
C to Dataflow:
Support for Further

Language Constructs

Jette Petzold and Connor Schönberner

Master Project
October 12, 2021

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M. Sc. Niklas Rentz

Abstract

Andersen introduced the C to dataflow project into Kiel Integrated Environment for Layout Eclipse
Rich Client (KIELER). It translates C source code to actor-based dataflow diagrams and was later
improved by Rentz. C to dataflow aims to augment existing documentation of legacy code. We added
further support for various language constructs: break and continue, pointer, multidimensional arrays,
structs and unions, global variables. However, there are still features that need to be covered. These
unsupported features are ignored and hence not visualized properly. A first evaluation of C to dataflow
is conducted by means of open source software to analyse the usefulness with legacy code.

Acknowledgements

We would like to thank our advisor Niklas Rentz for his advice and constructive feedback on the
implemented visualizations. Furthermore, we want to thank Prof. Dr. Reinhard von Hanxleden for his
feedback and proposing further features, the scope, and focus of the project.

iii

Contents

1 Introduction 1

2 More C to Dataflow Features 3
2.1 Aims . 3
2.2 Multiplexer . 4
2.3 While Loop . 5
2.4 If Statement . 5
2.5 Break and Continue . 5
2.6 Pointer . 8

2.6.1 Return Statement . 10
2.7 Arrays . 11
2.8 Structs and Unions . 11

2.8.1 Pointer Usage . 13
2.8.2 Nested Structs and Arrays as Fields . 14
2.8.3 Designated Initialization . 14

2.9 Global Variables . 15
2.10 Robustness . 16

3 Evaluation 19
3.1 Comparing Struct Visualizations . 20

4 Future Work 23
4.1 Further Loop Improvements . 23
4.2 Better Array Visualization . 23
4.3 Support for Preprocessor Macros . 25
4.4 Recursive Functions Break the Automatic Inlining . 25
4.5 Pointer Improvements . 25
4.6 Further Improvements . 25
4.7 Multi-File Support and Browsing Support . 26
4.8 C++ to Dataflow . 26

4.8.1 Object Orientation . 26
4.8.2 Anti-Pointer Features . 27
4.8.3 Further Features and Functional Features . 27

5 Conclusion 29

Bibliography 31

Abbreviations 33

v

List of Figures

2.1 Difference between multiple small multiplexers and a big one, exemplarily illustrated
for the output of an if statement. 4

2.2 The old and the new visualization of the while statement. 6
2.3 The old and the new visualization of the if statement. 7
2.4 Visualization of the break, showing only the while body. 8
2.5 Visualization of break in nested if statements, showing only the while body. 9
2.6 Visualization of multiple break statements in one while, showing only the while body. 9
2.7 Visualization of a pointer. 10
2.8 Visualization of a return. 11
2.9 Improved array visualization compared to the old array visualization based on code of

Reuter [Reu19]. 12
2.10 Struct visualization that works with a struct modelling complex numbers. 13
2.11 Visualization of nested structs and designated initialization. 14
2.12 Visualization of a global variable. 15
2.13 Visualization of an equation that could not be translated because NULL is not properly

defined. 16
2.14 Visualization of a declaration that could not be translated because NULL is not properly

defined. 16

3.1 Fully inlined visualization of a function taken from the code of Reuter [Reu19], not
readable due to its size. 20

3.2 A function using a struct visualized by the structflow extraction of Andersen [And19].
Graphics taken from [RSA+21]. The function originates from code of [Reu19]. 21

3.3 A function using the struct visualization from Section 2.8. The function originates from
code of [Reu19]. 22

4.1 Proposed improvement for read and write operations on the same array. 24

vii

Chapter 1

Introduction

Maintaining or working with legacy code can be a non-trivial task. Adequate documentation of the
latter can aid in this case [Par11]. It can offer insights into the overall architecture, connections between
components, concepts behind the implementation, and usage of the project or its parts. However,
documentation often tends to be outdated or poorly maintained in the course of a project [LSF03].
This is a consequence of the considerable time investment required for creating and maintaining
a documentation properly. Due to the fact that software projects are often developed under time
constraints, it can happen that a portion of the time for documentation is sacrificed in favour of
implementing or improving features. This leads to inconsistencies and as a result in lack of trust in
the documentation [Par11]. The resulting documentation’s poor state aggravates working with the
project’s code for future developers.

Andersen introduced the C to dataflow project into KIELER [And19]. It translates C source code
to actor-based dataflow diagrams and was later improved by Rentz. Actor-based dataflow models,
shortened to actor models, are a specific type of dataflow models that find usage in model driven
engineering as well as in commercial and academic tools [RSA+21].

In such a model components named actors execute and communicate with other actors. The
interface of actors provides them with an internal state and a behaviour. For this reason, it states how
the actor is allowed to interact with the environment. Communication of actors is conducted over
ports, included in the interface. In addition, there are parameters configuring the operation of an actor.
An actor model also includes communication channels that connect ports and are used to transport
data between them. Communication only is allowed over such channels in actor models. As a result,
actors can only interact with actors to which they are connected over channels [LNW03].

C to dataflow aims not to replace the manual creation process of documentation. Instead it is meant
to augment existing documentation with automatically generated dataflow diagrams [RSA+21]. All in
all, the previous contributions have implemented the core of C to dataflow and support for many core
features of the C language. Building on those, we aimed to improve the existing support of language
features and implement support for not yet supported language features.

Conceptual thoughts and the implementation of our additions are found in Chapter 2. Afterwards,
Chapter 3 examines the usability of C to dataflow for real world code examples. Ideas and concepts
for future work are described in Chapter 4. Eventually, Chapter 5 concludes with a summary of this
project.

1

Chapter 2

More C to Dataflow Features

All implemented additions and conceptual thoughts to them are found in this chapter.
In general, our additions to C to dataflow strive to achieve a set of general aims that are outlined

in Section 2.1. Implementing multiplexers that accept an arbitrary number of inputs was our first
addition to C to dataflow. They are described in Section 2.2. They proved to be useful for several use
cases in the course of our project. We transferred recent improvements for if conditionals to while

loops, see Section 2.3. Those improvements are the original use case for the mentioned multiplexers.
Following their first use, we also introduced them to if statements and adjusted the visualization of if
statements to our improved visualization of while loops, see Section 2.4. Furthermore, we implemented
support for break and continue statements that is described in Section 2.5. In addition, pointer support
was added, including pointer operations, pointers in arguments of functions, and more, see Section 2.6.
Section 2.6.1 describes improvements for the return statement that are a consequence of the previously
listed additions such as pointer support and multiplexers. Advancing the visualization of arrays, C
to dataflow now also supports multidimensional arrays, see Section 2.7. Pointer support as well as
multidimensional array support are used for the newly added struct support which is presented in
Section 2.8. Section 2.9 presents the implementation for support of global variables. It also covers our
new additions such as pointers and structs. Eventually, Section 2.10 covers changes that improve the
reliability and robustness of C to dataflow.

2.1 Aims

In the course of the project we followed three major aims that are the foundation of all implemented
improvements.

1. Ultimately, the aim is to have a complete mapping for all language elements of C to actor-based
dataflow models. This includes that, if feasible, all textual code should be mapped to dataflow
models.

