Page tree

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


Automatic Graph Layout

Advisors: Christoph Daniel Schulze Sören Domrös, Reinhard von Hanxleden.


Modeling Pragmatics

Advisors: Christoph Daniel Schulze, Reinhard von Hanxleden Sören Domrös, Niklas Rentz, Reinhard von Hanxleden

  • Compare Software Architecural Model to Implementation
    OSGiViz and Software Project Viz currently allows to inspect software architecture aspects of projects. We would like to model software architectures in the same style to enable a model-to-implementation comparison or mockup code generation for architectures.
  • Post-Processing Label Placement with Label Management (Bachelor, Master)
    This is about implementing a stand-alone label placement algorithm that can place node and edge labels after everything else has already been placed. Since there might not be enough space to place all labels, the algorithm should provide different options of coping with such situations. One would be to hide such labels, another one would be to apply label management to them.
  • Standalone Edge Routing (Master)
  • Compound Graph Exploration (Bachelor, Master)
    A new graph exploration approach should be examined which is uses different zoom levels for different compound nodes. This tries to map the "Google Maps approach" of only showing the information of interest at any given zoom level to the field of graph exploration.
  • Improvements to Spline Edge Routing (Bachelor, Master)
    Spline edge routing closely follows the routes orthogonal edges would take. A Bachelor's thesis could work on improving how splines connect to their end points to make the results look more natural. A Master's thesis could look at improving the routes splines take through a diagram more generally.
  • Interactivity for Further Diagram Elements and Layout Algorithms (Bachelor, Master)
  • Relative Interactivity Constraints (Bachelor, Master)
  • Polishing and Evaluating Interactive User Experiences (Bachelor, Master)
  • Interaction Techniques for Large Diagrams (Bachelor, Master)
  • Control Flow Graph Exploration / Visualization (Bachelor)
    Use pragmatics concepts (automatic layout, focus & context) for exploring/visualizing control flow graphs and specific paths, eg. as computed by OTAWA WCET analysis tool, eg. using KLighD.


Semantics, Synchronous Languages and Model-based Design

Advisors: Steven Smyth, Alexander Schulz-Rosengarten, Reinhard v. Hanxleden


  • Optimization of the SCCharts compiler/transformations (Bachelor/Master)
    Profile the actual SCCharts compiler/transformations and apply optimizations; also evaluate the possibility to use multiple cores for compilation.
  • Efficient data dependency & scheduling analyses in SCCharts (Master/Bachelor)
    Implement analyses for data dependencies and scheduling (e.g. tick boundaries) for SCCharts to improve static scheduling of the compiler.
  • Javascript code generation (Bachelor/Master)
    Implement a javascript code generation for SCCharts. Integrate with simulation and (environment) visualization to deploy a complete example as standalone web page. Compare with HipHop.js based on Esterel.


  • Visualization of Model-based Simulation via Tracing (Bachelor/Master)
    Use the already implemented Model-to-Model-Tracing in KIELER to visualize simulations. 
  • Core SCCharts Interpreter with dynamic Scheduling (Master/Bachelor)
    Implement an Interpreter for Core SCCharts that supports SC Policies.
  • Live Debugging of Statecharts (Master/Bachelor)
    Implement a dedicated debugging view for SCCharts.
  • Microstep-Simulation of Statecharts (Master/Bachelor)
    Implement a method to do microstep simulation with SCCharts.

Model-based C Code Compilation

  • Execution of Recursive Dataflow Code (Master/Bachelor)
  • Execution of Concurrent Dataflow Code (Master/Bachelor)
    Modify the model-based dataflow compiler in KIELER so that it is able to compile recursive/concurrent C programs.
    For Master students: Implement both.