig. 13, the emission in P1 of (local) s is completely
encapsulated, so this uniquely affects the part of the

maze corresponding to P1. Thus, room a becomes
a winning position. The signal name s remaining
in the maze now refers to a fresh signal that is
per default not emitted and hence a losing position
which makes room b a losing position too.
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W
emit 

Fig. 12. Maze 〈〈P1 |P2 〉〉.

local  global 
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emit 

Fig. 13. Maze 〈〈 (P1\s) |P2 〉〉.

Note that treating local signal declara-
tions via fixed–point operators has required
a slightly more general translation of s+?(P )
and s−?(P ) than the one given in []. This
observation has already been made by Berry
in [17]. Consider, e.g., a positive guard c+?(P\s)
which makes winning inside P\s dependent on
winning signal c. This implies that any room
in the maze of P\s can only be won under the
extra condition that c can be won as well. This
applies to all rooms inside P \ s, even to the

Fig. 12 : Maze  
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P1 | P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the
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form, λ could only be a winning position if the
starting rooms of 〈〈P1 〉〉λ and 〈〈P2 〉〉λ are winning
position. This codification specifies that parallel
(sequential) composition terminates when both
of its component terminate.

Local Signals.
A signal declaration P\s introduces a locally

defined signal s that is available for broadcast
inside program P only. As an example consider
the program P := (P1 \ s) | P2 where P1 :=
s+?(!a) | !s and P2 := s+?(!b). In P2, signal s
refers to a different incarnation than the one
used inside P1\s, whose scope is restricted by
the local signal declaration. Consequently, the
internal emission of s in P1\s will trigger the
emission of signal a in P1 but not that of signal b
in P2.

The simplest way of interpreting local signal
declarations in terms of mazes is to rename sig-
nal s in 〈〈P 〉〉 into some fresh signal name s′, and
to make sure that s′ is never used outside of
〈〈P \s 〉〉. While this “naming–apart” technique is
a simple solution for a compiler, the technique
employed in the paper is algebraically more
satisfactory. Intuitively, 〈〈P \s 〉〉 is the same as
solving the recursive unfoldings characterising
maze 〈〈P 〉〉 with respect to signal s. If s⇐ms is
the unfolding rule defining s, the least fixed–
point solution for s is µs.ms. This recursive
term for the game starting in room s is then
used, or substituted, wherever s is referenced
in the unfoldings defined by 〈〈P 〉〉 for all the
other rooms different from s. Thus, s gets elim-
inated. In addition, the unfolding for s in 〈〈P 〉〉
is “reset” to 0.

Example 4. Consider again the programs P1

and P2 from our previous discussion. Fig. 12
and 13 present, respectively, the maze corresponding
to 〈〈P1 |P2 〉〉 and 〈〈 (P1\s) |P2 〉〉 without considering
termination. Nevertheless, the exclusion of λ in
these mazes does not affect the status obtained
for the rooms since the programs are composed
in parallel. Also, in these mazes, for any signal,
say a, room a1 (a2) is the initial room of 〈〈P1 〉〉a
(〈〈P2 〉〉a). As it can be seen in Fig. 12, the emission
of s in the program makes the three rooms a, b
and s winning positions. However, in the maze of
Fig. 13, the emission in P1 of (local) s is completely
encapsulated, so this uniquely affects the part of the

maze corresponding to P1. Thus, room a becomes
a winning position. The signal name s remaining
in the maze now refers to a fresh signal that is
per default not emitted and hence a losing position
which makes room b a losing position too.
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Fig. 12. Maze 〈〈P1 |P2 〉〉.

local  global 
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emit 

Fig. 13. Maze 〈〈 (P1\s) |P2 〉〉.

Note that treating local signal declara-
tions via fixed–point operators has required
a slightly more general translation of s+?(P )
and s−?(P ) than the one given in []. This
observation has already been made by Berry
in [17]. Consider, e.g., a positive guard c+?(P\s)
which makes winning inside P\s dependent on
winning signal c. This implies that any room
in the maze of P\s can only be won under the
extra condition that c can be won as well. This
applies to all rooms inside P \ s, even to the

Fig. 13 : Maze 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

(P1 \s)| P2
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.

