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Meotivation (Taming Concurrency)

S nchronous Languages
Esterel Lustre, Signal, ..

Clocked, cyclic schedule

o by default: single writer per
cycle, all reads initialised

e on demand: separate
multiple assignments by
clock barrier (pause, wait)

Declarative

« all micro-step sequential
control flow descriptive
\ * resolved by scheduler

™,
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éequential Languages \

C, Java, ...

Asynchronous schedule

e by default: multiple con-
current readers/writers

e on demand: single assign-
ment synchronisation
(locks, semaphores)

Imperative

« all sequential control flow
prescriptive

\ * resolved by programmer

\' N

.-"/"
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Meotivation (Taming Concurrency)

/ éynchronous Languageé\ / __Sequential Languages \

Esterel, Lustre, Signal, ... C, Java, ...

Clocked, cyclic schedule Asynchronous schedule
Udeterministic A No guarantees of
concurrency and determinism or

deadlock freedom deadlock freedom

X Heavy restrictions by
\ constructiveness analysis /

U Intuitive programming
paradigm J

.

( Sequentially Constructive Model of Computation (SC MoC) A

» all micro-step concurrent e all micro-step sequential
control flow descriptive control flow is prescriptive
* resolved by scheduler * resolved by programmer

M
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A Sequentially Constructive Program

/ Control <= Threads
| ekeckreq
grant _
Request < Dispateh
req pend grant free
® v \L ®
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A Sequentially Constructive Program

Req_entry:
pend = false ;
if req then

checkReq =req ;

pause ;
goto Req_entry;

N

req

von Hanxleden, et al.

pend = true ;

if pend && grant then
pend = false ;

Control

checkReq

N

grant

yd
~

pend

v

grant

Dis_entry :

grant = false ;

if checkReq && free then
grant = true ;

pause ;

goto Dis_entry;
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A Sequentially Constructive Program

Req_entry:

pend = false ; F Dis_entry :

ifreq then grant = false; —
pend = true ; = T if checkReq && free th@

checkReq =req ; grant = true ;

if pend && grant then| / _PAUSE ; —mmmmmmmmmmmee gt
pend = false ; 7 goto Dis_entry;

——- PAUSE ; ~=-mmmmmmmee - N F
goto Req_entry;

Imperative Program Order (Sequential access to share variables):
e write-after-write” can change value sequentially (multi-writer)
o fully deterministic at thread level

* but not permitted in standard synchronous MoC
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A Sequentially Constructive Program

SC MoC: Intra-instant (micro-step) thread
scheduling prohibits race conditions ...

Req_entry:
pend = false ; Dis_entry :
if req theznd e WL grant = false ;
pend = '~ wr __if checkReq && free then

checkReq =req ;

, grant = true ;
if pend && grant_then
Wr ause ;
goto Dis_entry;

pause ;
goto Req_entry;

Concurrency Scheduling Constraints (access to shared variables):
o “write-before-read” for concurrent write/reads
o write-before-write* for concurrent & conflicting writes (see later)
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Sequential-Concurrent Program Graph (SCG)

entry — ()

4N (ca,,[ork Prescrlbes the stafic -égPolog7
(D of +the Compu\‘dhbfl :

S@?Kenél'aé ea(ges ‘—__?seg
+tick, edges — Lick

concurrent hodes <> |

least common ancestor fork
Ceafork(n, )

%
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Intra-lnstant Concurrency

entry — Static thread concurrency is not
sufficient to capture run-time
concurrency!
exit—> O
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Intra-lnstant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Consider the assighments y = 1 and
y = 2 in the SCG.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12
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Intra-lnstant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Consider the assignments y = 1 and
y = 2 in the SCG.

These are in threads t,4 and t,,, and
can be activated in the same tick.

exit—> O
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Intra-Instant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Consider the assignments y = 1 and
y = 2 in the SCG.

