
Is Timing Analysis a Refinement
of Causality Analysis?

Joaquín Aguado
Informatics Theory Group

University of Bamberg

April 2013 PRETSY-Meeting, Bamberg

Why Causality Analysis is Important

Causality analysis needs to be taken seriously.

“For acyclic circuits the analysis is unnecessary, only a
problem for Esterel not for other languages such as Lustre”

The key difference between cyber physical and embedded
systems is that the former are subject to strong physical
control. The term "cyber" comes from "Kybernetik" and
means control loops.

But control loops are (instantaneous) cyclic interactions,
and causality analysis (stability, convergence) is an
essential ingredient in control theory!

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

Playing The Maze Game

Program of the Maze

emit a ||
present d then emit b end ||
present a then
 present d else emit f end
end ||
present a else
 present b then emit c end
end ||
present e then emit h end ||
present b else
 present g then emit e end
end ||
present e then emit g end

Sequential Block

𝑣1: present I

𝑣3: present I

𝑣2: emit R

𝑣4: goto
𝑣5: emit S

𝑣6: emit T

𝑣7: emit U

G0

L5
+

−

G1

L6

−

+
G3

L7

G2

L9

L10

L11

KEP assembler
instruction

Explicit jump
of control

Sequential
control

Sequential Block + Timing Information

𝑣1: present I

𝑣3: present I

𝑣2: emit R

𝑣4: goto
𝑣5: emit S

𝑣6: emit T

𝑣7: emit U

L5
+

−

L6

−

+
G3

L7

G2

L9

L10

𝛿1

𝛿1

𝛿2

𝛿2

𝛿2

𝛿2

𝛿3

G0

G1

L11

Two-Player Timed Maze

𝐼

𝐺0 𝛿1 𝐿5 𝛿1

𝐺1

𝛿2

𝐿6
𝐺3

𝐿7 𝛿1 𝛿1 𝛿3

𝐺2

𝛿2

𝑆 𝐿9

𝛿2 𝑇

𝐿10

𝛿2 𝑈 𝐿11

𝑅

𝑡0

𝑡1

W

L

W

WCRT Interface Algebra

𝐼

𝐺0 𝛿1 𝐿5 𝛿1

𝐺1

𝛿2

𝐿6
𝐺3

𝐿7 𝛿1 𝛿1 𝛿3

𝐺2

𝛿2

𝑆 𝐿9

𝛿2 𝑇

𝐿10

𝛿2 𝑈 𝐿11

𝑅

𝑡0

𝑡1 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿

WCRT Interface Algebra

𝐼

𝐺0 𝛿1 𝐿5 𝛿1

𝐺1

𝛿2

𝐿6
𝐺3

𝐿7 𝛿1 𝛿1 𝛿3

𝐺2

𝛿2

𝑆 𝐿9

𝛿2 𝑇

𝐿10

𝛿2 𝑈 𝐿11

𝑅

𝑡0

𝑡1 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿

WCRT Interface Algebra

𝐼

𝐺0 𝛿1 𝐿5 𝛿1

𝐺1

𝛿2

𝐿6
𝐺3

𝐿7 𝛿1 𝛿1 𝛿3

𝐺2

𝛿2

𝑆 𝐿9

𝛿2 𝑇

𝐿10

𝛿2 𝑈 𝐿11

𝑅

𝑡0

𝑡1 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿

𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿

WCRT Interface Algebra

𝐼

𝐺0 𝛿1 𝐿5 𝛿1

𝐺1

𝛿2

𝐿6
𝐺3

𝐿7 𝛿1 𝛿1 𝛿3
𝛿2

𝑆 𝐿9

𝛿2 𝑇

𝐿10

𝛿2 𝑈 𝐿11

𝑅

𝑡0

𝑡1 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿

𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿 𝛿1 𝛿1 : (𝐿𝐿 ∨ 𝐺𝐺) ∧ 𝐼 ⊃ ∘ 𝐿𝐿

WCRT Interface Algebra

𝑣1+ = 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣1− = 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣3+ = 𝛿1 𝛿1 : (𝐿𝐿 ∨ 𝐺𝐺) ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣3− = 𝛿1 𝛿1 : 𝐿𝐿 ∨ 𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣7 = 𝛿2 𝛿2 : 𝐺𝐺 ∨ 𝐿𝐺𝐺 ⊃ ∘ 𝐿𝐺𝐺

𝑣2 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿
𝑣5 = 𝛿2 :𝐺𝐺 ⊃ ∘ 𝐿9
𝑣4 = 𝛿3 : 𝐿𝐿 ⊃ ∘ 𝐺𝐺
𝑣6 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐺𝐺

This specification is open: It does not preclude that the
context adds extra jumps into or emissions in G.

