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Why Causality Analysis is Important 

Causality analysis needs to be taken seriously. 
 
“For acyclic circuits the analysis is unnecessary, only a 
problem for Esterel not for other languages such as Lustre” 
 
The key difference between cyber physical and embedded 
systems is that the former are subject to strong physical 
control. The term "cyber" comes from "Kybernetik" and 
means control loops.  
 
But control loops are (instantaneous) cyclic interactions, 
and causality analysis (stability, convergence)  is an 
essential ingredient in control theory!  
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Program of the Maze 

emit a       || 
present d then emit b end   || 
present a then  
 present d else emit f end 
end        || 
present a else  
 present b then emit c end 
end       || 
present e then emit h end  || 
present b else  
 present g then emit e end 
end       || 
present e then emit g end 



Sequential Block 

𝑣1: present I 

𝑣3: present I 

𝑣2: emit R 

𝑣4: goto 
𝑣5: emit S 

𝑣6: emit T 

𝑣7: emit U 
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Sequential Block + Timing Information 

𝑣1: present I 

𝑣3: present I 

𝑣2: emit R 

𝑣4: goto 
𝑣5: emit S 

𝑣6: emit T 
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Two-Player Timed Maze 
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WCRT Interface Algebra 
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WCRT Interface Algebra 

𝑣1+ = 𝛿1 :𝐺𝐺 ∧ 𝐼 ⊃ ∘ 𝐿𝐿 
𝑣1− = 𝛿1 :𝐺𝐺 ∧ ¬𝐼 ⊃ ∘ 𝐺𝐺 
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𝑣6 = 𝛿2 : 𝐿𝐿 ⊃ ∘ 𝐿𝐺𝐺 

This specification is open: It does not preclude that the 
context adds extra jumps into or emissions in G.  
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WCRT Interface Algebra 
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The WCRT for G amounts to obtaining the worst-case 
(tightest) bound 𝛿 such that: 
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≼ 𝛿 :  𝐺𝐺 ∧ (𝐼 ⊕ ¬𝐼) ⊃ ∘ 𝐿𝐺𝐺 

where 𝜑 ≼ 𝜓  (models inclusion): All schedules that satisfy 
𝜑 also satisfy 𝜓. 
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Assume that for the WCRT we are not interested in the 
exact timing of the side inputs. 
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𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

⋅  
𝐺
−∞
−∞

=
𝐺
𝐺
𝐿

 

:  𝐺𝐺 ∨ 𝐿𝐺𝐺 ∨ 𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺 



Weaving Paths 

𝐺0 𝐺 𝐿5 𝐺 

𝐿6 

𝐿7 𝐺 𝐺 

𝐺2 

𝐿10 

𝐺 𝑈 𝐿11 

𝑅 

𝑡0 

𝑡1 

⊕ 

⊕ 
side input 



Weaving Paths 

𝐺0 𝐺 𝐺1 𝑡0 

⊕ 

𝐺0 𝐺 

𝐺1 

𝑡0 

⊕ 



Weaving Paths 

:  𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺 

𝐺𝐺 ∧ ¬𝐺𝐺 ∧ ¬𝐺𝐺 ⊃ ∘ 𝑓 ⊕ ∘ 𝑓 ⊕ ∘ 𝐿𝐺𝐺 

𝐺 −∞ −∞
𝐺 −∞ 𝐺
𝐿 𝐺 𝐺

⋅  
𝐺
−∞
−∞

=
𝐺
𝐺
𝐿

 

:  𝐺𝐺 ⊃ ∘ 𝐺𝐺⊕ ∘ 𝐺𝐺⊕ ∘ 𝐿𝐺𝐺 
𝐺
𝐺
𝐿

 

Can we also suppress the references to side outputs on the 
right of the scheduling type? 