�� �

�� �� � � �� ��� � �� �� � �� ���

�� � � �� � � � � �� ��� � �� �� � �� � � �� ��

�� � � �� � � �� � � ��� � �� � � �� � � �� � � �� �� � � �� �

�

�

�

δ�

�

�

δ�

�

δ�
connecting room

Term is closed, no more connections 
are allowed

Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise
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〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

Note that treating local signal declarations via fixed–point 
operators has required a slightly more general translation of 
s+?(P) and s–?(P) than the one given in [39]. This observation 
has already been made by Berry in [17]. Consider, e.g., a 
positive guard c+?(P\s) which makes winning inside P\s 
dependent on winning signal c. This implies that any room 
in the maze of P\s can only be won under the extra condition 
that c can be won as well. This applies to all rooms inside P\s, 
even to the “local” room s. To give the opponent a chance to 
force the starting player into room c at any point where an 
emission occurs inside P\s, we extend the maze inside P\s 
by a corridor (i in this case) from all the connecting rooms d 
to c. In such rooms the opponent can choose to challenge the 
starting player into room c or accept to continue in P\s.

Example 5. Consider the program c+?(P\s) where P := 
!s | s–?(!c) taken from [17]. Fig. 14(top) shows term 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P\s
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

c as 
a maze. As we can see the emission of (local) s is not guarded 
while the emission of c depends on (local) s to be absent. If we 
were to consider just P\s that would be alright. But in the 
context of c+?(P\s) we cannot conclude that c is absent on the 
grounds that in P\s the (local) s is emitted and this avoids 
the emission of c. This is forbidden in ESTEREL since this 
argument executes speculatively the emission of (local) s. 
In our model, 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

c+?(P\s)
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S
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〈〈 !s 〉〉λ := ι.δ + τ.δ
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〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

c = 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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Fig. 7. Connecting Rooms

For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P\s
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.
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Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

c {d+ i.c/} would be as in  
Fig. 14(bottom). There, the emission of (local) s depends on the 
status of c in the first place. This creates a cycle in the maze 
and all the rooms (except the dungeons) are draws.
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“local” room s. To give the opponent a chance
to force the starting player into room c at any
point where an emission occurs inside P\s, we
extend the maze inside P \s by a corridor (ι
in this case) from all the connecting rooms δ
to c. In such rooms the opponent can choose
to challenge the starting player into room c or
accept to continue in P \s.

Example 5. Consider the program c+?(P\s) where
P := !s | s−?(!c) taken from [17]. Fig. 14(top)
shows term 〈〈P \s 〉〉c as a maze. As we can see
the emission of (local) s is not guarded while the
emission of c depends on (local) s to be absent. If we
were to consider just P\s that would be alright. But
in the context of c+?(P\s) we cannot conclude that c
is absent on the grounds that in P \s the (local) s
is emitted and this avoids the emission of c. This is
forbidden in ESTEREL since this argument executes
speculatively the emission of (local) s. In our model,
〈〈 c+?(P \s) 〉〉c = 〈〈P \s 〉〉c{δ + ι.c/δ} would be as in
Fig. 14(bottom). There, the emission of (local) s
depends on the status of c in the first place. This
creates a cycle in the maze and all the rooms (except
the dungeons) are draws.
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Fig. 14. Local signal guarded by a test

For P\s the termination room λ corresponds
to the initial room of 〈〈P 〉〉λ on which the (local)
room s has been substituted via the fixed–point
operator. This is the same as saying that P \s
terminates as long as P terminates when all the
references to s in P are considered local.

5.2 Denotational Characterisation of Mazes

The semantics of mazes in terms of winning
and losing positions may also be captured de-
notationally. The denotational approach relies
on two predicates win and lose that take as
parameters a maze term m and an environ-
ment X . Adapting notational conventions from
ESTEREL, we define an environment X as a set
of signed variables x+ and x−, with the mean-
ing that plus–tagged (minus–tagged) variables
represent rooms that are known to be winning
(losing) positions. Since a single room cannot
be both a winning and a losing position, an
environment must not contain both x+ and x−,
for any x. Predicate win (lose) now holds for m
and X if m corresponds to a winning (losing)
position relative to X , respectively. Formally,
these predicates are defined as the least predi-
cates respecting the following rules:

win(x,X) if x+ ∈ X
win(ι.m,X) if lose(m,X)
win(τ.m,X) if win(m,X)
win(m1 +m2, X) if win(m1, X) or win(m2, X)

lose(0, X)
lose(x,X) if x− ∈ X
lose(ι.m,X) if win(m,X)
lose(τ.m,X) if lose(m,X)
lose(m1 +m2, X) if lose(m1, X) and lose(m2, X).