WCRT Interface Algebra

𝑣1+ = 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣1− = 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣3+ = 𝛿1 𝛿1 : (𝐿𝐿 ∨ 𝐺𝐺) ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣3− = 𝛿1 𝛿1 : 𝐿𝐿 ∨ 𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣7 = 𝛿2 𝛿2 : 𝐺𝐺 ∨ 𝐿𝐺𝐺 ⊃ ∘ 𝐿𝐺𝐺

𝑣2 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿
𝑣5 = 𝛿2 :𝐺𝐺 ⊃ ∘ 𝐿9
𝑣4 = 𝛿3 : 𝐿𝐿 ⊃ ∘ 𝐺𝐺
𝑣6 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐺𝐺

This specification is open: It does not preclude that the
context adds extra jumps into or emissions in G.

𝐼

𝐺0 𝛿1 𝐿5 𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿

Species that L5 is activated (with delay)
whenever control reaches G0 but not
what happens if G0 is never activated.

WCRT Interface Algebra

𝑣1+ = 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣1− = 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣3+ = 𝛿1 𝛿1 : (𝐿𝐿 ∨ 𝐺𝐺) ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣3− = 𝛿1 𝛿1 : 𝐿𝐿 ∨ 𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣7 = 𝛿2 𝛿2 : 𝐺𝐺 ∨ 𝐿𝐺𝐺 ⊃ ∘ 𝐿𝐺𝐺

𝑣2 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿
𝑣5 = 𝛿2 :𝐺𝐺 ⊃ ∘ 𝐿9
𝑣4 = 𝛿3 : 𝐿𝐿 ⊃ ∘ 𝐺𝐺
𝑣6 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐺𝐺

In an open system L5 may still be activated by jumps from
the program environment of G

𝐼

𝐺0 𝛿1 𝐿5 𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿

WCRT Interface Algebra

𝑣1+ = 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣1− = 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣3+ = 𝛿1 𝛿1 : (𝐿𝐿 ∨ 𝐺𝐺) ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣3− = 𝛿1 𝛿1 : 𝐿𝐿 ∨ 𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣7 = 𝛿2 𝛿2 : 𝐺𝐺 ∨ 𝐿𝐺𝐺 ⊃ ∘ 𝐿𝐺𝐺

𝑣2 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿
𝑣5 = 𝛿2 :𝐺𝐺 ⊃ ∘ 𝐿9
𝑣4 = 𝛿3 : 𝐿𝐿 ⊃ ∘ 𝐺𝐺
𝑣6 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐺𝐺

If we want to make L5 inaccessible from outside, we close
the specification with an extra clause.

𝐼

𝐺0 𝛿1 𝐿5 𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿
¬𝐺𝐺⊕ ¬𝐼 ⊃ ∘ ¬𝐿𝐿

WCRT Interface Algebra

𝑣1+ = 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣1− = 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣3+ = 𝛿1 𝛿1 : (𝐿𝐿 ∨ 𝐺𝐺) ∧ 𝐼 ⊃ ∘ 𝐿𝐿
𝑣3− = 𝛿1 𝛿1 : 𝐿𝐿 ∨ 𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺
𝑣7 = 𝛿2 𝛿2 : 𝐺𝐺 ∨ 𝐿𝐺𝐺 ⊃ ∘ 𝐿𝐺𝐺

𝑣2 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐿
𝑣5 = 𝛿2 :𝐺𝐺 ⊃ ∘ 𝐿9
𝑣4 = 𝛿3 : 𝐿𝐿 ⊃ ∘ 𝐺𝐺
𝑣6 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐺𝐺

The WCRT for G amounts to obtaining the worst-case
(tightest) bound 𝛿 such that:

�𝑣𝑖
+,−

7

𝑖=1

≼ 𝛿 : 𝐺𝐺 ∧ (𝐼 ⊕ ¬𝐼) ⊃ ∘ 𝐿𝐺𝐺

where 𝜑 ≼ 𝜓 (models inclusion): All schedules that satisfy
𝜑 also satisfy 𝜓.

