
Project Report for
Google Maps for Models

Summer Term 2021

Bennet Bleßmann, Mika Pöhls, Felix Jöhnk

Master Project
September 2021

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M.Sc. Niklas Rentz

Abstract

The topic of graph drawing is an old but still relevant topic in computer science. There are many
applications for automatically generated graphs. To name two, one could use it as a graphical language
to “write“ programs or use it in an IDE to illustrate a program’s code. Therefore, a major research
topic deals with the automatic generation of graphs based on source code. In this work we represent
changes made to the open source KLighD project initially developed at Kiel University as well as
improvements to the back-end of the display tool used at the time of writing. The goal was to improve
the overall performance of the smartzoom feature, which improves the graphical representation when
zooming in and out in larger diagrams. This feature implemented by Wolff [3] was too slow to be
used efficiently, but improved the overall readability of the graphs and was inspired by tools like
Google Maps. To obtain the improvements we desired, we reworked how the model is translated into
the representation of the graph and subgraphs. We also improved the solution provided by Wolff
by adding some features that should further improve the readability and the overall usability. This
includes title visibility of smaller subgraphs, bookmarks and changing the decision when a subgraph
is fully rendered.

iii

Contents

1 Introduction 1
1.1 Previous Work . 1
1.2 Motivation . 2
1.3 Outline . 3

2 Used Terminology 5
2.1 SModel . 5
2.2 Region . 5
2.3 Childarea . 5
2.4 DepthMap . 5
2.5 Viewport . 6

3 Improvements 7
3.1 General Improvements . 7
3.2 Use SModel Layout Information . 7
3.3 Lazy Initialization of the DepthMap . 8
3.4 Bookmarks . 8
3.5 Title Overlay . 10
3.6 Change of Visibility . 11

4 Evaluation 13

5 Future Work 17

6 Conclusion 19

Bibliography 21

v

List of Figures

1.1 Comparison between David Wolff’s version on the right and the previous version on
the left. 2

1.2 Region titles with different zoom values . 3

2.1 Depiction of different level of detail . 6
2.2 Childarea . 6

3.1 Cropped render of an SCChart with the bookmark panel visible and two bookmarks . 8
3.2 Render of an SCChart with the bookmark panel visible and two bookmarks 9
3.3 Region titles with overlay . 11
3.4 Comparison maximum threshold and minimum threshold 12

4.1 Performance of different project versions measured at the average time per frame . . . 14
4.2 Benchmark Specifications . 15

vii

Chapter 1

Introduction

With ever larger and evermore interconnected projects, it gets harder and harder to keep an overview
using textual representations alone. Manually creating visual representations at that scale in a consistent
manner and with constant changes is a practically impossible task. One suitable option left is to
generate visuals from the textual representation by an automated process. For a graph with deep
nesting elements, even with a reasonable layout, labels in the lower regions can get quite small. This
level of detail may overwhelm the reader and small elements that are not readable might just be
unnecessary clutter. To remedy this situation, information should not be shown at an unreasonable
zoom level, similar to how mapping tools such as Google Maps do not show all shops in a city while
zoomed in to a nation state scale. This can be applied in general to any form of text or more specific to
whole regions of a diagram. The introduction of these principles to the display of diagrams was the
main focus of the work by Wolff [3] explained in the following section.

1.1 Previous Work

The master project of Wolff [3] gave a good start in the topic to reduce the complexity of graphs. He
implemented a feature which allowed hiding too small subgraphs. Therefore, the readability of larger
graphs was drastically improved. The key idea was to only display subgraphs that are large enough,
and not those that cannot provide valuable information due to being too small and instead make a
white box with the regions title. A simple example for a graph that provides no information is given
in Figure 1.1a. All the small subgraphs are not readable and therefore only give the information that
there is a graph or give some hint to the structure. This information can be enough for a designer of
the model because they may know the number of subgraphs in some situations. For example, they
may know that there are eleven trains, which belong to the regions in the upper right part of the
diagrams, but for a person new to the project this graph does not provide a lot of information. The
implementation for the smartzoom feature feature checks the width and height of graphs after they are
rendered and once any of these two values would be large enough the graph would be displayed.