Intuitively, the dungeon 0 is always a losing
position. Room m1 +m2 is a winning position
if at least one of m1 or m2 is, since m1 + m2

essentially gives a free choice to the leading
player whether to continue with m1 or m2.
Dually, m1 +m2 is a losing position if both m1

and m2 are. Room ι.m can only be left by the
visible corridor ι to m, thereby giving control to
the opponent. Hence, ι.m is a winning (losing)
position for the leading player if m is a losing
(winning) position for the opponent. Travers-
ing a secret corridor does not change a player’s
turn, so τ.m is a winning (losing) position for
the leading player if m is. Thus, by an ap-
propriate choice of visible and secret corridors
out of a room x we can make the winning
(losing) predicate for x an arbitrary disjunctive
(conjunctive) combination of negated and non–
negated winning conditions of the immediate
successor rooms. This is useful for normal–

Fig. 14 : Local signal guarded by a test

For P\s the termination room l corresponds to the 
initial room of 
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

l on which the (local) room s has been 
substituted via the fixed–point operator. This is the same as 
saying that P\s terminates as long as P terminates when all 
the references to s in P are considered local.

5.2 Denotational Characterisation of Mazes

The semantics of mazes in terms of winning and 
losing positions may also be captured denotationally. The 
denotational approach relies on two predicates win and lose 
that take as parameters a maze term m and an environment X. 
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Adapting notational conventions from ESTEREL, we define 
an environment X as a set of signed variables x+ and x–, with 
the meaning that plus–tagged (minus–tagged) variables 
represent rooms that are known to be winning (losing) 
positions. Since a single room cannot be both a winning and 
a losing position, an environment must not contain both x+ 
and x–, for any x. Predicate win (lose) now holds for m and 
X if m corresponds to a winning (losing) position relative to 
X, respectively. Formally, these predicates are defined as the 
least predicates respecting the following rules:
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“local” room s. To give the opponent a chance
to force the starting player into room c at any
point where an emission occurs inside P\s, we
extend the maze inside P \s by a corridor (ι
in this case) from all the connecting rooms δ
to c. In such rooms the opponent can choose
to challenge the starting player into room c or
accept to continue in P \s.

Example 5. Consider the program c+?(P\s) where
P := !s | s−?(!c) taken from [17]. Fig. 14(top)
shows term 〈〈P \s 〉〉c as a maze. As we can see
the emission of (local) s is not guarded while the
emission of c depends on (local) s to be absent. If we
were to consider just P\s that would be alright. But
in the context of c+?(P\s) we cannot conclude that c
is absent on the grounds that in P \s the (local) s
is emitted and this avoids the emission of c. This is
forbidden in ESTEREL since this argument executes
speculatively the emission of (local) s. In our model,
〈〈 c+?(P \s) 〉〉c = 〈〈P \s 〉〉c{δ + ι.c/δ} would be as in
Fig. 14(bottom). There, the emission of (local) s
depends on the status of c in the first place. This
creates a cycle in the maze and all the rooms (except
the dungeons) are draws.
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Fig. 14. Local signal guarded by a test

For P\s the termination room λ corresponds
to the initial room of 〈〈P 〉〉λ on which the (local)
room s has been substituted via the fixed–point
operator. This is the same as saying that P \s
terminates as long as P terminates when all the
references to s in P are considered local.

5.2 Denotational Characterisation of Mazes

The semantics of mazes in terms of winning
and losing positions may also be captured de-
notationally. The denotational approach relies
on two predicates win and lose that take as
parameters a maze term m and an environ-
ment X . Adapting notational conventions from
ESTEREL, we define an environment X as a set
of signed variables x+ and x−, with the mean-
ing that plus–tagged (minus–tagged) variables
represent rooms that are known to be winning
(losing) positions. Since a single room cannot
be both a winning and a losing position, an
environment must not contain both x+ and x−,
for any x. Predicate win (lose) now holds for m
and X if m corresponds to a winning (losing)
position relative to X , respectively. Formally,
these predicates are defined as the least predi-
cates respecting the following rules:

win(x,X) if x+ ∈ X
win(ι.m,X) if lose(m,X)
win(τ.m,X) if win(m,X)
win(m1 +m2, X) if win(m1, X) or win(m2, X)

lose(0, X)
lose(x,X) if x− ∈ X
lose(ι.m,X) if win(m,X)
lose(τ.m,X) if lose(m,X)
lose(m1 +m2, X) if lose(m1, X) and lose(m2, X).