Abstraction:
Over and Under approximation

Ignoring Signal Dependencies

This is a standard abstraction.

𝐼

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

The associated type specifies that any set of schedules
passing through 𝐺𝐺 when signal 𝐼 is decided splits non-
deterministically into a subset satisfying ∘ 𝐺𝐺 and other
satisfying ∘ 𝐿𝐿.

𝛿1 𝛿1 : 𝐺𝐺 ∧ 𝐼 ⊕ ¬𝐼 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 then we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

⊕

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

⊕
A A

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

⊕
A A B B

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

⊕
A A B B

B A

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

A A B B
B A 𝐼

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

A A B B
B A 𝐼

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

⊕
A A B B

B A

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

A A B B
B A 𝐼

Ignoring Signal Dependencies

This is a standard abstraction.

𝐺0 𝛿1 𝐿5 𝛿1 𝐺1

If signal 𝐼 is known to be stable 𝐼 ⊕ ¬𝐼 ≅ 𝑡𝑡𝑡𝑒 and we
can drop the condition.

𝛿1 𝛿1 : 𝐺𝐺 ⊃∘ 𝐺𝐺⊕ ∘ 𝐿𝐿

A A B B
B A 𝐼

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺 𝐺

𝐿6
𝐺3

𝐺
𝐺

𝑆 𝐿9

𝐺 𝑇

𝐿10

𝑅 𝐺1

𝐿7 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑡0

𝑡1

⊕

𝐼

⊕

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺

𝐿6

𝐿7 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕

Weaving Paths

𝐺0 𝐺 𝐿5

𝐺1

𝐺

𝐿6

𝐿7 𝐺 𝐺

𝐺2

𝐿10

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕

Side inputs

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺

𝐺1

𝐺

𝐿6
𝐺3

𝐿7 𝐺 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕

Side outputs

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺

𝐺1

𝐺

𝐿6
𝐺3

𝐿7 𝐺 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕

𝐿10

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺

𝐺1

𝐺

𝐿6
𝐺3

𝐿7 𝐺 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕

𝐿10
𝐺𝐺 ∨ 𝐿𝐺𝐺 ∨ 𝐺𝐺 ⊃ ?

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺

𝐺1

𝐺

𝐿6
𝐺3

𝐿7 𝐺 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕

𝐿10
𝐺𝐺 ∨ 𝐿𝐺𝐺 ∨ 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺

Weaving Paths

: 𝐺𝐺 ∨ 𝐿𝐺𝐺 ∨ 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺
𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

Weaving Paths

: 𝐺𝐺 ∨ 𝐿𝐺𝐺 ∨ 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺
𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

𝐺1

𝐿7 𝐺 𝐺

𝐺2

𝐺 𝑈 𝐿11

𝑡0

𝑡1

Weaving Paths

: 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺

𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

Assume that for the WCRT we are not interested in the
exact timing of the side inputs.

: 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺⊕ ∘ 𝐺𝐺
𝐺
−∞
−∞

𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

⋅
𝐺
−∞
−∞

=
𝐺
𝐺
𝐿

: 𝐺𝐺 ∨ 𝐿𝐺𝐺 ∨ 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺

Weaving Paths

𝐺0 𝐺 𝐿5 𝐺

𝐿6

𝐿7 𝐺 𝐺

𝐺2

𝐿10

𝐺 𝑈 𝐿11

𝑅

𝑡0

𝑡1

⊕

⊕
side input

Weaving Paths

𝐺0 𝐺 𝐺1 𝑡0

⊕

𝐺0 𝐺

𝐺1

𝑡0

⊕

Weaving Paths

: 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺

𝐺𝐺 ∧ ¬𝐺𝐺 ∧ ¬𝐺𝐺 ⊃ ∘ 𝑓 ⊕ ∘ 𝑓 ⊕ ∘ 𝐿𝐺𝐺

𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

⋅
𝐺
−∞
−∞

=
𝐺
𝐺
𝐿

: 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺
𝐺
𝐺
𝐿

Can we also suppress the references to side outputs on the
right of the scheduling type?