Another improvement was that labels and texts were too small when viewing larger graphs, as towards
the top left of Figure 1.1a. This resulted in text that was unreadable and sometimes it appeared that
the text would disappear when zooming out. Additionally the rendering time needed for the text was
larger than necessary because the text would be unreadable till the user would zoom in, offering some
way to enhance the performance. The solution was to check for the text size and only display it when
the size would surpass a certain threshold and if the size was too small to display it as a block in the
color of the text. This block would show that there is text and if one wants to read it one would need
to zoom in. When comparing the text of the resulting graphs in the upper left blue box the labels look
almost identical with the version of David Wolff being darker. This results in the improved graph as
shown in Figure 1.1b.

1

1. Introduction

(a) Previous version (b) David Wolff’s version

Figure 1.1. Comparison between David Wolff’s version on the right and the previous version on the left.

The other goal which was addressed by this project was to improve the performance since only parts
of the graph should be rendered and thus decrease the time needed for the rendering.

1.2 Motivation

While the changes made during the last project improved the general visibility and readability of
graphs as seen in the previous chapter, they were implemented in a way that the display of large
diagrams suffered from serious performance issues. This resulted in a bad user experience, because
the zoom and pan actions would execute with a noticeable delay, leaving the user waiting and making
precise movement nearly impossible. The first and biggest goal of this project was to regain a rather
smooth movement by improving the current implementation and therefore the performance.

An additional decrease in the user experience can be seen when displaying very big graphs with many
subgraphs. To properly read different parts of the graph, the user needs to zoom in, zoom back out,
pan to the position of the new subgraph, and zoom in again. If these switches between subgraphs are
frequent, this procedure can become very annoying and time-consuming. Therefore, we wanted to
allow the user to switch between positions in a graph by the press of a button.

The smartzoom introduced by the previous project only displays the enlarged title of the region, if the
contained parts would not be visible. As a consequence, when zooming back into a collapsed region,
the title may switch suddenly from a big and easily readable size into its original and possibly not
readable size. This is demonstrated with the region highlighted using a red border in Figure 1.2. In
the left diagram the region titles are visible, but after zooming in an additional step, they seem to
disappear on the right-hand side. Even though the titles are still at the same position, they are now
too small to be read. For a better user experience, we wanted to display a readable title even if the
region is no longer collapsed and allow users to keep track in which region they currently are and

2

1.3. Outline

(a) Regions collapsed (b) Regions expanded

Figure 1.2. Region titles with different zoom values

keeping their mental map of the diagram intact. The importance of preserving the user’s mental map
while analysing diagrams was discussed by Misue, Eades, Lai, and Sugiyama [2].

Another issue was the compatibility with other projects ongoing at the same time. One project wanted,
among other things, to send the new model from the language server to the user step by step and no
longer as one big packet, to reduce the big overhead of the transmission process and quickly display
at least parts of the diagram. Another project built a VS Code extension to replace the outdated KIEL
Environment integrated in Theia (KEITH) framework. We therefore attempt to make sure that the
changes made by us and the preceding project were compatible with the new projects.

1.3 Outline

In Chapter 2 the important terms and concepts are explained. After building the necessary foundation,
the improvements and new features of the project are presented in Chapter 3. To show the impact
of these changes, the final performance of the project is displayed and compared to older versions
in Chapter 4. To conclude this report, we introduce some ideas to further improve this project in the
future in Chapter 5 and recapitulate our results in Chapter 6.

3

Chapter 2

Used Terminology

In this chapter, we will introduce some concepts and fundamental terms used throughout the work.

2.1 SModel

The SModel is the class used to represent the model of the current diagram. The SModel instance is
organized in a tree structure and each of the vertices inherits from SModelElement. An SModelElement
provides two fields for parent and children to induce the tree structure, as well as a type to convert it
into a DOM element using the corresponding view.