Weaving Paths 

𝐼 

𝐺0 𝛿1 𝐿5 𝛿1 

𝐺1 

𝛿2 

𝐿6 
𝐺3 

𝐿7 𝛿1 𝛿1 𝛿3 

𝐺2 

𝛿2 

𝑆 𝐿9 

𝛿2 𝑇 

𝐿10 

𝛿2 𝑈 𝐿11 

𝑅 

𝑡0 

𝑡1 



Playing The Maze Game 

𝑃 ∷ =      𝐺 nothing 
emit 𝑠 
present 𝑠 then 𝑃 end 
present 𝑠 else 𝑃 end 
𝑃 ∣∣ 𝑃 
𝑃 ;  𝑃 
signal 𝑠 in 𝑃 end 

∣    ! 𝑠 
∣    𝑠+? 𝑃  
∣    𝑠−? (𝑃) 
∣    𝑃 ∣ 𝑃 
∣    𝑃 ;  𝑃 
∣    𝑃\s 

Esterel more general choice statement: 
 present 𝑠 then 𝑃1else 𝑃2 end  
can be recovered by the construct:  
 𝑠+? 𝑃1 ∣ 𝑠−? 𝑃2 .  



Formalising Mazes 

Mazes are finite graphs with two types of directed edges, 
namely visible and secret. 
 
These graphs are represented as systems of unfolding rules 

𝑀 ≔ 𝑥 ⇐ 𝑚𝑥 𝑥∈V 

in a language of mazes, for some finite set  of variables 𝑉 
representing rooms and maze terms 𝑚𝑥 . 
 
We write 𝑚 𝑚𝑚/𝑥  for the syntactic substitution that 
replaces all free occurrences of 𝑥 by term 𝑚′ in 𝑚.  



Formalising Mazes 

Maze terms are defined in a process algebraic fashion: 

𝑚 ≔ 𝐺 ∣ 𝑥 ∣ 𝜄.𝑚 ∣ 𝜏.𝑚 ∣ �𝑚𝑖  
𝑖 ∈ 𝐼

∣ 𝜇𝑥.𝑚 

Intuitively, 𝐺 is a dungeon, 𝜄.𝑚 (𝜏.𝑚) represents a room 
with a visible (secret) corridor to room 𝑚.  
 
∑ 𝑚𝑖𝑖 ∈ 𝐼  corresponds to a room that merges all rooms 𝑚𝑖   
with 𝑖 ∈ 𝐼 and we write 𝑚1 + 𝑚2 for ∑ 𝑚𝑖𝑖 ∈{1,2} . 
 
If 𝑥 ⇐ 𝑚𝑥 is the unfolding rule defining room 𝑥 then 𝑥 
corresponds to the term 𝑚𝑥 and 𝜇𝑥.𝑚𝑥 is the least fixed-
point solution for 𝑥.   



Formalising Mazes 

The game-theoretic semantics of maze 𝑀 requires the 
introduction of a labelled transition system ℳ, 𝜄, 𝜏 ,⟶  
where ℳ is the set of rooms, 𝜄, 𝜏  is the alphabet and ⟶ 
is the transition relation representing corridors defined by: 

where 𝛾 ranges over 𝜄, 𝜏 . 

𝛾.𝑚
  γ  

 𝑚
 𝑚𝑗

  γ  
 𝑚𝑗

′

∑ 𝑚𝑖𝑖∈I
  γ  

 𝑚𝑗
′

 𝑗 ∈ 𝐼 

𝑚 
  γ  

 𝑚′

𝑥 
  γ  

 𝑚′
 𝑥 ⇐ 𝑚 

𝑚 𝜇𝑥.𝑚/𝑥
  γ  

 𝑚′

𝜇𝑥.𝑚 
  γ  

 𝑚′
 



Formalising Mazes 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 

𝑎 ⇐ 𝜄. 𝐺 



Formalising Mazes 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 

𝑎 ⇐ 𝜄. 𝐺 

𝑏 ⇐ 𝜄. 𝜄.𝑑  



Formalising Mazes 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 

𝑎 ⇐ 𝜄. 𝐺 

𝑏 ⇐ 𝜄. 𝜄.𝑑  

𝑐 ⇐ 𝜄. (𝜄. 𝑏 + 𝜏. 𝑎)  



Formalising Mazes 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 

𝑎 ⇐ 𝜄. 𝐺 

𝑏 ⇐ 𝜄. 𝜄.𝑑  

𝑐 ⇐ 𝜄. (𝜄. 𝑏 + 𝜏. 𝑎)  

𝑑 ⇐ 𝐺  



Formalising Mazes 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 

𝑎 ⇐ 𝜄. 𝐺 

𝑏 ⇐ 𝜄. 𝜄.𝑑  

𝑐 ⇐ 𝜄. (𝜄. 𝑏 + 𝜏. 𝑎)  

𝑑 ⇐ 𝐺  

𝑒 ⇐ 𝜄. (𝜏. 𝑏 + 𝜄.𝑔)  



Game Semantics 

A maze play is determined by the players’ strategies. 
 