Weaving Paths

𝐼

𝐺0 𝛿1 𝐿5 𝛿1

𝐺1

𝛿2

𝐿6
𝐺3

𝐿7 𝛿1 𝛿1 𝛿3

𝐺2

𝛿2

𝑆 𝐿9

𝛿2 𝑇

𝐿10

𝛿2 𝑈 𝐿11

𝑅

𝑡0

𝑡1

Playing The Maze Game

𝑃 ∷ = 𝐺 nothing
emit 𝑠
present 𝑠 then 𝑃 end
present 𝑠 else 𝑃 end
𝑃 ∣∣ 𝑃
𝑃 ; 𝑃
signal 𝑠 in 𝑃 end

∣ ! 𝑠
∣ 𝑠+? 𝑃
∣ 𝑠−? (𝑃)
∣ 𝑃 ∣ 𝑃
∣ 𝑃 ; 𝑃
∣ 𝑃\s

Esterel more general choice statement:
 present 𝑠 then 𝑃1else 𝑃2 end
can be recovered by the construct:
 𝑠+? 𝑃1 ∣ 𝑠−? 𝑃2 .

Formalising Mazes

Mazes are finite graphs with two types of directed edges,
namely visible and secret.

These graphs are represented as systems of unfolding rules

𝑀 ≔ 𝑥 ⇐ 𝑚𝑥 𝑥∈V

in a language of mazes, for some finite set of variables 𝑉
representing rooms and maze terms 𝑚𝑥 .

We write 𝑚 𝑚𝑚/𝑥 for the syntactic substitution that
replaces all free occurrences of 𝑥 by term 𝑚′ in 𝑚.

Formalising Mazes

Maze terms are defined in a process algebraic fashion:

𝑚 ≔ 𝐺 ∣ 𝑥 ∣ 𝜄.𝑚 ∣ 𝜏.𝑚 ∣ �𝑚𝑖
𝑖 ∈ 𝐼

∣ 𝜇𝑥.𝑚

Intuitively, 𝐺 is a dungeon, 𝜄.𝑚 (𝜏.𝑚) represents a room
with a visible (secret) corridor to room 𝑚.

∑ 𝑚𝑖𝑖 ∈ 𝐼 corresponds to a room that merges all rooms 𝑚𝑖
with 𝑖 ∈ 𝐼 and we write 𝑚1 + 𝑚2 for ∑ 𝑚𝑖𝑖 ∈{1,2} .

If 𝑥 ⇐ 𝑚𝑥 is the unfolding rule defining room 𝑥 then 𝑥
corresponds to the term 𝑚𝑥 and 𝜇𝑥.𝑚𝑥 is the least fixed-
point solution for 𝑥.

Formalising Mazes

The game-theoretic semantics of maze 𝑀 requires the
introduction of a labelled transition system ℳ, 𝜄, 𝜏 ,⟶
where ℳ is the set of rooms, 𝜄, 𝜏 is the alphabet and ⟶
is the transition relation representing corridors defined by:

where 𝛾 ranges over 𝜄, 𝜏 .

𝛾.𝑚
 γ

 𝑚
 𝑚𝑗

 γ
 𝑚𝑗

′

∑ 𝑚𝑖𝑖∈I
 γ

 𝑚𝑗
′

 𝑗 ∈ 𝐼

𝑚
 γ

 𝑚′

𝑥
 γ

 𝑚′
 𝑥 ⇐ 𝑚

𝑚 𝜇𝑥.𝑚/𝑥
 γ

 𝑚′

𝜇𝑥.𝑚
 γ

 𝑚′

Formalising Mazes

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

𝑎 ⇐ 𝜄. 𝐺

Formalising Mazes

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

𝑎 ⇐ 𝜄. 𝐺

𝑏 ⇐ 𝜄. 𝜄.𝑑

Formalising Mazes

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

𝑎 ⇐ 𝜄. 𝐺

𝑏 ⇐ 𝜄. 𝜄.𝑑

𝑐 ⇐ 𝜄. (𝜄. 𝑏 + 𝜏. 𝑎)

Formalising Mazes

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

𝑎 ⇐ 𝜄. 𝐺

𝑏 ⇐ 𝜄. 𝜄.𝑑

𝑐 ⇐ 𝜄. (𝜄. 𝑏 + 𝜏. 𝑎)

𝑑 ⇐ 𝐺

Formalising Mazes

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

𝑎 ⇐ 𝜄. 𝐺

𝑏 ⇐ 𝜄. 𝜄.𝑑

𝑐 ⇐ 𝜄. (𝜄. 𝑏 + 𝜏. 𝑎)

𝑑 ⇐ 𝐺

𝑒 ⇐ 𝜄. (𝜏. 𝑏 + 𝜄.𝑔)

Game Semantics

A maze play is determined by the players’ strategies.