2.2 Region

The regions used by David Wolff, not to confuse with regions used in SCCharts, separate the SModel
into hierarchical groups at a less granular level. At this region level it is then determined with which
level of detail a rendering object should be displayed. For this, we currently differentiate between
FullDetail, MinimalDetail and OutOfBounds. An example for the different detail levels is depicted in
Figure 2.1. The region scheduler is expanded and thus its detail level is FullDetail, but the region
train2 is minimized and therefore MinimalDetail. A region that is not in the Viewport is OutOfBounds.
The child regions contained within a MinimalDetail region are not shown and either OutOfBounds or
MinimalDetail depending on the prior state.

2.3 Childarea

The child area of a region is the area in which all the subregions are rendered. In Figure 2.2 the red
area is the childarea and containes the subregions A and B.

2.4 DepthMap

The DepthMap handles the access and initialization of regions. It determines which region’s visibility
state needs to be re-computed. For this, the DepthMap caches the initialized regions and stores the
last viewport and threshold values. It also takes care of correctly handling a change of the SModel by
resetting its state. The recalculation of a regions detail level may occur on a viewport or threshold
change. The threshold determines the ratio between a regions side length and the corresponding
display area side length at which a region will change from MinimalDetail to FullDetail. Therefore,
each region has its own threshold value which determines if it should be expanded or collapsed and

5

2. Used Terminology

Figure 2.1. Depiction of different level of detail

Figure 2.2. Childarea

gets updated on every zooming action. Both the width and height ratio is calculated and the smaller
ratio is then compared to the configured threshold.

2.5 Viewport

The term viewport in general refers to the whole visible area of the diagram, while the viewport object
usually corresponds to the root of the SModel. The viewport object defines the visible area by an
offset defining the top left corner and a scaling factor, which are changed by panning and zooming,
respectively. Additionally, the extent of the visible diagram is also influenced by the canvas size on
which the Viewport is drawn. As a result the same offset and scaling values will have a different extent
to the bottom and right side when the canvas is smaller or larger in these dimensions.

6

Chapter 3

Improvements

In this chapter, the actual changes are explained, starting with the general improvements of the
previous project.

3.1 General Improvements

While getting accustomed to the code base, we noticed a couple of improvements that could be made
to the DepthMap and related code to improve performance and memory usage.

One of them was the way the DepthMap was initialized, where originally the regions would be
generated and then in another pass child and parent regions would be associated. As the parent
regions were known at the time a new region was created, it was simple to associate them right there,
rather than doing this in a separate pass.

Additionally, we noticed that the re-calculation of the region’s visibility state was performed more
often than necessary, as the function performing this calculation did this for most of the regions in one
pass and the pass was performed for each node of the model. We changed the pass to perform this
for all instead of most regions and moved the execution of the pass to be performed once per render
rather than for each node per render.

3.2 Use SModel Layout Information

The DepthMap we inherited was initialized completely on first access and reinitialized when the
model changed. This initialization was performed at the start of the rendering while accessing the
DepthMap instance to add it to the rendering context. To reduce the impact on the responsiveness,
the goal was to make the DepthMap initialization independent of the rendering. Most information
to achieve this were already available in the layout information of the SModel. The main problem
was that in the SGraph model a child node stored its offset relative to the parent’s child area and not
relative to the parent itself. The child area’s offset to the parent was not easily accessible. The relative
offset to the parent was required to compute the absolute position in the viewport which is used to
determine whether a node is OutOfBounds.

To fix this, we adjusted the conversion to an SModel in the language server to incorporate the offset of
the child area relative to the parent into the position of the child relative to the parent. Correspondingly,
we no longer apply the child area offset during rendering as to not apply it twice. This made it possible
to rewrite the initialization code to not require layout information provided by the browser DOM and
instead relying on the layout information provided by the SModel.

7

3. Improvements

3.3 Lazy Initialization of the DepthMap

The problem with the approach from Section 3.2 is that it still initializes the DepthMap eagerly for
the whole diagram, even if only a fraction is required. Especially for large diagrams, this consumes
unnecessary time and memory. Additionally, the master thesis from Kasperowski [1] deals with the
transmission of the model piece by piece rather than in one chunk. This would mean that in the future
the full model might not be available as a whole from the start and as such lazy initialization would
be ideal.