These are in threads t,4 and t,,, and
can be activated in the same tick.

But they are still sequentially
ordered and thus not run-time
concurrent.

exit—> O
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Intra-lnstant Concurrency

entry — O Static thread concurrency is not
AN 7 sufficient to capture run-time
O\ concurrency!
Ly AN YY,
Y ¥ : After the initial tick t; and t, have
= ) terminated, and control rest at the
® . S y=2 pause of t22.
v @
AN
@ @
@ @
N
Q4
exit— Q. N
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Intra-lnstant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

After the initial tick t; and t, have
terminated, and control rest at the
pause of ,,.

In the next instant, y = 2 gets
executed and t,, terminates.

exit—> O
von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

19



Intra-Instant Concurrency

Static thread concurrency is not
sufficient to capture run-time
concurrency!

After the initial tick t; and t, have
terminated, and control rest at the
pause of t,,.

In the next instant, y = 2 gets
executed and t,, terminates.

Also t,5 and t,, are executed; at the
end, t, terminates.

exit—> O
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Intra-lnstant Concurrency

entry — O Static thread concurrency is not
A N> sufficient to capture run-time
>0 \\ concurrency!
tl / \\
Y ¥ : Then, after the loop, t, gets started
y=1 .
= > again.
_ S =2
@
@ @
N
QL
exit— Q. N
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Intra-lnstant Concurrency

entry — O Static thread concurrency is not
AN 7 sufficient to capture run-time
O\ concurrency!
Ly/ t21 £
SR | 1% : Then, after the loop, t, gets started
y=1 .
again.
N Loy =
_ S =2
©® Finally, t,; gets to executed y = 1.
U @
AN
@ @
@ @
N
Q4
exit— QO NV
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Intra-Instant Concurrency

entry — (O
/N~ [2
= N
Ly l21 2>
OYMO) O
y = 1/@C2
SIS =
_ —
O @
N
QO /4
N\~

exit—> O
von Hanxleden, et al.

Static thread concurrency is not
sufficient to capture run-time
concurrency!

Then, after the loop, t, gets started
again.

Finally, t,, gets to executed y = 1.

The factthat y = 1and y = 2 are
not run-time concurrent is because
their executions go back to different
instances of 1.
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Intra-lnstant Concurrency

Definition: Two node instances ni; = (nq,iy) and
ni, = (n,,i,) are coneurrent in a macro tick R, denoted
niq |p niy, Iff

e they appear in the micro ticks of R
e they belong to statically concurrent threads
« their threads have been instantiated by the same

Instance of the associated least common ancestor fork.

last(n,i,) = last(n,i,)
n = lcafork(n, n,)
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Sequential Admissibility

Remember

Sequentially ordered variable accesses
e exhibit no races
e cannot be reordered by the compiler

Only concurrent writes to the same variable
* generate potential data data races

e must be resolved by the compiler

e can be ordered under multi-threading

The following applies to concurrent variable accesses only ...
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Organising Concurrent Variable Accesses

L1 LD L3 L4 /
| f
PENE@ N :fOﬁ —a(F — =
concurrent, single-writer, multi-reader variables [
éfck "-’CA
‘o"?’ confluent relative writes é@/@
identical @OG(HCD e
absolute ™) 7 reads

writes .@—7 U—'] ] }—?
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Types of Writes

Given two writes to X, distinguish

 Confluent writes, where the order of the writes does not matter
— This implies that there are no side effects

 Non-confluent writes, where the order of the writes matters
Given one write to X, distinguish

* Absolute writes (“initialisation”)
— X=e
— Expression e does not constitute relative write (see below)
— Eg,x=0,x=2% +5,x=f(2)

« Relative writes (“increments”)

— x=1(x, e)
— Combination function f such that f(f(x, e,), e,) = f(f(x, e,), ;)
— Hence schedules "x = f(x, e,); x = f(x, e,)" and "x = f(x, e,); x = f(x, e,)" yield

same result for x — the writes are conflient
— Sufficient condition: fis a commutative and associative
Eg, x++, X =5*X, x =x—-10
Also dlStIﬂgUISh