A strategy is a (partial) function: 𝛼 ∶ ℳ → 𝜄, 𝜏 × ℳ such
that , for all 𝑚 ∈ ℳ if 𝛼 𝑚 = (𝛼1 𝑚 ,𝛼2 𝑚) is defined
then

𝑚 𝛼2(𝑚)
𝛼1(𝑚)

A strategy does not depend on the opponent’s strategy or
on a play history.

Game Semantics

Given strategies 𝛼 and 𝛽 for players 𝑃 and 𝑂, the play
𝑝𝑝𝑎𝑝(𝛼,𝛽,𝑚) is the maximal path in 𝑀 starting in room 𝑚
with player 𝑃.

A player has a winning strategy, if he is always able to drive
his opponent into a dungeon no matter which strategy his
opponent employs and always assuming that 𝑃 starts the
game.

If player 𝑃 has a winning strategy for room 𝑥, then 𝑥 is a
winning position. If player 𝑂 has a winning strategy, then 𝑥
is a losing position.

Game Semantics

If both players can always avoid dungeons, thus engaging
in infinite plays, neither player wins and the play ends in a
draw.

A position that is neither a wining or a losing position is
referred to as a draw position.

Technically, strategies within a maze 𝑀 correspond to the
must- and cannot-analysis (Esterel) of the associated
program, which forms the basis of Esterel causality
analysis.

Game Semantics

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

Game Semantics

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

Game Semantics

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

Game Semantics

𝑐

𝑡6

𝑎

ℎ 𝑓

𝑏 𝑑

𝑔

𝑒

𝑡0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 submaze
𝑀2

submaze
𝑀1

Representing Programs as Mazes

With each program 𝑃, we associate a maze:

The elements in 𝑆 ∪ {𝜆, 𝛿} play the role of term variables
representing rooms.

There is no rule 𝛿 ⇐ 𝑃 𝛿 for the connecting variable 𝛿.

In general, 𝑃 𝑎 with describes the game conforming to
𝑃 that can be played starting in room 𝑎 modulo some
conditions (dependencies) yet to be defined where
instances of 𝛿 appear.

𝑀 ≔ 𝑎 ⇐ 𝑃 𝑎 𝐺/𝛿 𝑎∈𝑆∪{𝜆}

Representing Programs as Mazes

〈 𝐺 〉

〈 ! 𝑎 〉 𝑎

〈 𝑠+? ! 𝑎 〉 𝑎 𝑠

〈 𝑠−? ! 𝑎 〉 𝑎 𝑠

Representing Programs as Mazes

〈 𝑥+?𝑝−? !𝑎 〉

〈 𝑥+? ! 𝑎 𝑝+? !𝑎 〉

𝑎 𝑥

𝑝

𝑥

𝑝

𝑎

Representing Programs as Mazes

𝑎1

𝑎2 𝑡

𝑎2′

𝑃1 𝑎

𝑃1 𝜆 𝑃2 𝑎

𝑃1;𝑃2 𝑎 ≔ 𝜏. 𝑃1 𝑎 + 𝜄. (𝜄. 𝑃1 𝜆 + 𝜄. 𝑃2 𝑎)

𝑎

𝒂𝟏 𝒕 𝒂𝟐 𝒂
W 𝜒 𝜒 W
L W 𝜒 𝜒
L D W D
L D L L
L D D D
D D 𝜒 D

Representing Programs as Mazes
〈 (𝑠+? !𝑎 ! 𝑠) \ 𝑠 ∣ 𝑠+? ! 𝑏 〉

𝑎

𝑎2

𝑎1

𝑠 𝑠1

𝑠2

𝑏

𝑏1

𝑏2

L W

W

L

W
W

W

L

W
W

W
emit 𝑠

Representing Programs as Mazes
〈 (𝑠+? !𝑎 ! 𝑠) \ 𝑠 ∣ 𝑠+? ! 𝑏 〉

𝑎

𝑎2

𝑎1

𝜇𝑠 𝑠

𝑠1 𝑠2

𝑏

𝑏1

𝑏2

local 𝑠 global 𝑠

L W

W

L

W
W

W

L L

L

W

L L
L

L L

emit 𝑠

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2
[𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2
[𝐺,𝐺]