2. The actor-based dataflow models should remain readable. This includes being consistent, clear, and
avoiding clutter.

3. Even if certain language elements are not supported yet, the diagram visualization should not lead
to crashes.

The first two aims can conflict with each other: In some cases synthesizing the complete source code
of a C program can lead to considerably big diagrams. Therefore, it might be a good idea to search for
strategies to reduce the amount of elements of the diagram or even to not visualize certain elements.
One example of such a problem is encountered for the conditions of while loops, see Section 2.3. In
general, such cases need to be handled individually.

3

2. More C to Dataflow Features

2.2 Multiplexer

When using a control statement, values of variables could be different depending on whether the
statement is executed or not. In the visualization this is shown by using a dedicated multiplexer for
each variable, which receives the condition of the control statement as input as well as the two possible
values which the variable can be assigned to. The use of multiple multiplexers — one for each variable
— leads to lots of visual clutter, conflicting with Aim 2 of Section 2.1. This is why they are replaced by
one big multiplexer receiving all variables as input, as seen in Figure 2.1.

_conditional ? then_0x : x

_conditional ? then_0y : y

_conditional ? then_0z : z

(a) A dedicated multiplexer is used
for each variable (x, y, z).

_conditional

then_0x

x

then_0y

y

then_0z

z x
y
z

(b) A single multiplexer is
used for all three variables.

Figure 2.1. Difference between multiple small multiplexers and a big one, exemplarily illustrated for the output of
an if statement.

The conditional input determines which of the inputs are selected as output. If the condition is
true, the first half of the inputs are selected, which are in the example then_0z, then_0y, and then_0x.
Otherwise the other three variables — z, y, and x, — are selected. The skin of the multiplexer is not
properly integrated in the Sequentially Constructive Statecharts (SCCharts) style yet and should be
adjusted in future work.

In order to create such a multiplexer, an actor is created and annotated with the appropriate skin-
path. This actor gets an empty label to avoid overlapping of the port labels with the actor label. The skin
is provided by a file which leads to the appearance of a multiplexer and has two input ports, a south
port for the condition, and one output port. Additionally, the property allowNonFlowPortsToSwitchSides

is set to true, so that the condition port can also be north if this leads to a better layout according
to the used layout algorithm. If more than two input and one output ports are needed, additional
ports are added dynamically. This is the case if more than one variable is present. Additionally, if a
multiplexer has only one input both input ports are fused. Both cases have not been implemented
by us. The actual condition input is connected to the condition’s port by using the annotation toPort

<portName>, whereby the condition’s port name is always “in1”.
Once the transformation for all nodes is finished, the number of a multiplexer’s ports is known. As

a result, the size of the multiplexer is adjusted properly. Furthermore, the ports of a multiplexer are
sorted: First the ones that should be the output if the condition is true, and beneath them the ports for
the values that should be the output if the condition is false. As a reoccurring concept, we use tag
annotations to be able to identify specific objects later on. Following this, to determine the case a port
belongs to, the valued objects that are connected to the ports receive tag annotations. If a valued object
has the tag annotation “pos”, it should be the output for the case that the condition is true, otherwise
the tag annotation is “neg”.

4

2.3. While Loop

2.3 While Loop

So far, the while loop has been visualized by creating an actor that contains the loop body as dataflow
and the loop condition as label as seen in Figure 2.2a. We argue that this contradicts the aim to have a
complete translation of C code to dataflow diagrams. Consequently, the condition should be visualized
and not written as a label.

The new visualization can be seen in Figure 2.2b. In order to separate the loop body from the loop
condition, each of them gets its own actor in which it is visualized. Especially in large diagrams, the
user could want the condition to appear as text and not as dataflow in order to increase the readability.
Regions of actors can either be expanded, meaning they are displayed entirely, or collapsed, meaning
their embedded actors are hidden. This behaviour is demonstrated in Figure 2.2, showing a while

statement. In Figure 2.2b the actor of the condition is expanded, while it is collapsed in Figure 2.2c.
Displaying the conditional of a loop as dataflow instead of a textual representation can result into
a cluttered actor, conflicting with Aim 2. As a compromise, the label of the condition actor contains
the condition in textual form, so that the condition is still stated, even if the actor is collapsed. This is
one of the expressed conflicts of our two major aims. It is solved by the described compromise that is
able to assure that both aims are considered. The result of the condition actor is then used to visualize
that the execution of the loop body, and hence the output of the while actor, depends on whether the
condition is true or false. Therefore, a multiplexer is used which has the result of the condition actor
as the condition and as inputs the output variables of the while-loop and the values the variables have
before entering the loop. Instead of adding a multiplexer for each output variable of the while-loop
one big multiplexer is used as introduced in Section 2.2.

In general, it is desirable to indicate that a while body is repeated since this should increase the
readability. Routing the outputs of a loop body back to its inputs would be a natural way to achieve
this. However, this would add several additional wires to the diagram, increasingly cluttering it for
an increasing amount of outputs. If break or continue statements are present, see Section 2.5, this
approach would cause even more visual clutter due to needing additional visualizations for loop
interruptions. Therefore, we chose to step away from this idea since it violates Aim 2.

This visualization can be transferred to the for-loop and do while as well but is currently only
implemented for the while-loop.

2.4 If Statement

In contrast to the while-loop, the condition of the if was already visualized but did not have its own
actor. In order to be consistent in the visualization, a actor for the condition is added. Additionally,
multiplexers are used to determine the output of the if actor as well, so they got replaced by one big
multiplexer. This can be seen in Figure 2.3 in which the condition x < 15 has its own actor and the
resulting condition is used for the big multiplexer. Both changes are supported by our Aim 2 for being
a tool that improves the readability. A difference to the while actor is, that the input for the multiplexer
could be empty. In this case it is not created.

2.5 Break and Continue

Break as well as continue statements interrupt or redirect the control flow as well as the dataflow of
a program. As important language elements, it is necessary to include them in the mapping from
C to dataflow, fulfilling Aim 1. Break and continue statements are semantically slightly different but

5

2. More C to Dataflow Features

whileEx
input int x, y
output int _res

x

y

+ _res

2

+

-

- while (x < 15)

y

x

y

x

- whileEx

(a) The old visualization of the while state-
ment.

whileEx
input int x, y
output int _res

x

y
+ _res

_conditional

body_0x

x

body_0y

y x
y

15
<

- cond: x < 15

_cond_resx

2

+

-

- body

y

x

y

x

- while_0

y

x

y

x

- whileEx

(b) The new visualization of the while statement with expanded condition region.

whileEx
input int x, y
output int _res

x

y
+ _res

_conditional

body_0x

x

body_0y

y x
y

+ cond: x < 15
_cond_resx

2

+

-

- body

y

x

y

x

- while_0

y

x

y

x

- whileEx

(c) The new visualization of the while statement with collapsed condition region.

Figure 2.2. The old and the new visualization of the while statement.