A strategy is a (partial) function: 𝛼 ∶ ℳ → 𝜄, 𝜏 × ℳ such 
that , for all  𝑚 ∈ ℳ if 𝛼 𝑚 = (𝛼1 𝑚 ,𝛼2 𝑚 ) is defined 
then  

𝑚 𝛼2(𝑚) 
𝛼1(𝑚) 

A strategy does not depend on the opponent’s strategy or 
on a play history.   



Game Semantics 

Given strategies 𝛼 and 𝛽  for players 𝑃 and 𝑂, the play 
𝑝𝑝𝑎𝑝(𝛼,𝛽,𝑚) is the maximal path in 𝑀 starting in room 𝑚  
with player 𝑃. 
 
A player has a winning strategy, if he is always able to drive 
his opponent into a dungeon no matter which strategy his 
opponent employs and always assuming that 𝑃 starts the 
game. 
 
If player 𝑃 has a winning strategy for room 𝑥, then 𝑥  is a 
winning position. If player 𝑂 has a winning strategy, then 𝑥 
is a losing position. 



Game Semantics 

If both players can always avoid dungeons, thus engaging 
in infinite plays, neither player wins and the play ends in a 
draw. 
 
A position that is neither a wining or a losing position is 
referred to as a draw position. 
 
Technically, strategies within a maze 𝑀 correspond to the 
must- and cannot-analysis (Esterel) of the associated 
program, which forms the basis of Esterel causality 
analysis.  



Game Semantics 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 



Game Semantics 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 



Game Semantics 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 



Game Semantics 

𝑐 

𝑡6 

𝑎 

ℎ 𝑓 

𝑏 𝑑 

𝑔 

𝑒 

𝑡0 

𝑡1 

𝑡2 𝑡3 𝑡4 

𝑡5 submaze 
𝑀2 

submaze 
𝑀1 



Representing Programs as Mazes 

With each program 𝑃, we associate a maze: 

The elements in 𝑆 ∪ {𝜆, 𝛿} play the role of term variables 
representing rooms. 
 
There is no rule 𝛿 ⇐ 𝑃 𝛿  for the connecting variable 𝛿. 
 
In general, 𝑃 𝑎 with describes the game conforming to 
𝑃 that can be played starting in room 𝑎 modulo some 
conditions (dependencies) yet to be defined where 
instances of 𝛿 appear.  

𝑀 ≔ 𝑎 ⇐ 𝑃 𝑎 𝐺/𝛿 𝑎∈𝑆∪{𝜆}    



Representing Programs as Mazes 

〈 𝐺 〉 

〈 ! 𝑎 〉 𝑎 

〈 𝑠+? ! 𝑎 〉 𝑎 𝑠 

〈 𝑠−? ! 𝑎 〉 𝑎 𝑠 



Representing Programs as Mazes 

〈 𝑥+?𝑝−? !𝑎 〉 

〈 𝑥+? ! 𝑎 𝑝+? !𝑎 〉 

𝑎 𝑥 

𝑝 

𝑥 

𝑝 

𝑎 



Representing Programs as Mazes 

𝑎1 

𝑎2 𝑡 

𝑎2′  

𝑃1 𝑎 

𝑃1 𝜆 𝑃2 𝑎 

𝑃1;𝑃2 𝑎  ≔  𝜏. 𝑃1 𝑎 + 𝜄. (𝜄. 𝑃1 𝜆 + 𝜄. 𝑃2 𝑎) 