Intuitively, the dungeon 0 is always a losing
position. Room m1 +m2 is a winning position
if at least one of m1 or m2 is, since m1 + m2

essentially gives a free choice to the leading
player whether to continue with m1 or m2.
Dually, m1 +m2 is a losing position if both m1

and m2 are. Room ι.m can only be left by the
visible corridor ι to m, thereby giving control to
the opponent. Hence, ι.m is a winning (losing)
position for the leading player if m is a losing
(winning) position for the opponent. Travers-
ing a secret corridor does not change a player’s
turn, so τ.m is a winning (losing) position for
the leading player if m is. Thus, by an ap-
propriate choice of visible and secret corridors
out of a room x we can make the winning
(losing) predicate for x an arbitrary disjunctive
(conjunctive) combination of negated and non–
negated winning conditions of the immediate
successor rooms. This is useful for normal–

Intuitively, the dungeon 0 is always a losing position. 
Room m1 + m2 is a winning position if at least one of m1 or m2 
is, since m1 + m2 essentially gives a free choice to the leading 
player whether to continue with m1 or m2. Dually, m1 + m2 
is a losing position if both m1 and m2 are. Room i.m can only 
be left by the visible corridor i to m, thereby giving control 
to the opponent. Hence, i.m is a winning (losing) position 
for the leading player if m is a losing (winning) position for 
the opponent. Traversing a secret corridor does not change 
a player’s turn, so t.m is a winning (losing) position for the 
leading player if m is. Thus, by an appropriate choice of visible 
and secret corridors out of a room x we can make the winning 
(losing) predicate for x an arbitrary disjunctive (conjunctive) 
combination of negated and non-negated winning conditions 
of the immediate successor rooms. This is useful for normal-
form representations and explains why we introduce secret 
corridors into the games model.

We now define a function on environments:
maze(M)(X) := win(M,X)+ È lose(M,X)–.

Here, win(M,X) denotes
{xÎV | win(mx,X), x
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

mx in M }
and lose(M,X) stands for

{xÎV | lose(mx,X), x
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

mx in M }
Additionally, for any subset V Í V of variables, V+ denotes 
the set {x+ | x Î V} and V

–
 the set {x– | x Î V}. It can easily be 

proved that function maze(M) is monotonic. Hence, the least 
fixed point µmaze(M) of maze(M) exists, which is taken to be 
the denotational semantics of maze M. Moreover, because our 
universe of variables is finite, one may iteratively compute 
µmaze(M) = ÈiÎN maze(M)i(Æ).

Example 6. Let us obtain the sets of winning, losing, and 
draw positions for maze Mex of Fig. 1. Initially, the predicates 
that hold are lose(0,Æ) and win(i.0, Æ). Since a
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

i.0 and d
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

0 we get maze(Mex)(Æ) = {a+, d –}. In this environment, f Î 
win(Mex, {a

+, d–}) since f 
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 i. (i.a+ t.d) and lose(i.a+ t.d,{a+,d–}) 

the latter essentially results from win(i.a,{a+,d–}) and the fact 
that lose(t.d,{a+,d–}). Next we derive c, h Î lose(Mex, {a

+, d–}) 
from c
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

 i.(t.a + i.b) and h
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

i.(t.a + i.e). Here win(t.a, {a+, 
d–}) implies that win(t.a + i.b, {a+, d–}) and win(t.a + i.e, {a+, 
d–}) both hold. Then we obtain b Î lose(Mex; {a

+, d–}) because  
b
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unfolding rule λ⇐〈〈P 〉〉λ{0/δ} in the represen-
tations.

Nothing and Emission
Intuitively, program 0 that cannot emit any

signal, must correspond to a dungeon in which
player A loses right from the start. In the
maze 〈〈 0 〉〉 we have that a⇐ 0 for all a ∈ S ,
so every room a is a losing position which
corresponds to the cannot set for 0.

The forced emission of a signal a leads to
immediately success for A in room a and loss
in any other room. The reason is that in the
behavioural semantics of !a, signal a is in the
must set and all the other signals are in the
cannot set. The maze 〈〈 !a 〉〉 reflects this by let-
ting a⇐ ι.δ{0/δ} = ι.0 and b⇐ 0{0/δ} = 0 for
any b �= a with a, b ∈ S.

For both programs 0 and !a, room λ⇐ ι.δ+
τ.δ{0/δ} = ι.0+τ.0 is a winning position which
indicates termination. In general, the status
of λ (from any 〈〈P 〉〉λ) can only be winning or
draw. For 〈〈 0 〉〉λ and 〈〈 !a 〉〉λ, we can see that
any substitution of δ in ι.δ + τ.δ by a term
corresponding to a winning or losing position
would give winning status to λ. Substituting δ
in ι.δ+τ.δ by a term resulting in a draw would
make λ also a draw and this will indicate that
the program does not terminate.