For this we once again rewrote the (re-)initialization of the DepthMap to be as minimal as possible, it
now only returns the DepthMap to an empty state. The generation of regions is now handed lazily an
initialization function indirectly used through two accessor functions. One of the accessor functions
returns, if present, the region corresponding to the given node, the other returns the region that
contains a given node. The information for each node is cached by the initialization function in a
map associating the node id with a record containing one or both region references, depending on
the node. When the map contains such a record it is returned, otherwise a new record is computed,
cached and returned. The corresponding field of the returned record is then returned by the accessor
function. All accesses to DepthMap regions have been adjusted to go through one of the accessor
functions and the old functions for accessing regions have been removed. Initialization is therefore
again performed during the rendering though, due to the lazy behavior, imposes significantly less
strain on the resources and now allows for the model to be provided incrementally.

3.4 Bookmarks

To make navigating large diagrams easier, we added a bookmark feature. The bookmark feature allows
saving a position in the diagram as a bookmark, which enables to return to that position easily. The
Figure 3.1 shows a diagram with the bookmark panel open, two saved bookmarks and the bottom
bookmark title currently being in edit mode.

Figure 3.1. Cropped render of an SCChart with the bookmark panel visible and two bookmarks

8

3.4. Bookmarks

The two icons at the top of the bookmark panel allow the user to create a new bookmark and load a
bookmark from the clipboard respectively. The four icons on each bookmark allow you to go to the
bookmarks position, save the bookmark to the clipboard, delete the bookmark and edit the bookmark
title. The edit bookmark title button changes to a save title button with a text field next to it containing
the current title, when clicked. When the save title button is clicked or enter is pressed while the text
box has focus, the new bookmark title is saved and the edit bookmark title button is restored. The
bookmark when saved to clipboard is a JSON-string containing the bookmark data.

When using the klighd-cli, it is possible to pass a bookmark using the URI as shown in Figure 3.2.
This is possible with the use of the query parameters bookmarkX, bookmarkY and bookmarkZoom. The
former parameters specify the position and the latter specifies the scale. The bookmark specified by
the URI will be saved under the name “From URI“ and the view will navigate to the bookmark once
the diagram has completed loading.

Source Location URI Query Bookmark Parameter Bookmark Panel

Figure 3.2. Render of an SCChart with the bookmark panel visible and two bookmarks

Implementationwise, the bookmarks are saved in the bookmark registry and each newly created and
imported bookmark is assigned an index. The index gives each bookmark a non-volatile identifier, as
bookmarks may otherwise be identical, e.g. when importing the same bookmark from the clipboard
twice. The array index in the array backing the registry may change when bookmarks are deleted.
This is especially important for unnamed bookmarks, as to differentiate them in the bookmark list.
The index is part of the fallback name. Currently, the position saved in a bookmark refers to the top
left corner of the viewport. This probably deviates from a user’s expectation, as usually the viewport
center would be the important part and not the top left corner.

9

3. Improvements

3.5 Title Overlay

The previous project focused on enlarging the region titles only when the corresponding region was
collapsed. First of all, the correct text elements for the titles had to be identified by checking if the
isNodeTitle property was set by the language server. This property is set for all title texts, including
regions, nodes, etc. So additionally it needs to be checked, if the parent of this text is a region to
guarantee that this title is actually a region title. After that, the title can be dynamically scaled up to a
user defined maximum factor.

Only scaling the titles if the region is collapsed can cause problems with the user’s mental map and
a difficult navigation through big diagrams, as discussed in Section 1.2. To address this issue, we
applied the scaling independently from the expansion state of the region. To get the correct scaling
factor, we calculate the maximum factor, at which the title will not exceed the region in either height
or width. This guarantees that the title cannot overlap neighboring regions. The calculated scaling
factor is used, if it is below the user defined maximum, otherwise this maximum scaling factor is used
instead. This procedure is similar to the one of the previous project, therefore the scaling of titles for
collapsed regions stays the same.

