Sequentially Constructive

*
Concurrency

A conservative extension of the
Synchronous Model of Computation

Reinhard v. Hanxleden!, Michael Mendler?, J. Aguado?,
Bjorn Duderstadt?, Insa Fuhrmann?, Christian Motikal,
Stephen Mercer® and Owen Brian3

" to appear at DATE, Grenoble, March 2013

1 University of Kiel, 2 University of Bamberg, 3 National Instruments

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Meotivation (Taming Concurrency)

S nchronous Languages
Esterel Lustre, Signal, ..

Clocked, cyclic schedule

o by default: single writer per
cycle, all reads initialised

e on demand: separate
multiple assignments by
clock barrier (pause, wait)

Declarative

« all micro-step sequential
control flow descriptive
\ * resolved by scheduler

™,

von Hanxleden, et al.

éequential Languages \

C, Java, ...

Asynchronous schedule

e by default: multiple con-
current readers/writers

e on demand: single assign-
ment synchronisation
(locks, semaphores)

Imperative

« all sequential control flow
prescriptive

\ * resolved by programmer

\' N

.-"/"

Synchron 2012, Port aux Rocs, 20.11.12

Meotivation (Taming Concurrency)

/ éynchronous Languageé\ / __Sequential Languages \

Esterel, Lustre, Signal, ... C, Java, ...

Clocked, cyclic schedule Asynchronous schedule
Udeterministic A No guarantees of
concurrency and determinism or

deadlock freedom deadlock freedom

X Heavy restrictions by
\ constructiveness analysis /

U Intuitive programming
paradigm J

.

(Sequentially Constructive Model of Computation (SC MoC) A

» all micro-step concurrent e all micro-step sequential
control flow descriptive control flow is prescriptive
* resolved by scheduler * resolved by programmer

M

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Qutline

1. Example
2. Threads and Concurrency
3. Sequential Constructiveness (SC)

4. Analysing SC

5. Notions of Constructiveness

A Sequentially Constructive Program

/ Control <= Threads
| ekeckreq
grant _
Request < Dispateh
req pend grant free
® v \L ®

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

A Sequentially Constructive Program

Req_entry:
pend = false ;
if req then

checkReq =req ;

pause ;
goto Req_entry;

N

req

von Hanxleden, et al.

pend = true ;

if pend && grant then
pend = false ;

Control

checkReq

N

grant

yd
~

pend

v

grant

Dis_entry :

grant = false ;

if checkReq && free then
grant = true ;

pause ;

goto Dis_entry;

Synchron 2012, Port aux Rocs, 20.11.12

N

free

A Sequentially Constructive Program

Req_entry:

pend = false ; F Dis_entry :

ifreq then grant = false; —
pend = true ; = T if checkReq && free th@

checkReq =req ; grant = true ;

if pend && grant then| / _PAUSE ; —mmmmmmmmmmmee gt
pend = false ; 7 goto Dis_entry;

——- PAUSE ; ~=-mmmmmmmee - N F
goto Req_entry;

Imperative Program Order (Sequential access to share variables):
e write-after-write” can change value sequentially (multi-writer)
o fully deterministic at thread level

* but not permitted in standard synchronous MoC

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

A Sequentially Constructive Program

SC MoC: Intra-instant (micro-step) thread
scheduling prohibits race conditions ...

Req_entry:
pend = false ; Dis_entry :
if req theznd e WL grant = false ;
pend = '~ wr __if checkReq && free then

checkReq =req ;

, grant = true ;
if pend && grant_then
Wr ause ;
goto Dis_entry;

pause ;
goto Req_entry;

Concurrency Scheduling Constraints (access to shared variables):
o “write-before-read” for concurrent write/reads
o write-before-write* for concurrent & conflicting writes (see later)

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Qutline

1. Example

2. Threads and Concurrency

3. Sequential Constructiveness (SC)

4. Analysing SC

5. Notions of Constructiveness

Sequential-Concurrent Program Graph (SCG)

entry — ()

4N (ca,,[ork Prescrlbes the stafic -égPolog7
(D of +the Compu\‘dhbfl :

S@?Kenél'aé ea(ges ‘—__?seg
+tick, edges — Lick

concurrent hodes <> |

least common ancestor fork
Ceafork(n,)

%
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 13

exit—> O

Intra-lnstant Concurrency

entry — Static thread concurrency is not
sufficient to capture run-time
concurrency!
exit—> O

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

14

Intra-lnstant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Consider the assighments y = 1 and
y = 2 in the SCG.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

15

Intra-lnstant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Consider the assignments y = 1 and
y = 2 in the SCG.