Signal Test and Choice
Room a ∈ S is a winning position in

〈〈 s+?(P ) 〉〉a if player A has winning strategy for
both room s in 〈〈 s+?(P ) 〉〉a and room a in 〈〈P 〉〉a.
The latter condition implies that there is at
least one !a that is executed inside the struc-
ture of P . From Fig. 8, any such 〈〈 !a 〉〉a give
us ι.δ and this δ can be replaced just in two
ways, namely {δ + ι.s/δ} and {δ + τ.s/δ} for
some s ∈ S. Thus any emission of a occurring
in P will turn in 〈〈P 〉〉a into a room, say ă,
of the form ι.(δ +

∑
r∈I γ.r) with γ ∈ {ι, τ}

and ∅ ⊆ I ⊆ S . The case when I = ∅ refers to
the term ι.δ on which no substitution of δ has
been performed yet. From any such ă, player A
(using the visible corridor ι) can pass the turn
to B in a room, say x̆, representing

∑
r∈I γ.r.

In 〈〈P 〉〉a{0/δ}, any such ă (x̆) becomes a room,
say ă0 (x̆0), of the shape ι.

∑
r∈I γ.r (

∑
r∈I γ.r).

Moreover, in 〈〈 s+?(P ) 〉〉a{0/δ}, any ă turns into a
room ă1 of the form ι.

∑
r∈I γ.r+ι.s = ι.(x̆0+ι.s)

and any x̆ becomes room x̆1 of the shape x̆0+ι.s.
So player A in ă1 first gives the control to B
in x̆1, who in turn freely decides whether A
must continue with his play in s or in x̆0. There-
fore, ă1 is a winning position when room s is
winning and x̆0 is losing. However, that x̆0 is
losing immediately implies that ă0 is winning
in the maze corresponding to P . This encoding
of conjunction into mazes is justified by the
observation that signal a is in the must set
of s+?(P ) when s is known to be present and a
is also in the must set for P . Analogously, a
program s−?(P ) that is negatively guarded by
signal s must emit a if, in room a, player B
has a winning strategy for s in 〈〈 a+?(P ) 〉〉a, and
if player A has a winning strategy for a in 〈〈P 〉〉a.

In the computation of terms for termination
of Fig. 9, there is just one form on which
the connecting variable δ could be introduced
(i.e., ι.δ + τ.δ) and two ways on which δ can
be replaced. These substitutions correspond
precisely to the positive and negative tests of
signal status, namely 〈〈 s+?(P ) 〉〉λ and 〈〈 s−?(P ) 〉〉λ.

In order to illustrate the mechanics described
in Fig. 9, consider a program Pcond of the
form s+0 ?(s

−
1 ?(. . . s

−
n−1?(s

+
n ?(!x)))) and let Spos =

{s0, . . . , sn} and Sneg = {s1, . . . , sn−1} be the
sets of all testing signals positively or nega-
tively guarded in Pcond respectively. Then ob-
tain 〈〈Pcond 〉〉λ{0/δ} as in Fig. 10, where an acyclic
submaze is identified as D. The set of deciding
rooms in D is Z = {zi = τ.si | si ∈ Spos} ∪
{zi = ι.si | si ∈ Sneg}. The set of corridors (all ι)
among the rooms in Z are the deciding corridors
that belong to submaze D.

For explaining the purpose of the deciding
rooms, let us assume, for the moment, that the
deciding corridors are not in D. Thus, zi = τ.si
is winning (losing) when si is winning (losing)
and positively guarded. Conversely, zi = ι.si
is winning (losing) when si is losing (winning)
and negatively guarded. Otherwise, zi = γ.si
with γ ∈ {ι, τ} is draw when si is a draw
independently of the guard. That is to say the
status of a deciding room zi indicates whether
the test on signal si succeeds. This encoding
establishes the basic elements required by the
termination predicate from Fig. 5. In other
words, a program of the form s+?(P ) must
terminate when s is known to be absent (test

i.i.d and win(i.d, {a+, d–}) results from lose(d, {a+, d–}). This 
shows that maze(Mex)

2(Æ) = {a+, f+, b–, c–, d–, h–}.
Another iteration confirms this as least fixed point, 

namely
µmaze(Mex) = {a+, f+, b–, c–, d–, h–}.
Theorem 1 (Coincidence). Let M be a maze and x be a 

variable.
 � x is a winning position in M if and only if x+ Î µmaze(M).
 � x is a losing position in M if and only if x– Î µmaze(M).