For expanded regions some additional steps are necessary. The first change is caused by the fact that
the title can now overlap with other parts of it’s corresponding region that became visible. As region
titles are located in the top left corner in SCCharts, they would e.g. be drawn over variable declarations.
To keep the title text visible and more importantly readable, a rectangle is placed behind the text with
the same bounds as the text element. This background is slightly transparent, to indicate that there is
text behind it. An example can be seen in Figure 3.3. In contrast to the same diagram in Figure 1.2,
the title of the region scheduler is now visible in the upper left corner. Moreover, when comparing the
regions train9 and train5, it becomes clear that both titles can be easily read regardless of the different
expansion state. The regions at the bottom, including sftrain9, are expanded, because they each have
been given more space as there are only three of them. Without the title overlay feature, the title train9

would be not readable.

Furthermore, the title should only overlap other parts of the region if it is necessary. This decision is
based on the size of the text in the viewport. The exact threshold, at which the title should no longer
overlay the region, can be set by the user in the options. To prevent a sudden decrease in the size
of the title similar to the original issue, we use interpolation to create a smooth transition from the
overlay title size to its actual size.

This fixes the visibility issue for region titles, but not yet for regular node titles. When applying the
changes to these titles as well, they may be overlapped by other elements contained in the node due to
their rendering order. To achieve a correct overlap in these cases, the title needs to be added to the
diagram after any other element in this node. Instead of adding the title directly, it is saved in an array
together with the transformations necessary for correct placement. The position in the array indicates
the level at which the title needs to be retrieved and added. Therefore, after adding all other elements
of the node to the diagram, the node title is added and can now be scaled while correctly overlapping
other elements. This can also be observed in Figure 3.3 for schedule_state and the station_scheduler for
the different trains.

10

3.6. Change of Visibility

Figure 3.3. Region titles with overlay

3.6 Change of Visibility

Another minor problem we had when using the implementation from David Wolff was that he chose
to display regions based on the maximum of width and height. This results in stretched graphs, as
visible in the right of Figure 3.4a. This, however, is not appealing to the eye since it can result in large
and mostly black blocks. The solution here was rather simple, we used the minimum of the region
width and height to determine if the region should be displayed. This resulted in the improved graph
Figure 3.4b. There one can directly see that the mostly black box in the top graph is not rendered but
the regions with the corresponding titles give some information of the region’s purpose. However, this
change may also be bad because some regions may get minimized early. A example is also shown in
the bottom right part in Figure 3.4a. When comparing it to the bottom right of Figure 3.4b we lose
some information. Since both solutions have good and bad parts we leave more investigation to future
work.

11

3. Improvements

(a) Final implementation with minimum threshold

(b) Final implementation with minimum threshold

Figure 3.4. Comparison maximum threshold and minimum threshold12

Chapter 4

Evaluation

In this chapter the improvements relevant to the performance of the project are evaluated. First we
look at the general improvements explained in Section 3.1. To quantify the impact of this change, we
ran both a version with and one without this change and manually performed a pan in each cardinal
direction and one zoom in and out. Over the execution of these actions we measure the time spent
in the DepthMap.updateDetailLevels function, as it is the entry point for the DepthMap’s detail level
recalculation. As a result the total time spent in the function as measurements using the browsers
DevTools are presented in Table 4.1. The preferences and machine specifications used for testing are
listed in Figure 4.2.

Due to the manual nature of this test, the pan distances and zoom amounts may differ between both
runs. However, the performance of the DepthMap.expandCollapse functions clearly improved, given the
quite notable reduction from 67.4% of the total execution time down to only 0.4% of the total execution
time.

Table 4.1. Time spent in DepthMap.expandCollapse (renamed to DepthMap.updateDetailLevels)

State Commit Time (%)

Old cdd29a27 15,776.6 ms (67.4%)
New 3c72b4f8 55.9 ms (0.4%)

Since the improvements of the changes from Section 3.1 were so dramatic, we are comparing the
performance of our final implementation to a version where smartzoom was disabled completely.