— Effective writes, which change value of x
— Ineffective writes, that do not change value of x

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12

28



Sequential Admissibility

Definition: A run for a SCG G = (N,E) Is S-admissible if, for all
ticks in this run, and for all concurrent node instances

(ny, 1), (N, 1,), with i; - I, and n, |5 n, none of the following
occurs:

® N, and n, perform non-confluent writes on the same
variable

® N, reads avariable, on which
n, then performs an effective write

x N, performs a relative write to a variable, on which
n, then performs an absolute write.
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Sequential Constructiveness

The existence of an S-admissible run does not guarantee by
itself determinism!

This program has two
S-admissible runs.

[ x = false; y = false ]

Depending on which conditional
Is scheduled first,

The resulting memory would be
either:

[Xx=true, y=false]
or
[x=false, y=true]
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Sequential Constructiveness

Definition:
A program is sequentially constructive (SC) if
for each initial configuration and input:

1. there exists an S-admissible run
2. every S-admissible run generates the same,

determinate sequence of macro responses
In bounded time.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12
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Conservative Static Approximation

» Use arelation n,j n, to over-approximate n, j n.,
l.e., what statements are concurrently invoked
In the same tick,

* Dby considering only static control flow, or
 ignoring dependency on initial conditions, or

Dy falsely considering nodes to be in the same tick.

« QOver-approximate what writes are
 relative and confluent
 absolute and confluent
by not evaluating expressions (combination function).

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12
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Analysing Sequential Constructiveness

In addition to —seqand | the following
static node relations are introduced:

ny <uwyw N iff ny | nyand there exists a variable on which 714
and 1z perform non-confluent writes (e.g., non-identical
absolute writes or relative writes with different combination

function).

ny —wyr N2 iff Ny | nyand nq performs an absolute write to a
variable that is read by n,.

ny —wi N2iff nq | ny and 11 performs an absolute write to a
variable on which 1, performs a relative write.
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Analysing Sequential Constructiveness

n, =i N, Iffng | np,and ny performs an relative write to a
variable that is read by n,.

nq _)WiT' n- |ﬁ: Ny 2wy Mo or nq _)Wi noy or nq —ir Ny Th'S
contains the constraints induced by concurrent
write/increment/read accesses.

ny = nylff ng >g,0 n, 0r Ny >y, nythatis, if there is any

control-flow or concurrent-access-induced ordering
constraints.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12
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Analysing Sequential Constructiveness

Definition: A program is acyelie SC (ASC) sehedulable if in its
SCG:

1. There are no statement nodes n,n, With n1 <>ww n2

2. Thereis no — cycle that contains edges induced by

—~wir

Lemma: Every ASC schedulable program is sequentially
constructive.

For a ASC program, an S-admissible schedule is one which
executes concurrent statements in the order induced by ¥ .
Such schedule may be implemented by associating a priority
with each statement node ...
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

[checkReq = rqu [ grant = false ]

pend && grant checkReq && free

true true

[ pend = false J [ grant = true ]

0 priority priority 0
su rface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WI
[checkReq = rqu /,/’{ grant = false ]

-

checkReq && free

true

Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WI
[checkReq = rqu /,/’{ grant = false ]

-

checkReq && free

true

[ pend = false J WF{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WI 1
checkReq =req __--7"| grant=false

-

[ pend = false J Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

1
A 4

WIr WI 1
checkReq=req | ~~-.| _--"7| grant=Tfalse

[ pend = false J Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule:

2 WIr WIr 1
checkReq=req | ~~-.| _--77| grant=Tfalse

[ pend = false J Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}“\\ { grant = false ] <