The proof of this theorem can be adapted from results on 
finite symmetric and memory-free games [28]. The only slight 
twist is that our setting allows for two types of transitions in 
game graphs, namely visible and secret ones.

Proposition 1. Let P be a combinational ESTEREL 
program and E an event.
1. must(P, E) = {a Î S | win(
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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For any given program P , the termination
variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise
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〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S
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〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

P
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a, E )}
2. cannot(P;E) = {a Î S | lose(
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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for a ∈ S and 〈〈P 〉〉λ are defined along the
structure of P in Fig. 8 and 9 respectively.

〈〈 0 〉〉a := 0

〈〈 !s 〉〉a :=

{
ι.δ if s = a

0 otherwise

〈〈 s+?(P ) 〉〉a := 〈〈P 〉〉a{δ + ι.s/δ}

〈〈 s−?(P ) 〉〉a := 〈〈P 〉〉a{δ + τ.s/δ}

〈〈P1 |P2 〉〉a := τ.〈〈P1 〉〉a + τ.〈〈P2 〉〉a

〈〈P1 ;P2 〉〉a := τ.〈〈P1 〉〉a + ι.(ι.〈〈P1 〉〉∗ + ι.〈〈P2 〉〉a)

〈〈P \s 〉〉a :=

{
0 if s = a

〈〈P 〉〉a{µs.〈〈P 〉〉s/s} otherwise

Fig. 8. Maze terms for a signal a ∈ S

〈〈 0 〉〉λ := ι.δ + τ.δ

〈〈 !s 〉〉λ := ι.δ + τ.δ

〈〈 s+?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + τ.s)/δ}

〈〈 s−?(P ) 〉〉λ := 〈〈P 〉〉λ{δ + ι.(δ + ι.s)/δ}

〈〈P1 |P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P1 ;P2 〉〉λ := ι(ι.〈〈P1 〉〉λ + ι.〈〈P2 〉〉λ)

〈〈P \s 〉〉λ := 〈〈P 〉〉λ{µs.〈〈P 〉〉s/s}

Fig. 9. Maze terms for termination λ

As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

a, E )}
This proposition states the desired one-to-one relation 

between the must– and cannot–analysis in combinational 
ESTEREL programs and the determination of winning and 
losing positions in their corresponding mazes. Its proof can 
be conducted by induction on the structure of ESTEREL 
programs. As a consequence of the proposition, the functions 
esterel(P) and maze(
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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As an example, the translation 〈〈P 〉〉 of the
ESTEREL program

!a |d+?(!b) |a+?(d−?(!f)) |a−?(b+?(!c) |e+?(!h)) |
b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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b−?(g+?(!e) |e+?(!g))

generates the unfolding rules of Example 1 and
thus the maze in Fig. 1. Note that these have
been slightly optimised using the equivalence
m ≡ τ.m +

∑
τ.0, as well as not including the

) coincide. This immediately proves 
the following theorem.

Theorem 2 (Game–Theoretic Characterization). For 
every combinational Esterel program P, we have µesterel(P) 
= µmaze(
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term of 〈〈P 〉〉a{0/δ} from 〈〈P 〉〉 is closed. Hence-
forth, connecting rooms are schematically rep-
resented as dashed nodes.

Example 3. Let 〈〈P 〉〉x be the open term ι.δ and let
us compute:

〈〈P 〉〉x{δ + τ.b/δ}{δ + ι.a/δ}{0/δ}

step by step as in Fig.7. From the resulting closed
term ι.(τ.b + ι.a), it follows that room x is a
winning position iff rooms a is winning too and
room b is losing. From this configuration (i.e., a is
winning and b is losing), two observations can be
made: (i) room x becomes a losing position if the
status of either a or b is switched from winning (los-
ing) to losing (winning) and (ii) room x becomes
a draw when a or b are set to draw. It is worth
observing that the obtained closed term corresponds
to 〈〈 a+?(b−?(!x)) 〉〉x{0/δ}.
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variable λ in 〈〈P 〉〉λ corresponds to a room whose
winning (draw) status indicates whether P
terminates (or not). By construction, room λ
can never be a losing position. Formally, 〈〈P 〉〉a
for a ∈ S and 〈〈P 〉〉λ are defined along the
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).