[⊥,∞]

[𝐺,𝐺]

[⊥,∞]

[𝐺,𝐺]

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2
[𝐺,𝐺]

[⊥,∞]

[𝐺,𝐺]

[𝐺,𝐺]

[𝐺,𝐺]

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2
[𝐺,𝐺]

[𝐺,𝐺]

[𝐺,𝐺]

[𝐺,𝐺]

[𝐺,𝐺]

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2

Non-combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2
[𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

⋅ +

+

𝑥

𝑠3 𝑠1

𝑠2

𝑝

𝑝

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥

𝑠2 = (𝑠2 + 𝑥) + 𝑥 ⋅ 𝑠2
𝑠2 = (𝑠2 ⋅ 𝑥) + 𝑥 ⋅ 𝑠2
𝑠2 = 𝑥 ⋅ 𝑠2 + 𝑠2 = 𝑥

𝑝

𝑝

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃

𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃

𝑃
𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃
𝑃

𝑃
𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃
𝑃

𝑃

𝑂

𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃
𝑃

𝑃

𝑂

𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃
𝑃

𝑃

𝑂

𝑂

𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃
𝑃

𝑃

𝑂

𝑂

𝑂
𝑠2 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑂

𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑂

𝑃
𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[⊥,∞]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑂

𝑃

𝑃
𝑃

𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[𝐺,𝐺]

[⊥,∞]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑂

𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺]

[⊥,∞]

[𝐺,𝐺]

[𝐺,𝐺]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑂
𝑂

𝑃
𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺
s3 = 𝑥 ⋅ 𝑥 = 𝑥

Combinational (Ternary, UNI) System

𝑠1 = 𝑠2 + 𝑥
s2 = 𝑠1 + 𝑠3
𝑠3 = 𝑥 ⋅ 𝑠2

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3)

𝑠2

𝑠1 𝑠3

𝑥 [𝐺,𝐺] [𝐺,𝐺]

[𝐺,𝐺]
𝑝

𝑝

𝑃,𝑂

𝑃 [𝐺,𝐺]

𝑂
𝑂

𝑃
[𝐺,𝐺]
𝑃

𝑠2 = 𝑥
𝑠1 = 𝑥 + 𝑥 = 𝐺
s3 = 𝑥 ⋅ 𝑥 = 𝑥

Discussion

Is Timing Analysis a Refinement of Causality Analysis?

Timed Esterel Games are computationally equivalent to
Timed Ternary Simulation.

Timing Analysis = Causality Analysis + Time?

Because Mazes are logic specifications of execution
schedules that can be used together with time information.

Discussion

What is WCRT anyway?

It is the minimal upper bound on the reaction time.

By definition WCRT determines exact timing.

𝑊𝑊𝑅𝑇1 =
𝑊𝑊𝑅𝑇2 =
𝑊𝑊𝑅𝑇3 =

Discussion

What is WCRT anyway?

MUST prove that a WCRT algorithm delivers exact results.

But with respect to what model (abstraction)?

Mazes are flexible structures that allows us to consider
different levels of atomicity, constraints on the schedule,
etc.

Discussion

What is WCRT anyway?

WCRT no schedule takes more time, this requires/involves
causality. It is neither simpler, in principle, nor more
difficult than causality analysis.

However, Causality/combinational property depends on
level of abstraction & atomicity of scheduling, scheduling
model (concurrent, multithreading, …)

HERE: Esterel-style WCRT concurrent, non-inertial delays
(„Chaos“ [Burch‘92]) algorithms based on maze games.

	Is Timing Analysis a Refinement of Causality Analysis?
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	Foliennummer 71
	Foliennummer 72
	Foliennummer 73
	Foliennummer 74
	Foliennummer 75
	Foliennummer 76
	Foliennummer 77
	Foliennummer 78
	Foliennummer 79
	Foliennummer 80
	Foliennummer 81
	Foliennummer 82
	Foliennummer 83
	Foliennummer 84
	Foliennummer 85
	Foliennummer 86
	Foliennummer 87
	Foliennummer 88
	Foliennummer 89
	Foliennummer 90