6

2.5. Break and Continue

ifEx
input int x, y
output int _res

x

y

+ _res

15
<

+ then
y

x

y

x

+ else
yy

_conditional ? then_0x : x

x < 15

_conditional ? then_0y : else_0y

- if_0

y

x

y

x

x_0 + y_0

- ifEx

(a) The old visualization of the if statement.

ifEx
input int x, y
output int _res

x

y

+ _res
_conditional

then_0x

x

then_0y

else_0y x
y

15
<

x < 15

- cond
_cond_resx

+ then
y

xy

x

+ else
yy

- if_0

y

x

y

x x_0 + y_0

- ifEx

(b) The new visualization of the if statement.

Figure 2.3. The old and the new visualization of the if statement.

are visualized in the same way because we do not visualize when the loop body is repeated. In the
following, both statements are meant although only the break statement is mentioned.

Semantically speaking, whether a break is executed or not decides which of two possible values of
a variable is part of the result of a loop. It also affects whether a loop is executed again but this is not
visualized, as mentioned beforehand. Consequently, it has the same effect as a multiplexer. This is
the reason why multiplexers are used to visualize break statements as seen in Figure 2.4. We decided
to locate this multiplexer not in the if actor corresponding to the if in which the break is defined.
Instead we place it in the surrounding while actor that corresponds to the while that is interrupted by
the break. This choice follows the semantics of a break since it determines the output of the while actor.
Placing it in a potentially nested if would lead to a more complex visualization and would reduce
readability, violating Aim 2.

The input for the case that the break is executed is set as soon as the break occurs. Thereby, the
current values of all variables that will be changed if the break is not executed, are considered. After
the translation of the remaining while body is finished, the condition and the other inputs are set. For

7

2. More C to Dataflow Features

1 int main(int x, int y) {

2 while (x < 15) {

3 if (x == 12) {

4 break;

5 }

6 y++;

7 x--;

8 }

9 return x + y;

10 }

if_0_cond_res

break_x
break_y

x
y

x
y

1 +

-

+ if_0
if_0_cond_resx

- body

y

x

y

x

Figure 2.4. Visualization of the break, showing only the while body.

each variable that the break actor already received as input for the case that the break is executed,
it needs an input for the case that the break is not executed. This input is the current value of the
variable, which means the value at the end of the while body. For instance in Figure 2.4 this procedure
is observable for the variables x and y. If the break in line 4 is executed the unchanged values of the
variables, named break_x and break_y, are selected by the multiplexer. Otherwise, the decrement of x
and increment of y, computed by the current iteration of the while body, are selected.

The condition of the break statement’s surrounding if is reused as condition for the break-
multiplexer. Syntactically, a break does not require a surrounding if statement. However, if it is not
surrounded by one, the code after the break is never reached, hence it is dead code. Consequently,
it does not make sense to use a break without a surrounding if. In the case that the break occurs in
nested if statements, the conditions of these statements are combined with the AND operator and the
result is used as the condition for the break-multiplexer. In Figure 2.5 this leads to the combination of
both if statement conditions with an AND. Hence, the condition for the break-multiplexer is x < 15

&& x !=1.
If a while contains multiple break statements, for each break such a actor is created. The output

variables of the last break actor are used as input for the negative case in the preceding break actor,
provided it needs the variables as input, and so on. In Figure 2.6 this applies for the x value of the
right break-multiplexer which represents the first break statement. In general, the visualization of
break statements works for various variants of if statements and also in combination with return

statements.

2.6 Pointer

For now, we focus on pointers of variables. Pointer arithmetic is currently not implemented. For code
using pointers without pointer arithmetic, the address a pointer points to is usually not relevant.
Instead, the value at the address is of interest. This is the reason pointers are visualized the same way
as other variables except in function calls. Figure 2.7 demonstrates this with the function pointerFunc

called by the function pointer. The pointer p, pointing to the variable sec, is passed to pointerFunc,
thus it is added to its input. Since p is used for changing the value of sec, p is also set as output
of pointerFunc. Afterwards, p is wired to the result variable res of the function pointer because it
contains the value of the return variable.

In contrast to primitive types, if a function has a pointer as parameter and changes the value the
pointer points to, then the value also changes outside of the function. In order to visualize this, all
functions that have pointers as parameters and change their values receive them as output variables.

8

2.6. Pointer

1 int nestedBreak(int x, int y) {

2 while (x < 15) {

3 if (x != 1) {

4 if (y == 42) {

5 break;

6 }

7 x++;

8 }

9 }

10 return x + y;

11 }

_cond_res0
break_x xx

&&

_conditional
then_0x
x

x

+ cond
_cond_resx

1
+

+ if_1
if_1_cond_resy

- then

if_1_cond_res

x

y

x

- if_0

if_0_cond_res

if_1_cond_res

x

y

x

- body

x

y

x

Figure 2.5. Visualization of break in nested if statements, showing only the while body.

1 int breaks(int x, int y) {

2 while (x < 15) {

3 if (x == 0) {

4 break;

5 }

6 x++;

7 y++;

8 if (y == 0) {

9 break;

10 }

11 x++;

12 }

13 return x + y;

14 }

if_0_cond_res

break_x
break_y

x
y

x
y

1

+

+

if_1_cond_res
break_x x
x+

+ if_0
if_0_cond_resx

+ if_1
if_1_cond_resy

- body

y

x

y

x

Figure 2.6. Visualization of multiple break statements in one while, showing only the while body.

9

2. More C to Dataflow Features

1 void pointerFunc(int *p) {

2 *p += 20;

3 }

4

5 int pointer(int sec) {

6 int *p = &sec;

7 pointerFunc(p);

8 return sec;

9 }

pointer
input int sec
output int _res

sec _res
20

+

- pointerFunc

pp

- pointer

Figure 2.7. Visualization of a pointer.

These outputs can then be wired with the pointer outside of the function actor or directly with the
variable that is stored at the address to which the pointer points. If the function call is an unknown
function, then it is assumed that the arguments that are pointers are changed and hence are outputs of
the function. This procedure ensures that function calls with declared pointer variables or pointers of
the form &variable as arguments are correctly visualized. In general this means: Whenever possible,
the original variable instead of the pointer is used, especially in the statement return *pointer.

Currently, there is no visualization for changing the address that is stored in a pointer variable. If
the stored address is changed then the visualization should not indicate that the pointer still points
to the variable at the location of the old address. This is only partly implemented at the moment. It
requires more time investment and testing for assuring that all edge cases work.

2.6.1 Return Statement

So far, only return statements of non-void functions were considered. If multiple return statements
are used in one function, their return values were linked. Now that pointers are supported, they must
be considered in return statements as well because depending on whether a return, that is not at
the end of a function, is executed, the value of pointers could be different. For non-pointers this is
irrelevant since their values cannot be accessed outside of the scope of their functions, but if a pointer
is passed as an argument to a function, the pointer can still be used after the function call.

Similar to the visualization of break & continue, a return is represented by a multiplexer. It is
added to the function’s actor since only the output of the function depends on the execution of the
return. In Figure 2.8 the values of the variables to which the pointers p and y points is changed below
the return. Since p is a parameter and thus the value to which it points could be used outside of the
function, returnEx has p as output. The value of p depends on whether the return is executed: It takes
on either the unchanged or the changed value. This is determined by the multiplexer representing the
return. However, this does not apply for the pointer y because it is only local and not a parameter,
and also not for x, since the value is passed to the function by call-by-value.