6. Related Work
As the paper shows, games provide a powerful and 

intuitively rather appealing setting for studying non-
monotonic problems with co– and contravariant logical 
dependencies. Such problems abound in Computer Science. 
Many of these arise from the need to handle open systems 
and maintain a compositional system-environment 
distinction. If the interaction with the environment has 
both enabling as well as inhibiting effects on the response of 
a system then the input–output semantics of an individual 
component necessarily involves non–monotonic functions. 
When such systems are composed and each component acts 
both as a system and as (part of) the environment at the same 
time, causality cycles can occur that are not easy to resolve 
algebraically since for non–monotonic functions the standard 
least or greatest fixed point approach breaks down. Here, as 
Jaakko Hintikka has argued for logic and set theory [29], 
game theory – with its strong intensional notion of truth – 
can be used.

The games we are using are non-classical in the sense 
that they are not necessarily determined. The reader may find 
some background material on classical games in [28], [30]. 
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The changes in our setting over the classical definitions are 
that we (i) allow for two types of moves in game graphs, i.e., 
visible and secret transitions, and (ii) admit draw positions, 
i.e., there may not exist a winning strategies for either player. 
The latter feature is in contrast to the classical games used in 
automata theory and descriptive–set theory [30], where the 
absence of a winning strategy for one player automatically 
implies the existence of a winning strategy for the other. 
Moreover, linear logic games [31] differ from our work in 
the sense that these are symmetric while our games are not 
precisely because draw positions model non–constructiveness 
of a system response. Besides, our strategies, unlike those 
used in type theory [32] or proof nets [33], do not have 
computational meaning (“proofs”, “program”) themselves. 
They are extensional in that they generate constructive 
truth–values for the interpretation of signals. Our work 
differs from related work of De Alfaro and Henzinger [34], 
[35] where the game board (interface automata) represents 
explicit synchronisation dynamics. In our case of synchronous 
step responses we are interested only in the stationary 
behaviour, so the execution sequences and interleaving on 
the game board (mazes) are abstracted away.

In order to keep a strong link with synchronous 
programming, our interpretation of reactive components 
as specifications of intensional logic is not as general as it 
perhaps could be. Specifically, we do not consider signal 
un–emissions (i.e., negated actions). Logical game–theory 
would not have difficulties to handle them, yet their practical 
relevance is not obvious. In particular, there seems to be 
an intrinsic asymmetry between signal presence and signal 
absence in synchronous programming. Signal presence can 
be enforced by explicit signal emissions (e.g., the statement 
emit s in ESTEREL) while signal absence is derived as the 
lack of emissions (there is no statement such as unemit s in 
ESTEREL). We note that the asymmetry between s and Øs 
on the action side of a transition is also reflected in the fact 
that data communication in synchronous programming is 
invariably associated with signal presence rather than signal 
absence.

Notions of constructiveness based on games and 
winning conditions also play an important role in Normal 
Logic Programming (LP), which extends standard definite 
Horn clause programming by permitting negative literals 
in clause bodies and queries. Various types of models based 
on three- and many-valued interpretations have been 
developed in the literature for normal logic programs. We 
refer the reader to [36] for a survey of the classic results. 
There is, however, an important methodological difference 
between logic programming and synchronous languages: 
Since synchronous programs often model embedded and 
reactive systems with some degree of (low–level) asynchrony, 
it is essential that non–determinism and concurrency are 
represented adequately. LP, on the other hand is based on a 
strong sequential execution model, which even constrains the 
order in which clauses and literals are executed. In this sense 
the work presented here aims at a rather more general setting 
than what is considered in LP. In another sense, though, our 

scope is more restricted, viz. in considering only propositional 
programs. We believe that generating constructive models of 
Horn clauses from winning conditions may provide further 
insights into the relationship between operational and 
denotational semantics of LP. At the propositional level the 
maze responses are related to the three-valued models of 
Fitting as defined in [36].

7. Conclusions
Game theory handles cyclic systems of non-monotonic 

behaviours by capturing the system and environment 
dichotomy through the binary polarity of player and opponent, 
so that the swapping of roles gives constructive (intensional) 
meaning to negation. In this paper we have demonstrated the 
versatility of this idea for the semantics of step responses in 
synchronous programming, particularly in ESTEREL. We 
have described the reaction of a composite system to stimuli 
from its environment as a game played by the individual 
sub–systems in which these negotiate between themselves 
the final outcome. This negotiation is governed by game 
rules determining a constructive response. Concretely, this 
paper presents a game-theoretic semantics for combinational 
ESTEREL programs, i.e., for the kernel fragment of 
ESTEREL corresponding to combinational circuits. Our 
approach translates combinational programs into finite two-
player games in such a way that ESTEREL’s must– and 
cannot-analysis of signal statuses could be rephrased as the 
computation of winning strategies.