These are in threads t,4 and t,,, and
can be activated in the same tick.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Intra-Instant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Consider the assignments y = 1 and
y = 2 in the SCG.

These are in threads t,4 and t,,, and
can be activated in the same tick.

But they are still sequentially
ordered and thus not run-time
concurrent.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Intra-lnstant Concurrency

entry — O Static thread concurrency is not
AN 7 sufficient to capture run-time
O\ concurrency!
Ly AN YY,
Y ¥ : After the initial tick t; and t, have
=) terminated, and control rest at the
® . S y=2 pause of t22.
v @
AN
@ @
@ @
N
Q4
exit— Q. N

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

18

Intra-lnstant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

After the initial tick t; and t, have
terminated, and control rest at the
pause of ,,.

In the next instant, y = 2 gets
executed and t,, terminates.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

19

Intra-Instant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

After the initial tick t; and t, have
terminated, and control rest at the
pause of t,,.

In the next instant, y = 2 gets
executed and t,, terminates.

Also t,5 and t,, are executed; at the
end, t, terminates.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Intra-lnstant Concurrency

entry — O Static thread concurrency is not
A N> sufficient to capture run-time
>0 \\ concurrency!
tl / \\
Y ¥ : Then, after the loop, t, gets started
y=1 .
= > again.
_ S =2
@
@ @
N
QL
exit— Q. N

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 21

Intra-lnstant Concurrency

entry — O Static thread concurrency is not
AN 7 sufficient to capture run-time
O\ concurrency!
Ly/ t21 £
SR | 1% : Then, after the loop, t, gets started
y=1 .
again.
N Loy =
_ S =2
©® Finally, t,; gets to executed y = 1.
U @
AN
@ @
@ @
N
Q4
exit— QO NV

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 22

Intra-Instant Concurrency

entry — (O
/N~ [2
= N
Ly l21 2>
OYMO) O
y = 1/@C2
SIS =
_ —
O @
N
QO /4
N\~

exit—> O
von Hanxleden, et al.

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Then, after the loop, t, gets started
again.

Finally, t,, gets to executed y = 1.

The factthat y = 1and y = 2 are
not run-time concurrent is because
their executions go back to different
instances of 1.

Synchron 2012, Port aux Rocs, 20.11.12

Intra-lnstant Concurrency

Definition: Two node instances ni; = (nq,iy) and
ni, = (n,,i,) are coneurrent in a macro tick R, denoted
niq |p niy, Iff

e they appear in the micro ticks of R
e they belong to statically concurrent threads
« their threads have been instantiated by the same

Instance of the associated least common ancestor fork.

last(n,i,) = last(n,i,)
n = lcafork(n, n,)

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 24

Qutline

1. Example

2. Threads and Concurrency

3. Sequential Constructiveness (SC)

4. Analysing SC

5. Notions of Constructiveness

Sequential Admissibility

Remember

Sequentially ordered variable accesses
e exhibit no races
e cannot be reordered by the compiler

Only concurrent writes to the same variable
* generate potential data data races

e must be resolved by the compiler

e can be ordered under multi-threading

The following applies to concurrent variable accesses only ...

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

26

Organising Concurrent Variable Accesses

L1 LD L3 L4 /
| f
PENE@ N :fOﬁ —a(F — =
concurrent, single-writer, multi-reader variables [
éfck "-’CA
‘o"?’ confluent relative writes é@/@
identical @OG(HCD e
absolute ™) 7 reads

writes .@—7 U—']] }—?