The condition of the return’s multiplexer is the condition of the surrounding if or in the case of
nested if statements, the combination of their conditions. Only pointers that are parameters of the
function can qualify as input for the multiplexer because only these can be accessed outside of the
function. Of those pointers only the ones that are changed after a return is not taken are set as input
for the multiplexer, since the values of the other ones do not depend on the statement.

10

2.7. Arrays

1 void returnEx(int *p, int x) {

2 int *y = &x;

3 if (x < 15) {

4 return;

5 }

6 *p = 20;

7 *y = 20;

8 }

returnEx
input int p, x
output int p

x

p
if_0_cond_res

return_p p
p

20

p

+ if_0
if_0_cond_resx

- returnEx

Figure 2.8. Visualization of a return.

2.7 Arrays

All in all, the existing array implementation already covered most use cases. Nonetheless, support
for multidimensional arrays was missing. Implementing it not only helped us achieving Aim 1 but
they are also needed for our struct support that builds upon the array visualization, see Section 2.8.
The now added implementation for multidimensional arrays builds upon the multidimensional array
support of SCCharts. The latter is the foundation for the visualization of the C to dataflow synthesis. It
is based on the fact that an array-like valued object is treated as an n-dimensional array by the SCCharts

synthesis if you add n indices to it for n P N. Furthermore, operations on n-dimensional arrays are
visualized like chained operations on one dimensional arrays in SCCharts. The described visualization of
multidimensional arrays is depicted in Figure 2.11. This figure is technically meant to demonstrate how
nested structs are visualized, compare Section 2.8.2. However, since structs are in general represented
by arrays and use the same visualization, nested structs are equivalent to multidimensional arrays.

In order to make the visualization of arrays more readable, see Aim 2, the logic for generating new
variants for valued objects of arrays has been improved. Beforehand, a new valued object for an array
was created after a write following a read operation. Now this is only done when the value at a read
index is updated. Additionally, when accessing the value at an index i of an array, then the variant
of the array is chosen for the visualization that has received the most recent update of the value at
index i. The effect on the array visualization can be seen in Figure 2.9. In it the utilized struct self is
visualized by using an array. Read and writes are distinguishable by the position of the index next
to the lane for array access. A positioning left of the lane indicates a write and a positioning right of
the actor indicates a read. Line 8 updates the array buffer, which is a field of self, resulting in the
creation of a new variant because it is the first write to the array of self. In the old visualization this
newly created variant is used to update the array energyBuffer, despite the fact that it has not been
changed. Additionally, this update creates a new variant of self, albeit energyBuffer has not been
changed beforehand. As a result, the both array updates are wired in row leading to a less readable
visualization, see Figure 2.9b. With the improved handling of arrays both writes update the same
variant of self, leading to a parallel wiring, as seen in Figure 2.9a. In addition, only one new variant
of self is created.

2.8 Structs and Unions

Struct support is introduced by relying on the visualization of arrays. This is accomplished by creating
array-like valued objects when structs are declared or expressions or statements operate on the
fields of structs. We did not use SCCharts classes respectively its structs because structs cannot be

11

2. More C to Dataflow Features

1 struct SonoNccf {

2 int frameshift;

3 float buffer[];

4 float energyBuffer[];

5 };

6 static void sonoNccfPrepare(

struct SonoNccf self, const

float in)

7 {

8 self.buffer[in] = self.

buffer[1 + self.

frameshift];

9 self.energyBuffer[1] = self.

energyBuffer[1 + self.

frameshift];

10 }

sonoNccfPrepare
input struct SonoNccf self_in
input float in

[1 + self_in["frameshift"]]

buffer

energyBuffer

[in]

buffer

energyBuffer
[1 + self_0["frameshift"]]self_in [1] self_0

- sonoNccfPrepare

(a) Improved array visualization

sonoNccfPrepare
input struct SonoNccf self_in
input float in

[1 + self_in["frameshift"]]["buffer"]
self_in

[in] ["buffer"] [1 + self_0["frameshift"]]["energyBuffer"] [1] ["energyBuffer"]
self_1

- sonoNccfPrepare

(b) Old array visualization

Figure 2.9. Improved array visualization compared to the old array visualization based on code of Reuter [Reu19].

12

2.8. Structs and Unions

1 struct Complex {

2 float real;

3 float imag;

4 };

5

6 void addNumbers(struct Complex

c1, struct Complex c2,

struct Complex *result)

7 {

8 result->real = c1.real + c2

.real;

9 result->imag = c1.imag + c2

.imag;

10 }

add
input struct Complex c1_in
input struct Complex c2_in
input struct Complex res_in
output struct Complex res

real

im

real

im +
real

im
c1_in

c2_in

+ res

- add

Figure 2.10. Struct visualization that works with a struct modelling complex numbers.

passed in the current version of SCCharts. Our implementation does not require struct definitions to
be included in the textual representation. In order to simulate a field access or a write operation
to a field, the field’s name is passed as an index to the array-like valued object of the struct. As a
result, an assignment to a field is represented by the pattern structName[“fieldName”] = value in
the SCCharts model. SCCharts seems to not prohibit this syntax, albeit strictly speaking it violates the
semantics of arrays. A semantically correct type for structs is set via the host type feature of SCCharts. It
follows the pattern struct <StructType> <nameOfStruct>. The valued objects of structs are annotated
with a tag annotation identifying them as structs. Without such a tag annotation, they are not easily
distinguishable from arrays if the equation synthesis should handle them differently. Currently, it is
noticeable that the struct support reuses the visualization of arrays, meaning some labels still look
like they are meant for array accesses. As a first improvement, the parentheses and quotations mark
around accessed and updated variable names on the ports of the array accesses in the visualization
have been truncated.

Additionally, SCCharts’ arrays seem to have an inconsistency: If values from arrays are read and
used in a binary operation, then the operator is only labelled with the array name with no reference to
which indices were read. This is caused by labelling the valued objects of arrays. The valued objects of
structs do not receive such labels, thus they do not have the same inconsistency. However, the flaw
arises in both cases when the multidimensional array visualization is used, see Section 2.8.2.

The implemented handling of structs is reused for supporting unions. For this use case the host
type of the valued object is set to union <UnionType> <nameOfUnion>. Due to the fact that unions can
only hold information in one field at a time, a new variant of the valued object is created in each
update.

2.8.1 Pointer Usage

It is common to pass only the pointers of structs instead of the whole struct to functions. For this use
case the C standard includes the shorthand structPointer->field for dereferencing a struct pointer
and addressing one of its fields. This shorthand allows to access the field’s value as well as assigning
new values to it. Ergo, it can appear on the left side of an assignment as well as on the right side. Due
to its nature of being a shorthand, the visualization of the arrow notation is equivalent to the point
notation.

13

2. More C to Dataflow Features

The visualization of the arrow notation is shown by Figure 2.10 in the function addNumbers using
instances of the struct declaration Complex. Its result is stored in the two fields of the output parameter
*result, which are accessed using the arrow notation in lines 9 and 10. In the diagram the resulting
writes to both fields are visualized again by using the array visualization. Our visualization even
supports the usage of multiple arrows in one expression, which is useful for handling nested structs.