When using the DevTools to analyze the frame times of either version the pattern was mostly the
same: a dropped frame time which was larger and a smaller frame time following it. Dropped frames
can be caused by either a missed deadline, a script running too long and therefore blocking any new
frames or because the browser wanting to speedup to recover latency.

The reason in our case is the fact that typescript is single threaded and thus while producing a new
SVG of the model the browser cannot produce a new frame. For this reason we compare the dropped
frame times and the frame times separately.

When comparing the frame times in Figure 4.1a the median is almost the same in both cases. This
comes from the fact that in these cases a new SVG was produced by both backend instances and ready
to be displayed by the browser. Since our implementation does not render all nodes, for example not
those that are OutOfBounds, our final SVG to be displayed is smaller and therefore the time needed
might be slightly smaller in the average case. However, these measurements could also be slightly
imprecise and thus we cannot say that this is the case. In the end the frame times in both cases are
small enough that they do not really contribute to the smoothness while using the tool.

13

4. Evaluation

(a) regular frames

(b) dropped frames

Figure 4.1. Performance of different project versions measured at the average time per frame in milliseconds.
Nearly identical zoom actions were performed for each version and were obtained using the Google Chrome
DevTools performance recording. In total we ran four tests for overall 40 frames recorded for both versions. Thus
each graph includes 20 time values.

In contrast to the frame times the comparison of the dropped frame times in Figure 4.1b directly show the
improvements. The smartzoom version is so fast that the slowest dropped frame is still faster than the
fastest one from the version without smartzoom. In the average case a dropped frame takes up 1314ms
in a version with smartzoom disabled, and only 239ms in the final version with smartzoom enabled,
resulting in a speedup of 5.5. Comparing this to the result of David Wolff, who achieved a speedup of
three in a smaller diagram, proves the worth of the contributions made in this project.

14

Setting/Spec Value

Operating System Kubuntu 21.04
Kernel-Version 5.11.0-31-generic
Operating System Kind 64-bit
Processor 20 × Intel® Core™ i9-10900 CPU @ 2.80GHz
RAM 31,2 GiB
VS Code 1.60.0
Google Chrome 93.0.4577.63
Diagram Controller_expanded.sctx out of the railway project summer semester 2017
Render Options enabled (threshold) Smart Zoom (0.2)

Simplify Small Text (3)
Title Scaling (1)
Title Overlay (4)
Constant Line Width (0.5)

Preferences Resize To Fit
Text Selects Diagram
Animate GoTo Bookmark

Synthesis Options Default

Figure 4.2. Benchmark Specifications

15

Chapter 5

Future Work

For bookmarks we currently save the top left corner of the viewport. When sharing bookmarks between
different screen sizes this has the effect that not all relevant parts may be visible when changing to a
smaller screen size, and when changing to a larger screen size the relevant part may only be a fraction
of what is shown. To help with this problem, saving the viewport center may be a better position
to save as this is usually the relevant part, and adjusting the extent of the visible diagram can then
be adjusted by zooming in or out accordingly. Even better would be to not save the zoom level and
instead save opposing corners of the viewport. This would allow for restoring the expected view more
closely, only for changed aspect ratio one would require showing more of the diagram so that the
whole original viewport is visible.

Additionally, it would be nice to use the persistent storage API to have the bookmark registry preserved
between sessions.

Something else to tackle as depicted in Section 3.6 is a good heuristic to predict if a region should be
expanded or collapsed. Right now the approach is to simply look at the width and height and if both
values surpass a certain threshold it should be displayed. This, however, is quite bad for regions with
very few nodes. In extreme cases the layout provided by the language server could be such that we
have a slim but high region resulting in a late expansion due to being slim. If this region has only one
node which is in the center of the region, one would need to scroll quite far to the center if the current
position is at the top-left of the region where the title is. To tackle the problem, one could decide to
display regions with fewer child nodes early. This however does not tackle the main problem of large
empty areas in the graph and therefore a new layouting algorithm could be a good way of solving this
issue.