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

27

Types of Writes

Given two writes to X, distinguish

 Confluent writes, where the order of the writes does not matter
— This implies that there are no side effects

 Non-confluent writes, where the order of the writes matters
Given one write to X, distinguish

* Absolute writes (“initialisation”)
— X=e
— Expression e does not constitute relative write (see below)
— Eg,x=0,x=2% +5,x=f(2)

« Relative writes (“increments”)

— x=1(x, e)
— Combination function f such that f(f(x, e,), e,) = f(f(x, e,), ;)
— Hence schedules "x = f(x, e,); x = f(x, e,)" and "x = f(x, e,); x = f(x, e,)" yield

same result for x — the writes are conflient
— Sufficient condition: fis a commutative and associative
Eg, x++, X =5*X, x =x—-10
Also dlStIﬂgUISh

— Effective writes, which change value of x
— Ineffective writes, that do not change value of x

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

28

Sequential Admissibility

Definition: A run for a SCG G = (N,E) Is S-admissible if, for all
ticks in this run, and for all concurrent node instances

(ny, 1), (N, 1,), with i; - I, and n, |5 n, none of the following
occurs:

® N, and n, perform non-confluent writes on the same
variable

® N, reads avariable, on which
n, then performs an effective write

x N, performs a relative write to a variable, on which
n, then performs an absolute write.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 29

Sequential Constructiveness

The existence of an S-admissible run does not guarantee by
itself determinism!

This program has two
S-admissible runs.

[x = false; y = false]

Depending on which conditional
Is scheduled first,

The resulting memory would be
either:

[Xx=true, y=false]
or
[x=false, y=true]

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 31

Sequential Constructiveness

Definition:
A program is sequentially constructive (SC) if
for each initial configuration and input:

1. there exists an S-admissible run
2. every S-admissible run generates the same,

determinate sequence of macro responses
In bounded time.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

32

Qutline

1. Example
2. Threads and Concurrency

3. Sequential Constructiveness (SC)

4. Analysing SC

5. Notions of Constructiveness

Conservative Static Approximation

» Use arelation n,j n, to over-approximate n, j n.,
l.e., what statements are concurrently invoked
In the same tick,

* Dby considering only static control flow, or
 ignoring dependency on initial conditions, or

Dy falsely considering nodes to be in the same tick.

« QOver-approximate what writes are
 relative and confluent
 absolute and confluent
by not evaluating expressions (combination function).

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

34

Analysing Sequential Constructiveness

In addition to —seqand | the following
static node relations are introduced:

ny <uwyw N iff ny | nyand there exists a variable on which 714
and 1z perform non-confluent writes (e.g., non-identical
absolute writes or relative writes with different combination

function).

ny —wyr N2 iff Ny | nyand nq performs an absolute write to a
variable that is read by n,.

ny —wi N2iff nq | ny and 11 performs an absolute write to a
variable on which 1, performs a relative write.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 35

Analysing Sequential Constructiveness

n, =i N, Iffng | np,and ny performs an relative write to a
variable that is read by n,.

nq _)WiT' n- |ﬁ: Ny 2wy Mo or nq _)Wi noy or nq —ir Ny Th'S
contains the constraints induced by concurrent
write/increment/read accesses.

ny = nylff ng >g,0 n, 0r Ny >y, nythatis, if there is any

control-flow or concurrent-access-induced ordering
constraints.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

36

Analysing Sequential Constructiveness

Definition: A program is acyelie SC (ASC) sehedulable if in its
SCG:

1. There are no statement nodes n,n, With n1 <>ww n2

2. Thereis no — cycle that contains edges induced by

—~wir

Lemma: Every ASC schedulable program is sequentially
constructive.

For a ASC program, an S-admissible schedule is one which
executes concurrent statements in the order induced by ¥ .
Such schedule may be implemented by associating a priority
with each statement node ...

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 37

Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

[checkReq = rqu [grant = false]

pend && grant checkReq && free

true true

[pend = false J [grant = true]

0 priority priority 0
su rface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 38

Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WI
[checkReq = rqu /,/’{ grant = false]

-

checkReq && free

true

Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 39

Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WI
[checkReq = rqu /,/’{ grant = false]

-

checkReq && free

true

[pend = false J WF{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 40

Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WI 1
checkReq =req __--7"| grant=false

-

[pend = false J Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 41

Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WIr WI 1
checkReq=req | ~~-.| _--"7| grant=Tfalse

[pend = false J Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 42

Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

2 WIr WIr 1
checkReq=req | ~~-.| _--77| grant=Tfalse

[pend = false J Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 43

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}“\\ { grant = false] <

[pend = false J Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 44

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

@ Wr Wr 1
-> [checkReq =req | Sseo _--~"| grant =false <

[pend = false J Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 45

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 wWr wr @)
-> [checkReq = req}\\\ { grant = false J <