2.8.2 Nested Structs and Arrays as Fields

In C it is allowed to define fields as structs or arrays. Nested fields can be accessed by multiple usage
of the point or arrow notation. If a field of a nested struct is accessed, this is visualized by using the
multidimensional array visualization, as seen in Section 2.7. The assignment of a value to a field of a
nested struct is exemplary modelled by structName[“nameOfNestedStruct”][“fieldName”] = val. The
visualization of nested structs is shown in Figure 2.11. In it structs of type struct Segment have two
fields of type struct Point. The fields of Point instances can be handled in the same way like fields of
not nested structs. In addition, the code to the figure shows how writes and reads of nested structs are
visualized. Fields with array type are handled and visualized analogously.

1 struct Point {

2 int x;

3 int y;

4 };

5

6 struct Segment {

7 struct Point begin;

8 struct Point end;

9 };

10

11 int main() {

12 struct Segment d1 =

13 {.begin = {.x = 0, .y = 0},

14 .end = {.x = 5, .y = 5}};

15 struct Segment d2 =

16 {.begin = {.x = 6, .y = 1},

17 .end = {.x = 7, .y = 6}};

18

19 int bsp = d1.begin.x

20 + d2.begin.x;

21 return bsp;

22 }

main
output int _res

0
x
y

end

5
x

y

begin

6

x
y

end

1

7 x

y begin

xbegin

xbegin

+ _res

- main

Figure 2.11. Visualization of nested structs and designated initialization.

2.8.3 Designated Initialization

Similar to arrays it is possible to initialize structs via designated initialization in C. This was intro-
duced in C99. For example struct <StructType> <structName> = {.<field0> = <value0>, .<field1>

= <value1>}; initializes two fields of a newly declared struct. Beforehand, designated initialization
was already implemented for arrays. However, this implementation cannot be reused for structs
since it translates the InitializerList that is included in the AST for designated initializations to a

14

2.9. Global Variables

VectorValue. Those VectorValues are then translated to the array visualization. This conflicts with our
struct visualization since it uses the names of fields as indices, rather than natural numbers. Instead of
reusing the solution for arrays, our one recognizes when a struct should be initialized via designated
initialization, sequentially adding an assignment for each initialized field to the passed dataflow region.
This process also works for recursive usage of designated initialization, which is useful for initializing
nested structs. Similarly, the initialization of array fields and designated initialization of arrays in the
designated initialization of structs can be visualized by our solution. An example for nested structs is
depicted in Figure 2.11.

2.9 Global Variables

Global variables are supported by adding them as inputs to the actors that use them. Additionally, they
are added as outputs to the actors that changes the values of them, so that functions which use them
afterwards receive the correct value. In order to connect these outputs and inputs, the surrounding
actors — of actors using global variables — also receive them as input/output. An example usage of
global variables can be seen in Figure 2.12. In it the global variable global is declared and used in the
function useOfGVar but not in the function noUseOfGVar. Consequently, the global variable is an input
of useOfGVar’s actor, so that it can be used in its region, but is not passed to noUseOfGVar.

1 struct Distance {

2 int feet;

3 float inch;

4 } dist;

5

6 int global = 42;

7

8 int useOfGVar(int x);

9 int noUseOfGVar(int x);

10

11 int globVar(int x, int y) {

12 return useOfGVar(x + y);

13 }

14

15 int useOfGVar(int x) {

16 return noUseOfGVar(x) +

global;

17 }

18

19 int noUseOfGVar(int x) {

20 return 2 * x;

21 }

globVar
input int x, y
output int _res
input int global

global

x

y +

_res+

2
*

- noUseOfGVar

_resx

- useOfGVar

_res

x

global

- globVar

Figure 2.12. Visualization of a global variable.

This visualization works independent of the order of the function definitions in the editor and
hence also for endless recursion. The type of a global variable can be a primitive one as well as a struct
or pointer.

15

2. More C to Dataflow Features

2.10 Robustness

Even with the features introduced here, there are several more expressions that are not supported yet,
such as preprocessor macros and function pointers, and cases that previously led to errors during
the generation of the diagram. In order to prevent that only a failure message is shown, these cases
are ignored such that the remaining code that can be translated to dataflow is still visualized. This
implements our Aim 3. In detail this is achieved by only adding equations of which all components
are correctly set. In this context, correctly set means no needed parameter is null or that a component
has a subcomponent that is null. Figure 2.13 shows the function robustness in which the if condition
could not be visualized because NULL is not properly defined. This leads to a visualization in which
the condition is not shown as dataflow since the equation could not be translated. Aside from that, it
is checked whether valued objects are null. This can be the case when for example NULL is used but
not properly defined. An example can be seen in Figure 2.14 where NULL is used to initialize a variable
but is not properly introduced. That is why the initialization is not visualized.

1 struct Point {

2 int x;

3 int y;

4 };

5

6 int robustness(struct Point p) {

7 if (p != NULL) {

8 return p.x;

9 }

10 }

robustness
input struct Point p_in
output int _res

p_in

_res
_conditional

then_0_res _res

- cond
_cond_resp

["x"]

- then

_resp

- if_0

_resp

- robustness

Figure 2.13. Visualization of an equation that could not be translated because NULL is not properly defined.

1 struct Point {

2 int x;

3 int y;

4 };

5

6 int nullInit(struct Point p1) {

7 struct Point p2 = NULL;

8 return p2.x + p1.x;

9 }

nullInit
input struct Point p1_in
output int _res

x
p2_0

x
p1_in

+ _res

- nullInit

Figure 2.14. Visualization of a declaration that could not be translated because NULL is not properly defined.

Usually types that are used should be known either by including the correct header or because it
is a primitive type. However, for the case that a type is not known the visualization is still correctly
displayed by utilizing the host type. Casts with unknown types, such as (type)(expr), are interpreted
as function calls and hence visualized as unknown functions.

Additionally, using brackets on the left side of an assignment does not lead to a crash anymore.
Moreover, function names can now be in parentheses without changing their semantics or provoking

16

2.10. Robustness

a crash of the visualization. A small fix now assures that assignments of the pattern array0[i] =

array1[j]; can be visualized.
With these arrangements a visualization is shown which only contains the parts that could be

translated to dataflow. At the moment println statements are used to show that parts of the original C
code could not be translated. However, this comes with the disadvantage that the println statements
are not visible to users. Thus, it is not always clear when a diagram is not correctly visualized. As a
replacement, some form of visual warnings should be used for this task. One good candidate for this
purpose are the already implemented warnings of SCCharts.

17

Chapter 3

Evaluation

Until now, we have presented our improvements for C to dataflow on the basis of small examples.
However, it is meant to aid in the context of legacy code. Therefore, it should also be examined for
real world code examples. We tested our improvements with code provided by Reuter [Reu19]. C
to dataflow still does not support all features of C. Chapter 4 examines what is still missing in C to
dataflow. Consequently, progress for fulfilling Aim 1 was made but it was not reached. Especially, the
missing support for preprocessor commands hinders C to dataflow to be utilized for many files in
open source projects such as Redis1, GCC2, and xfwm43. Nonetheless, our improvements allow C to
dataflow to process Reuter’s code and allow first insights into other projects.