𝑎 

𝒂𝟏 𝒕 𝒂𝟐 𝒂 
W 𝜒 𝜒 W 
L W 𝜒 𝜒 
L D W D 
L D L L 
L D D D 
D D 𝜒 D 



Representing Programs as Mazes 
〈 (𝑠+? !𝑎 ! 𝑠) \ 𝑠 ∣ 𝑠+? ! 𝑏 〉 

𝑎 

𝑎2 

𝑎1 

𝑠 𝑠1 

𝑠2 

𝑏 

𝑏1 

𝑏2 

L W 

W 

L 

W 
W 

W 

L 

W 
W 

W 
emit 𝑠 



Representing Programs as Mazes 
〈 (𝑠+? !𝑎 ! 𝑠) \ 𝑠 ∣ 𝑠+? ! 𝑏 〉 

𝑎 

𝑎2 

𝑎1 

𝜇𝑠 𝑠 

𝑠1 𝑠2 

𝑏 

𝑏1 

𝑏2 

local 𝑠 global 𝑠 

L W 

W 

L 

W 
W 

W 

L L 

L 

W 

L L 
L 

L L 

emit 𝑠 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 
[𝐺,𝐺] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 
[𝐺,𝐺] 

[⊥,∞] 

[𝐺,𝐺] 

[⊥,∞] 

[𝐺,𝐺] 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 
[𝐺,𝐺] 

[⊥,∞] 

[𝐺,𝐺] 

[𝐺,𝐺] 

[𝐺,𝐺] 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 
[𝐺,𝐺] 

[𝐺,𝐺] 

[𝐺,𝐺] 

[𝐺,𝐺] 

[𝐺,𝐺] 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 



Non-combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 
[𝐺,𝐺] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 



Combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

⋅ + 

+ 

𝑥 

𝑠3 𝑠1 

𝑠2 

𝑝 

𝑝 



Combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 

𝑠2 = (𝑠2 + 𝑥) + 𝑥 ⋅ 𝑠2   
𝑠2 = (𝑠2 ⋅ 𝑥) + 𝑥 ⋅ 𝑠2   
𝑠2 = 𝑥 ⋅ 𝑠2 + 𝑠2 = 𝑥   

𝑝 

𝑝 



Combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 [𝐺,𝐺] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 
𝑝 

𝑝 

𝑃,𝑂 

𝑃 

𝑠2 = 𝑥   



Combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
s2 = 𝑠1 + 𝑠3  
𝑠3 = 𝑥 ⋅ 𝑠2 

𝑠2+? ! 𝑠1 ∣ 𝑥+? ! 𝑠1 ∣ 𝑠1−? ! 𝑠2 ∣ 
𝑠3+? ! 𝑠2 ∣ 𝑥−? 𝑠2+? (! 𝑠3) 

𝑠2 

𝑠1 𝑠3 

𝑥 [𝐺,𝐺] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 

[⊥,∞] 
𝑝 

𝑝 

𝑃,𝑂 

𝑃 

𝑃 
𝑠2 = 𝑥   



Combinational (Ternary, UNI) System 

𝑠1 = 𝑠2 + 𝑥  
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Discussion 

Is Timing Analysis a Refinement of Causality Analysis? 
 
Timed Esterel Games are computationally equivalent to 
Timed Ternary Simulation. 
  
Timing Analysis = Causality Analysis + Time? 
 
Because Mazes are logic specifications of execution 
schedules that can be used together with time information. 



Discussion 

What is WCRT anyway? 
 
It is the minimal upper bound on the reaction time. 
 
By definition WCRT determines exact timing. 

𝑊𝑊𝑅𝑇1 = 
𝑊𝑊𝑅𝑇2 = 
𝑊𝑊𝑅𝑇3 = 



Discussion 

What is WCRT anyway? 
 
MUST prove that a WCRT algorithm delivers exact results. 
 
But with respect to what model (abstraction)? 
 
Mazes are flexible structures that allows us to consider 
different levels of atomicity, constraints on the schedule, 
etc. 



Discussion 

What is WCRT anyway? 
 
WCRT no schedule takes more time, this requires/involves 
causality. It is neither simpler, in principle, nor more 
difficult than causality analysis. 
 
However, Causality/combinational property depends on 
level of abstraction & atomicity of scheduling, scheduling 
model (concurrent, multithreading, …) 
 
HERE: Esterel-style WCRT concurrent, non-inertial delays 
(„Chaos“ [Burch‘92]) algorithms based on maze games. 
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