Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • Tight Packing of Connected Components (Bachelor)
    Different connected components of a graph are often laid out separately and combined again afterwards. This combination step often produces too much whitespace. Research relevant 2D packing literature and implement a better solution.
    Jira
    serverKIELER JIRA
    columnskey,summary,type,created,updated,due,assignee,reporter,priority,status,resolution
    serverId2851bd34-0bf1-3f02-ab12-7d77ccab0fae
    keyKIPRA-1262

    Jira
    serverKIELER JIRA
    columnskey,summary,type,created,updated,due,assignee,reporter,priority,status,resolution
    serverId2851bd34-0bf1-3f02-ab12-7d77ccab0fae
    keyKIPRA-1031
  • Integrate KIML with JGraph (Bachelor)
    Provide automatic layout through KIML for the JGraph diagram library and develop a simple JGraph-based graph editor to test the integration with.
    Jira
    showSummarytrue
    serverKIELER JIRA
    columnskey,summary,type,created,updated,due,assignee,reporter,priority,status,resolution
    serverId2851bd34-0bf1-3f02-ab12-7d77ccab0fae
    keyKIPRA-1214
  • Improved Edge Label Placement (Bachelor)
    Our layout algorithm already supports the placement of edge labels. However, there's still room for improvement...
  • Layering Algorithms (Bachelor, Master)
    Implement an alternative algorithm for the layer assignment problem used in the layer-based approach to graph layout. The focus of the algorithm could the consideration of the number of edge crossings, a given aspect ratio, or overall compactness.
  • Orthogonal "Edge Bundling" (Bachelor, Master)
    Implement and evaluate strategies for orthogonal edge bundling within our layer-based layout algorithm.
  • Node Placement With a Focus on Compactness (Master)
    Node placement algorithms often try to draw as many edges as straight lines as possible. However, that usually results in less compact diagrams. The focus of this topic would be to devise or adapt a node placement algorithm that tries to strike a balance between straightness and compactness.
  • Compound Graph Layout (Master)
    Design and implement new concepts for computing layer-based layouts of compound graphs. The main focus shall be on maintainability: ensuring that the implementation can be kept working over the years. The main area to be considered here is the crossing minimization phase.
  • Force Based Drawing with Port Constraints (Master)
    Develop methods for integrating port constraints in force-based drawing approaches. The resulting node placement shall be evaluated using an edge router such as libavoid on the model library of Ptolemy.
  • Combining Forces and Layers (Master)
    Design and implement a layout algorithm that combines the force-based and the layer-based approaches. The first three phases of the layer-based approach shall be replaced by a node distribution computed with a force-based approach.

Modeling Pragmatics

Advisors: Reinhard von Hanxleden, Ulf Rüegg, Christoph Daniel Schulze.

...