When C to dataflow is used for real world code it tends to generate considerably large models.
Generating those takes a perceptible amount of time. On a lower zoom level, the diagram does
not offer much information about the underlying code since actors are hardly distinguishable and
labels not readable, as seen in Figure 3.1. Consequently, it is hard to deduce the structure and the
connections in the diagram. In order to gain more insight, you need to increase the zoom level for
inspecting parts of the diagram and reduce it afterwards to see its context. Smart zoom features
and advanced browsing features would improve this workflow. Other current projects explore and
implement features improving the browsing experience in the KIELER project such as the parallel
running project Google Maps for Models. Those improvements could also be used for C to dataflow.
Collapsing actors, removing edge labels, and deactivating other visualization features can lead to a
slightly better readable diagram in some cases, as can be seen in Figure 3.3.

The still continuing pandemic aggravated to survey our improvements with peers. In a later stage,
it should be conducted whether the improvements are understandable and whether they improve
C to dataflow. For this we propose a small test run. At first, the test subjects should gain hands-on
experience with C to dataflow. This could start with 15 minutes of trying out C to dataflow on code
using our improvements. Depending on the existing knowledge of the participants explanations of
the visualizations should be provided. Afterwards, a small test could follow that asks the subjects
to assign the right diagram to a code snippet and the other way round. Following this, a short poll
could ask quantitative and qualitative questions about the implementations. For example: “Does this
parameter affect the output/an early return/ a break” or “Do you think that the diagram is clear or
too cluttered?” The tests should include assessing whether our changed visualizations for while and
if statements are actually perceived to be better than the prior implemented variants. One addition in
the newly implemented variant is that conditions of while and if statements are included as diagrams
as well as label in the header of the condition’s state. Reflecting this, the subjects should be asked
which option they prefer.

1https://github.com/redis/redis
2https://github.com/gcc-mirror/gcc
3https://gitlab.xfce.org/xfce/xfwm4

19

https://github.com/redis/redis
https://github.com/gcc-mirror/gcc
https://gitlab.xfce.org/xfce/xfwm4

3. Evaluation

Figure 3.1. Fully inlined visualization of a function taken from the code of Reuter [Reu19], not readable due to its
size.

3.1 Comparing Struct Visualizations

While not included in the current version of C to dataflow, Andersen provided an implementation
for visualizing structs named structflow extraction. Its core idea is to extract all fields of a struct
instance and add them as local variables to the scope in which they are used. Hereby, the structflow
extraction focuses on the variables of the fields, hiding all other local variables of the scope. As a result,
the structflow extraction violates our Aim 1 and necessitates an implementation such as our struct
visualiziation, compare Section 2.8, that includes structs and all other variables of a scope. Figure 3.2
shows the actor of the function _sonoNccfProcessCands, using the structflow extraction of Andersen.
As mentioned, the structflow extraction only displays struct fields as variables, hiding all other local
variables of a scope.

Our struct visualization avoids this weakness by visualizing the structs as arrays. At the end of a
function operating on a struct, our implementation outputs the latter in form of a variable. Therefore,
it is not noticeable which fields of the variable were changed without retracing the whole usage
of the struct in the function’s actor. The structflow extraction does not share this problem since it
handles all fields as single variables. For example, the function _sonoNccfProcessCands in Figure 3.2
calls the function sonoNccfPrepare, passing it the fields buffer, energyBuffer, meanBuffer. Subsequently,
sonoNccfPrepare outputs those variables since it updates their values.

Similarly, the mentioned function _sonoNccfProcessCands is visualized using our struct visualization
in Figure 3.3. At the end of the function, self is part of the output variables. As described, it is not
directly visible which of its fields have been updated at this point of the function. In order to deduce
this, one would need to retrace the utilization of self in the function. It can be noticed that the
generated diagram is considerably wider than the diagram generated by the structflow extraction.
This has several reasons: On the one hand, C to dataflow did not support arrays and some ports were
not wired despite having a dataflow dependence in the version that was used for creating Figure 3.2.
On the other hand, most programs have linear dataflow through their methods and functions. The
layout in each graphic was automatically created by the Layered Layout of Eclipse Layout Kernel (ELK).
It creates a layout with directed flow, default left to right, that assigns each actor to a layer. Applied on
a chain of method calls, each node of the chain needs to be assigned to a different subsequent layer.
This is the reason why linear dataflow in programs leads to wide diagrams.

20

3.1. Comparing Struct Visualizations

__sonoNccfProcessCands

numCands

If_0

active

frameshift

sonoNccfPrepare

 energyBuffer

meanBuffer

buffer

acfSizeInSamples

bufferSize

0

For_5

nccfVals

kMin

numTriesPerCand

kMax

energyLag

For_8

candMinVal

cands

For_10

1 -

For_11

maxValAcceptanceRange

sampleRate

For_12

For_13

thresholdVoiced

>

sonoNccfParabolicInterpolation

If_6

smoothingConstant

If_7

If_8

maxCand

energyBuffer

candidate

maxVal

nccfVals

buffer

energy

candidatePlot

meanBuffer

energyLag

isVoiced

cands

-

Figure 3.2. A function using a struct visualized by the structflow extraction of Andersen [And19]. Graphics taken
from [RSA+21]. The function originates from code of [Reu19].

21

3. Evaluation

pitchCandidates

self

resman
candidate
nccfVals

energyBuffer

[0]

maxCand

in

SONO_TIC

-

[self_7["maxCand"]]

kMax

>

energy

maxVal

mainCand

isVoiced_in

for_0

for_1

0

candsIn

for_2

1

- __sonoNccfProcessCands

(a)

__sonoNccfProcessCands

if_0

for_4

thresholdVoiced

isVoiced

candidate
fMin
fMax
isVoiced

>

>

&&
>= &&

<=

&&

>=

&&<=

&&

&&

for_3

for_5

sonoNccfParabolicInterpolation if_3

(b)

isVoiced

kMax

mainCand

sonoNccfPrepare
sonoMatSetFloatToZero

candidate candidatePlot

isVoiced
candidate

resman
[0]

[0]

pitchCandidates

self

in

if_4

self_1

i_2

if_5

SONO_TOC

(c)

Figure 3.3. A function using the struct visualization from Section 2.8. The function originates from code of [Reu19].

22

Chapter 4

Future Work

This project considerably extends the support of C to dataflow. Nonetheless, there are still a lot of
possible improvements and some features of C that are not supported in its current state.

Section 4.1 outlines further improvements for loops such as transferring the changes for while loops
to do-while and for loops. Arrays will probably need more attention in the future of C to dataflow,
the reasons for this are explained in Section 4.2. Preprocessor macros are yet to be supported by C to
dataflow like Section 4.3 states. Subsequently, Section 4.4 examines the problems of automatic inlining
recursive functions. Section 4.5 describes some open problems of pointers. A set of open problems is
collected in Section 4.6 and Section 4.7 covers the open problem of multi-file support. Eventually, C to
dataflow could be expanded to C++ to dataflow. This idea is explored by Section 4.8.