The constructive reference semantical framework for the 
synchronous programming language ESTEREL includes the 
behavioral, operational, circuit-based, and model-theoretic 
semantics [17], [18]. Since these approaches are equivalent, 
our results (correspondence between the game-theoretic and 
behavioural semantics) show that the game interpretation 
complements and brings a fresh view to the existing 
ESTEREL’s semantical framework. Although the immediate 
benefits of the game-theoretic setting for improvements on the 
algorithmic side may be modest, its main contribution refers 
directly to (i) a novel didactic perspective and (ii) the possibility 
of analysing seemingly separate semantical frameworks and 
causality issues (not only specific to ESTEREL) from a single 
perspective. Let us be more specific regarding these points.

ESTEREL’s constructive approach has been traditionally 
based in the physics of electronic designs. In fact, the very 
notion of a constructive program is deeply rooted on this 
idea, namely a program is considered to be constructive iff its 
corresponding circuit electrically stabilises for all (gate and 
wire) delays (even in the presence of combinational cycles) 
[2], [37]. Thus, most ESTEREL’s compilers concentrate on 
the translation of programs into constructive circuits and 
associated optimisations techniques. However, according 
to Berry [17], the way from the behavioural semantics to 
Boolean circuits is far from trivial. The game approach, on 
the other hand, provides a different operational view to the 
formal definition of what a program means (i.e., behavioural 
semantics) directed to professionals not versed in hardware. 
Concretely, this is done by given emphasis to more intuition 
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(game graphs). Thus, the maze game offers an alternative 
for familiarising software engineers, developers and 
programmers with this intricate constructive semantics and 
related notions like constructiveness and causality analysis.

This paper extends our previous work [38] to a 
larger fragment of ESTEREL, which includes sequential 
composition and local signal declaration. We argue that this 
is more than just a small extension and involves several 
considerations. First, causality analysis is a technique for 
verifying constructiveness of programs even in the presence 
of instruction re-orderings done by the run–time system. 
Obviously, these interleavings are outside the control of any 
compiler or instruction set. Now, in particular, ESTEREL’s 
causality analysis verifies determinism and boundedness 
(at the macro-step) under any arbitrary scheduling that 
preserves emit-test (write-read) dependencies. Second, the 
consideration of a sequential composition and local declaration 
for ESTEREL forces the causality analysis to verify that 
the ordering and locality of the statements (as specified by 
the programmer) are sequentially and globally consistent, 
respectively, under ESTEREL’s run-time scheduling model. 
Technically, this is equivalent to check delay-insensitivity for 
(cyclic) combinational circuits subject to non-inertial delays, 
or provability of bounded response in constructive modal 
logic. In order to handle and integrate all these aspects while 
keeping an intuitive nature, our extension has required a non 
trivial enrichment of the information content held by terms 
and new definitions of the terms for all constructs.

In a more recent work [39] we have identified various 
levels of semantics for synchronous responses in a game–
theoretic fashion which correspond to increasing restrictions 
on winning conditions. Each level is associated with a 
particular degree of computational constructiveness 
reflecting a characteristic operational interpretation of 
system execution. These levels represent classical, coherent 
(inertial), Statecharts (Pnueli & Shalev) and ESTEREL 
responses respectively. The analysis of [39], however, does 
not consider neither sequential composition or local signal 
declarations. In this form, the extension of this paper can 
be applied directly to other synchronous interpretations 
incorporating the semantic principles of synchrony and 
causality. For instance, using the framework of this paper, 
it is pretty much straightforward to define a Pnueli & Shalev 
Statecharts-like semantics that incorporates sequential 
composition by simply considering the winning conditions 
of [39]. Yet another possibility is that studying the notion 
of sequentially constructive concurrency (SC) that we have 
proposed recently [40] but in a game-theoretic manner. SC 
is a less conservative interpretation of synchrony regarding 
sequential composition as compared to ESTEREL, which is 
applicable in situations where the compiler has more control 
on the concurrent run-time behaviour. Specifically, SC allows 
some re-orderings of write-read statements provided that the 
sequential constructs of the program give enough scheduling 
information to avoid causality conditions. Since the mazes of 
this paper include sequential composition, it is now possible 
to investigate how SC semantics can be modelled in our 

game-theoretic framework by establishing the appropriate 
SC winning conditions or otherwise.

Finally, we believe that our approach is amenable to 
a rigorous algebraic treatment since we present mazes in 
a process-algebraic fashion both in style of a term-based 
syntax and a transition-systems-based semantics. This would 
provide a compositional semantics for our games and allow 
for the minimisation of mazes. Note that the translation from 
combinational ESTEREL programs into mazes presented in 
this paper does not apply any optimisations.
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