[pend = false J Wr{ grant = true]
0 0
surface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 46

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}‘*\\ { grant = false] <

[pend = false J Wr{ grant = true] <

0 0
su rface surface

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 ' 47

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}‘*\\ { grant = false] <

[pend = false J Wr{ grant = true

I\ ;
surface surface <

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 48

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}‘*\\ { grant = false] <

-> [pend = false J Wr{ grant = true

I\ ;
surface surface <

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 49

Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr wr 1
-> [checkReq = req}‘*\\ { grant = false] <

Wr

{ grant = true

0 0
surface surface <

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 50

Analysing Sequential Constructiveness

Lemma: A program is ASC schedulable if in its SCG:

1. There are no statement nodes nq,n, withn, <, n,.
2. All statement priorities are finite.

) Longest Weighted Path Problem
* NP hard in presence of non-zero weighted cycles
* However:
 non-zero cycles indicate causality problem (reject)
 ASC constructive programs have zero cycles
o factorises: (a) Strongly Connected Components,
(b) Max Path in DAG
) linear complexity

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 51

Qutline

1. Example
2. Threads and Concurrency

3. Sequential Constructiveness (SC)

4. Analysing SC

5. Notions of Constructiveness

A Game of Constructiveness and Schedulability

logically reactive program

programmer
\ / \ compitier

/ run-time system @
T A
* defines the rules

b fial deadlocks, oscillation,
Prescribes sequentia non-determinism, metastability
execution order

* leaves concurrency
to compiler and run
time

o Free Schedules*

e determines winning
strategy

e restricts concurrency to
ensure determinacy and
deadlock freedom

» ,Admissible Schedules*

e tries to choose a

spoiling execution from
admissible schedules

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 53

X-Constructiveness

Definition:
A program is X-constructive (XC) if
for each initial configuration and input:

1. there exists an X-admissible run
2. every X-admissible run generates the same,

determinate sequence of macro step responses
In bounded time.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

o4

Alternative Notions of Constructiveness

Cyclic concurrent

dependencies. S constructive

Concurrent writes _ _ _
Static cycles, dynamic scheduling

B constructive

Ineffective Specu|ate
Speculate writes on absence
on absence or presence

P constructive L eonstructive

Out-of-order schedule

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 93

Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

Acyelie S constructive

Sequence of values

All programs without the fork-par-join operator
are S constructive but many fail to be B constructive

constructive

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 95

Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

Acyclic S constructive

Sequence of values

If (!x) thenx =1

If (x) thenx=1
elsex=1

If (x&y)thenx=1

/

constructive

P constructive L eonstructive

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 96

Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

Acyclic S constructive

Sequence of values
fork y = x
par if (Ix)thenx=1
join

constructive

L eonstructive

97

P constructive

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

forkif (x) theny=z
par if (!x)thenz=y
join

Acyclic S constructive

Sequence of values

constructive

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 98

Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

forkif (x) theny=z
par if (Ix)thenz=y
join

Acyelie S constructive

Sequence of values

von Hanxleden, et al.

constructive

Synchron 2012, Port aux Rocs, 20.11.12

x=1;

fork if (x) theny =1
par if (y)thenx=1

join

99

Conclusion

This Talk

* Clocked synchronous model of execution for imperative,
shared-memory multi-processing
» Recovers and relaxes Esterel-style synchrony

Future Plans

e Full-scale implementation within PRETSY
(Precision-timed Synchronous Processing)

 Develop approximating algorithms for SC-analysis:
Constructiveness + WCRT

» Detailed semantical study of the class of SC programs
vis-a-vis other classes (Pnueli & Shalev, Berry, Signal, ...)

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 100

Questions

Thank you !

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 101

	Sequentially Constructive Concurrency �A conservative extension of the �Synchronous Model of Computation
	Foliennummer 2
	Foliennummer 3
	Outline
	Foliennummer 5
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Outline
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Outline
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 31
	Foliennummer 32
	Outline
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Outline
	Foliennummer 53
	Foliennummer 54
	Foliennummer 93
	Foliennummer 95
	Foliennummer 96
	Foliennummer 97
	Foliennummer 98
	Foliennummer 99
	Foliennummer 100
	Foliennummer 101