4.1 Further Loop Improvements

In the current state of C to dataflow while loops have received additional features. This includes
conditionals that are mapped to actor-based dataflow and multiplexers that fuse the formerly used
binary multiplexers, see Section 2.3. These improvements could and probably should be transferred to
do-while and for loops.

Additionally, it could be worthwhile to conceptualize how to visualize that loops repeat themselves.
Currently, loops and if statements are only differentiable by looking at their labels. Such a change
would make loops better distinguishable from if statements. One way could be to create an own
styling for loop actors that includes a symbol somewhere in the actor or dataflow region symbolizing
the repetition. However, such changes threaten to violate Aim 2 by adding additional visual elements
to the diagram. In order to preserve Aim 2, one needs to find a solution that is as non-invasive as
possible. One easy way could be to utilize different colouring for this. Following this idea, the contour
of actors for if statements could keep the standard colour, the contour of loops could be coloured
differently.

4.2 Better Array Visualization

C to dataflow uses the unchanged array visualization of SCCharts. However, this visualization has some
flaws. Applying a binary operation on the same array element gives the binary operations only one
input wire. Another label bug occurs when using the multidimensional arrays of SCCharts: If one uses
accessed elements from multidimensional arrays, for example in binary operations, then the label of
the operation only shows the name of the arrays. Thus, it is not easily deducible on which data the
operation is applied.

A fundamental problem is that the current array visualization does not visualize situations well in
which values are read from and written to the same array. In fact, it does not differentiate whether the
same array or different arrays are accessed and updated. Such details currently need to be deduced by

23

4. Future Work

the users by looking at the labels. One way in improving this could be to wire the “lanes” for read
and write operations if they are performed on the same array. This is depicted in Figure 4.1. It shows
several consecutive operations on the integer array ar. As proposed, an additional wire connects the
array access lanes of ar to symbolize that the operations work on the same array in Figure 4.1b. The
current visualization without this improvement is shown by Figure 4.1a.

main
output int _res

0

1

2

3 3
2
1

0

[1] [0]

[1]
ar_1

5
+

- func

_resi

- main

(a) The current array visualization leads to this diagram.

main
output int _res

0

1

2

3 3
2
1

0

[1] [0]

[1]
ar_1

5
+

- func

_resi

- main

(b) Wiring the array lanes is an option to imply identity.

Figure 4.1. Proposed improvement for read and write operations on the same array.

In imperative languages array subscripts accept arbitrary expressions. However, in the current state
all array subscript expressions are visualized as labels. This contradicts our Aim 1 to map all source
code of a C project to actor-based dataflow diagrams. Nonetheless, it is an open question where to
locate such translations of array subscript expressions without creating clutter.

When the array visualization is used to visualize structs, unions, and enums, a different styling
could improve the readability of the diagram. For example, the array visualization could have a
different color for structs, unions, and enums.

24

4.3. Support for Preprocessor Macros

4.3 Support for Preprocessor Macros

Until now preprocessor macros have been neglected in C to dataflow. However, they are an often used
feature of C in open source projects such as xfwm41, the window manager of xfce. Simple macros that
only replace markers by literals or insert functions could be supported by introducing them silently to
the diagrams. Should a macro be not resolvable, this could be handled by introducing valued object
bearing the name of the macro. Then users could easily recognize which macros could not be resolved.
Furthermore, it is not obvious how to handle case dependant macros.

4.4 Recursive Functions Break the Automatic Inlining

If recursive functions are present, then automatic inlining breaks since it runs into an infinite loop
while trying to visualize all states. In other words, the automatic inlining needs to be aware when
a function calls itself recursively and should not expand the state of the called function. Instead it
should inline an empty function state bearing the same name as the function, similar to how unknown
functions are handled. A more complex case would be to recognize alternating recursion. One other
way of dealing with recursion could be dynamic loading of the next recursion levels depending on the
current zoom level as a part of advanced browsing support, also see Section 4.7.

4.5 Pointer Improvements

It is not obvious how pointer arithmetic should be handled from a dataflow orientated view. While it
makes sense to visualize the operations on the pointers, addresses are often times not interpretable
without context.

Currently, we do not check whether a pointer is manually set to an arbitrary address after pointing
to a variable. This should be checked and looked into. Furthermore, function pointers need to be
implemented. They probably need their own data structures to remember to which function state
a pointer refers. In addition, void pointers do not work entirely. They are shown without a type in
the diagram and casting a pointer to a void pointer seems to cause problems. While testing the new
implementations, see Chapter 3, we encountered that open source projects tend to use pointers to
fields of structs. This is not yet supported in our implementation but does not result into a failure to
display a diagram.

In order to be able to differentiate pointers and other variables in the dataflow visualization,
pointers could be visualized slightly differently such as it is already done for arrays.

4.6 Further Improvements

There are several problems for C to dataflow, not belonging to a bigger topic.
When using switch statements, return statements do not work. Multiplexers should receive a style

that fits better to SCCharts. Furthermore, the two input port groups of the multiplexer should have
some distance between them. This could be done by implementing a property for grouping ports in
the ELK. Creating such a property would allow ELK to incorporate groups of ports in the diagram’s
layout. Consequently, this should be a better solution than manually grouping the ports, which could
be done by fixing the position of ports in the synthesis. Besides, the labels of multiplexers need further

1https://gitlab.xfce.org/xfce/xfwm4

25

https://gitlab.xfce.org/xfce/xfwm4

4. Future Work

improvements since some of them tend to be misplaced. In general, label placement is a problem in
some cases. The label of conditional states, for example, tends to be too close to its content.

Currently, C to dataflow supports structs and unions but enums are missing. They should receive
support in the future and their visualization could be implemented similarly to structs. Section 2.10
describes features improving the robustness of C to dataflow. However, currently problems and errors
are only reported as prints to the console, thus they are not visible for users. Instead visual warnings
like the warnings and errors of SCCharts should be used. Left-clicking on a diagram element should
normally highlight the code to which it belongs. Furthermore, it needs to be examined whether
typedef usage works in our implementation. Additionally, casts can lead to problems. It should also
be thought about whether and how casts should be visualized in the diagram.

Above all, some investigation needs to be conducted for understanding underlying logic and how
to adjust it for the needs of C to dataflow. For example, ports are added to states without demand
of them, compare Section 2.2, and fuses input ports, when a variable with the same name is used
multiple times as input.

4.7 Multi-File Support and Browsing Support

In the current state, C to dataflow is only able to translate one C file to dataflow diagrams. Being
able to visualize whole projects and to browse in them could improve the usability of C to dataflow.
However, this is the very moment in which C to dataflow should receive advanced browsing support.
The diagrams should automatically filter which parts of the diagrams should be visible at a particular
moment. Otherwise C to dataflow is on the verge of becoming unusable either because of very long
loading times or because of overwhelming its users with an unbearable amount of diagram elements.
This is partly already the case for single C files including a considerably large amount of code, see
Chapter 3.

4.8 C++ to Dataflow

The concepts of C to dataflow are meant to be abstract and usable for general imperative programming
languages. Therefore, it makes sense to expand C to dataflow to C++ to dataflow in the future. This
step would be eased by the fact that C++ is a superset of C. C++ programmes that only contain C
features already work with C to dataflow. As a consequence, only C++ specific features need to be
implemented for C++ to dataflow.