The current version includes that upon using the export as SVG feature, the generated SVG displays
the entire diagram without smartzoom, which means displaying the entire SModel. A better approach
would be that the "exported as SVG" feature would ask the user to export the current viewport with
the current smartzoom settings or the entire diagram. This would allow the user to send a specific
cutout or part of the diagram which may help when investigating specific regions.

Another idea to improve the performance during the project was to only redraw the diagram if a
region enters the viewport that was not rendered yet or was minimized previously. In the other cases,
one could use the old rendered versions of nodes. The problem with this approach was that some lines
and texts may get rendered differently on different zoom levels, therefore we discarded that option
since the results we had already improved the performance to have good use ability.

The last idea for future work would be to have different diagrams based on the zoom level. This would
require generating multiple diagrams in the language server and handling the transition from the
diagrams one to another.

17

Chapter 6

Conclusion

The goal of the previous and current project was to improve the general user experience when display-
ing diagrams. While the previous project’s main focus lied on the readability of large diagrams and
especially on hiding too small elements in regions, our initial goal was to enhance the responsiveness
of zooming and panning displayed diagrams. To achieve a better performance and reduce potential
delay in these actions, the implementation done by the previous project was improved. As seen in
Chapter 4 this led to a significant speedup in frame times, resulting in much less delay and a more
pleasant user experience. Additional delays caused by excessive zooming and panning were addressed
by merging consecutive actions into one before actually applying them. This prevents the build-up
of these actions to some degree and allows a fast and at the same time smooth interaction with the
diagram.

Apart from the lack of responsiveness, this project fixed two other smaller issues, to improve the
user experience even further. When displaying expanded regions of large diagrams, the titles were
often not or only hardly visible. By increasing their size and letting them overlap their corresponding
region, the user is now able to keep track of the exact position in the diagram with all titles visible.
The second feature added to the project was the bookmark feature. Bookmarks allow the user to save
exact positions in the diagram to later go back to that same position. Especially in large diagrams
this is very useful, as frequent switches to different positions would otherwise lead to annoying and
repetitive zooming and panning.

Because another improvement was made to the same system by another project, an additional aspect
of our project was to make the different changes compatible. These improvements changed the way of
transmitting the SModel from sending it in one piece into sending it in several small pieces. To cope
with the potential absence of the whole model, the DepthMap initialization was changed to work in a
lazy manner, that means changes to the diagram will no longer lead to a whole new generation of the
DepthMap, but rather to a change only of the affected regions.

Although there is still some future work to do, this project achieved several improvements not only to
the performance, but the general user experience and the compatibility with other projects as well.

19

Bibliography

[1] Max Kasperowski. “A Top-Down Approach on Automatic Graph Visualization”. MA thesis. CAU
Kiel, 2021. url: https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mka-mt.pdf.

[2] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. “Layout adjustment and the mental
map”. In: Journal of Visual Languages & Computing 6.2 (1995), pp. 183–210. issn: 1045-926X. doi:
https://doi.org/10.1006/jvlc.1995.1010. url: https://www.sciencedirect.com/science/article/pii/S1045926X85710105.

[3] David Wolff. “Project Report for Google Maps for Models”. Tech. rep. CAU Kiel, Mar. 2021.
url: https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=75694276&preview=/75694276/

94732327/dwo_mp_11pt.pdf.

21

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mka-mt.pdf
https://doi.org/https://doi.org/10.1006/jvlc.1995.1010
https://www.sciencedirect.com/science/article/pii/S1045926X85710105
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=75694276&preview=/75694276/94732327/dwo_mp_11pt.pdf
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=75694276&preview=/75694276/94732327/dwo_mp_11pt.pdf

	Introduction
	Previous Work
	Motivation
	Outline

	Used Terminology
	SModel
	Region
	Childarea
	DepthMap
	Viewport

	Improvements
	General Improvements
	Use SModel Layout Information
	Lazy Initialization of the DepthMap
	Bookmarks
	Title Overlay
	Change of Visibility

	Evaluation
	Future Work
	Conclusion
	Bibliography