[ pend = false J Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

@ Wr Wr 1
-> [checkReq =req | Sseo _--~"| grant =false <

[ pend = false J Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 wWr wr @)
-> [checkReq = req}\\\ { grant = false J <

[ pend = false J Wr{ grant = true ]
0 0
surface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}‘*\\ { grant = false ] <

[ pend = false J Wr{ grant = true ] <

0 0
su rface surface
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}‘*\\ { grant = false ] <

[ pend = false J Wr{ grant = true

I\ ;
surface surface <
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Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr WIr 1
-> [checkReq = req}‘*\\ { grant = false ] <

-> [ pend = false J Wr{ grant = true

I\ ;
surface surface <

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12 49




Analysing Sequential Constructiveness

Priorities and S-admissible schedule: (variables are true initially)

2 WIr wr 1
-> [checkReq = req}‘*\\ { grant = false ] <

Wr

{ grant = true

0 0
surface surface <
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Analysing Sequential Constructiveness

Lemma: A program is ASC schedulable if in its SCG:

1. There are no statement nodes nq,n, withn, <, n,.
2. All statement priorities are finite.

) Longest Weighted Path Problem
* NP hard in presence of non-zero weighted cycles
* However:
 non-zero cycles indicate causality problem (reject)
 ASC constructive programs have zero cycles
o factorises: (a) Strongly Connected Components,
(b) Max Path in DAG
) linear complexity
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A Game of Constructiveness and Schedulability

logically reactive program

programmer
\ / \ compitier

/ run-time system @
T A
* defines the rules

b fial deadlocks, oscillation,
Prescribes sequentia non-determinism, metastability
execution order

* leaves concurrency
to compiler and run
time

o Free Schedules*

e determines winning
strategy

e restricts concurrency to
ensure determinacy and
deadlock freedom

» ,Admissible Schedules*

e tries to choose a

spoiling execution from
admissible schedules
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X-Constructiveness

Definition:
A program is X-constructive (XC) if
for each initial configuration and input:

1. there exists an X-admissible run
2. every X-admissible run generates the same,

determinate sequence of macro step responses
In bounded time.

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12
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Alternative Notions of Constructiveness

Cyclic concurrent

dependencies. S constructive

Concurrent writes _ _ _
Static cycles, dynamic scheduling

B constructive

Ineffective Specu|ate
Speculate writes on absence
on absence or presence

P constructive L eonstructive

Out-of-order schedule
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Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

Acyelie S constructive

Sequence of values

All programs without the fork-par-join operator
are S constructive but many fail to be B constructive

constructive
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Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

Acyclic S constructive

Sequence of values

If (!x) thenx =1

If (x) thenx=1
elsex=1

If (x&y)thenx=1

/

constructive

P constructive L eonstructive
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Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

Acyclic S constructive

Sequence of values
fork y = x
par if (Ix)thenx=1
join

constructive

L eonstructive

97

P constructive

von Hanxleden, et al. Synchron 2012, Port aux Rocs, 20.11.12



Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

forkif (x) theny=z
par if (!x)thenz=y
join

Acyclic S constructive

Sequence of values

constructive
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Alternative Notions of Constructiveness

S constructive

Static cycles, dynamic scheduling

forkif (x) theny=z
par if (Ix)thenz=y
join

Acyelie S constructive

Sequence of values

von Hanxleden, et al.

constructive

Synchron 2012, Port aux Rocs, 20.11.12

x=1;

fork if (x) theny =1
par if (y)thenx=1

join
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Conclusion

This Talk

* Clocked synchronous model of execution for imperative,
shared-memory multi-processing
» Recovers and relaxes Esterel-style synchrony

Future Plans

e Full-scale implementation within PRETSY
(Precision-timed Synchronous Processing)

 Develop approximating algorithms for SC-analysis:
Constructiveness + WCRT

» Detailed semantical study of the class of SC programs
vis-a-vis other classes (Pnueli & Shalev, Berry, Signal, ...)
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Questions

Thank you !
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