4.8.1 Object Orientation

Supporting object orientation is interesting since many imperative languages such as Java, C#, Python,
and Javascript are object orientated.

For objects it needs to be conceptualized whether their fields should be handled similar to structs
or whether they require a different type of visualization, encapsulating all their members. The latter is
probably needed since classes also often also serve as a tool for structuring code.

Handling classes as structs respectively as arrays in C++ to dataflow could be obfuscating and
would hide important parts of the program. Another point making struct-like visualization unattractive
is the differentiation of class and object members. In addition, mapping project classes to classes of
SCCharts is probably problematic, similar to implementing structs in Section 2.8. One problem that

26

4.8. C++ to Dataflow

would need to be solved for this way of implementing classes is that classes of SCCharts cannot be
passed to other SCCharts.

Generics allow imperative languages to define functions and classes with more general types. In
C++ generics are supported via templates that are widely used by bigger C++ projects. Consequently,
they are a must-have feature for C++ to dataflow.

Other dataflow solutions already provide support for classes. The functional dataflow orientated
language Prograph [MP85] organizes classes in an own classes window. In it each class is symbolized
by a hexagonal icon and relations between parent and child classes are indicated by edges between
them. Two further symbols included in the class icon represent that each class can have attributes and
methods. Attributes and methods are again visualized in own windows [CGP89].

The tool VISSION merges data flow modelling with object orientated modelling in single abstrac-
tion that Telea calls metaclasses. Metaclasses extend C++ classes with dataflow semantics by adding
a dataflow interface to them. This interface includes inputs, outputs, and an update method. The
mentioned elements of a metaclass are delegated to the interface of its C++ class. Metaclasses are rep-
resented by an own icon that is an rectangle. Input ports are on its north side, output ports on its south
side. Each instance of a metaclass is named following the pattern <metaclassName>.<instanceName>. In
general, Metaclasses are visualized in a network editor window in VISSION [Tel99].

4.8.2 Anti-Pointer Features

In the course of its development the developers of C++ have recognized that the usage of pointers,
storage allocation, and pointer arithmetic is not trivial. Thus they introduced features such as references
and smart pointers to C++ offering similar options while being easier to use. It needs to be examined
how to support both important C++ features in C++ to dataflow. References are probably supportable
in the same way like our current pointer support, compare Section 2.6, since references always point
to variables or data structures.

4.8.3 Further Features and Functional Features

Additionally, it needs to be examined whether important collection-like datatypes such as lists, vectors,
and sets should be visualized in an abstract way as objects or receive an own visualization.

In the meantime, C++ and many other imperative programming languages have adopted functional
constructs such as lambda expressions. Due to their nature lambda expressions are not always easy
to understand and not easy to debug. Having dataflow-diagrams visualizing them could be an
appropriate aid. Exceeding the scope of this documentation, there are probably many more features
and details that need to be considered for extending C to dataflow to C++ to dataflow.

27

Chapter 5

Conclusion

Visual models are seen as valuable means of documentation for textual programs. Usually such
models lift the represented code to a higher level of abstraction and profit from the fact that humans
percept and process visual elements differently than text. As mentioned, C to dataflow is not meant to
replace, but to augment code and textual documentation. Consequently, this approach combines the
advantages of textual and visual documentation.

The C language contains lots of language constructs that need to be supported. Anderson [And19],
Rentz [RSA+21], and we added support for a subset of them but there are still various unsupported
constructs left.

When deciding on the visualization of a language construct, it is difficult to find a compromise
between Aim 1 (complete mapping) and Aim 2 (readability). Whether the chosen visualizations in
this project are helpful still needs to be evaluated in a survey. In order to test the features in large C
projects, it would be helpful to support even more features such as macros since they are used quite
often, and in the best case C to dataflow should provide smart zooming.

29

Bibliography

[And19] Lewe Andersen. “Dataflow and state machine extraction from C/C++ code”. Master’s
Thesis. Universität zu Kiel, Dec. 2019. 96 pp.

[CGP89] P.T. Cox, F.R. Giles, and T. Pietrzykowski. “Prograph: a step towards liberating program-
ming from textual conditioning”. In: [Proceedings] 1989 IEEE Workshop on Visual Languages.
1989, pp. 150–156. doi: 10.1109/WVL.1989.77057.

[LNW03] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. “Actor-oriented design of
embedded hardware and software systems”. In: Journal of Circuits, Systems, and Computers
12 (2003), pp. 231–260.

[LSF03] T. C. Lethbridge, J. Singer, and A. Forward. “How software engineers use documentation:
the state of the practice”. In: IEEE Software 20.6 (Nov. 2003), pp. 35–39. issn: 0740-7459.

[MP85] S. Matwin and T. Pietrzykowski. “Prograph: a preliminary report”. In: Computer Languages
10.2 (1985), pp. 91–126. issn: 0096-0551. doi: https://doi.org/10.1016/0096-0551(85)90002-5.

[Par11] David Lorge Parnas. “Precise documentation: the key to better software”. In: The Future of
Software Engineering. Ed. by Sebastian Nanz. Berlin, Heidelberg: Springer, 2011, pp. 125–148.
isbn: 978-3-642-15187-3. doi: 10.1007/978-3-642-15187-3_8.

[Reu19] Janina Reuter. “Real-time pitch tracking algorithms in C to test model extraction”. Bache-
lor’s Thesis. Universität zu Kiel, Sept. 2019. 106 pp.

[RSA+21] Niklas Rentz, Steven Smyth, Lewe Andersen, and Reinhard von Hanxleden. “Extracting
interactive actor-based dataflow models from legacy C code”. In: Lecture Notes in Artificial
Intelligence (LNAI). Diagrams: 12th International Conference on the Theory and Application
of Diagrams. Vol. 12909. 2021.

[Tel99] A. Telea. “Combining object orientation and dataflow modelling in the vission simulation
system”. In: Proceedings Technology of Object-Oriented Languages and Systems. TOOLS 29 (Cat.
No.PR00275). 1999, pp. 56–65. doi: 10.1109/TOOLS.1999.778999.

31

https://doi.org/10.1109/WVL.1989.77057
https://doi.org/https://doi.org/10.1016/0096-0551(85)90002-5
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1109/TOOLS.1999.778999

Abbreviations

ELK Eclipse Layout Kernel

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

SCCharts Sequentially Constructive Statecharts

33

	Introduction
	More C to Dataflow Features
	Aims
	Multiplexer
	While Loop
	If Statement
	Break and Continue
	Pointer
	Return Statement

	Arrays
	Structs and Unions
	Pointer Usage
	Nested Structs and Arrays as Fields
	Designated Initialization

	Global Variables
	Robustness

	Evaluation
	Comparing Struct Visualizations

	Future Work
	Further Loop Improvements
	Better Array Visualization
	Support for Preprocessor Macros
	Recursive Functions Break the Automatic Inlining
	Pointer Improvements
	Further Improvements
	Multi-File Support and Browsing Support
	C++ to Dataflow
	Object Orientation
	Anti-Pointer Features
	Further Features and Functional Features

	Conclusion
	Bibliography
	Abbreviations

