Eclipse Server Installation
Eclipse for the People

We maintain an Eclipse installation that is ready to use for developers working at our research group. The installation is usually quite up-to-date, consisting
of the most recent Eclipse release with a then-current selection of features already installed. Ideally, this installation can be used to work on every part of
KIELER without the need to install additional features.

More importantly, this installation serves as the basis for the target platform KIELER is developed against. We found that a centralized and clearly defined
target platform is necessary to avoid any version issues.

(D This documentation is not valid for the new Eclipse installation central to the institute.

Using the Installation

To use the installation, simply start Eclipse with the following command line:

/ hone/ j aval ecl i pse/ ecl i pse

Administering the Installation

The information in this section is only relevant for those of us that actually administer the shared Eclipse installation. If you're just using it, this is not for you.

To-Do List for Installing a New Version
When installing a new version, follow this to-do list:

. Install a basic Eclipse distribution in a properly named folder, e.g. ecl i pse_4. 2. 1 or ecl i pse_4. 3_nodel i ng.

. Install additional features as described in Getting Eclipse.

. Install the delta pack necessary to build products for other platforms.

. Update / hone/ j ava/ ecl i pse to point to the new installation.

. Copy the installation into a new directory and copy all plugins and features of the delta pack into its pl ugi ns and f eat ur es folders.
Produce a P2 reference repository for the automatic Maven build to use. To do that, execute the following script with reasonable parameters

GO WONP

#!'/ bi n/ bash
if ([$# -1t 3] || [$# -gt 4])
t hen
echo "Usage: $0 [ECLI PSE_I NSTALLATION] [TARGET_DI R] [REPCSI TORY_NAME] [SOURCE_DI R] ?"
el se
ECLI PSE_DI R=$1 # e.g. /hone/javaleclipse-nodeling-4.4.1/
TARGET_DI R=$2 # e.g. /hone/javal/public_htnm/repository/
REPO_NAME=$3 # e.g. luna44l
if [$# -eq 3]
t hen
SOURCE_DI R=$ECLI PSE_DI R
el se

SOURCE_DI R=$4

fi

CVD="j ava -jar $ECLI PSE_DI R/ pl ugi ns/org. ecl i pse. equi nox. | auncher_*.jar \
-application org.eclipse.equinox.p2. publisher. FeaturesAndBundl esPubl i sher \
- net adat aRepository fil e: $TARGET_DI R $REPO_NAME \
-artifactRepository file: $TARGET_DI R/ $REPO_NAME \
-source $SOURCE DI R\
-configs any.any.any \

-conpress \
-publishArtifacts"
echo $CMD
eval $CMVD

fi

6. Move the repository to our ki el er user's publ i c_htnl/repository/ directory.
7. Download the respective eclipse delta pack and create a P2 Repository for it as in 5.
8. Move the delta pack repository to publ i c_ht m / reposi tory/ <ecl i pse_r el ease>_del t a/

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Getting+Eclipse

9. Update the reference repository location in the parent POM files of the source code repositories. Also update the target platform definition files in
the confi g repository.

Note on Windows

In case you want to setup the P2 repository on a Windows system, adapt the file paths as follows and take care to not append a file:\\ after the - sour ce
argument.

java [...] -nmetadataRepository file:\\E \juno42rep -artifactRepository file:\\E \juno42rep -source E: \juno42rep
-publishArtifacts

Creating a Target Definition

To use the reference installation with private eclipse installations (e.g. on personal laptops) an eclipse target definition is required. As eclipse's tooling to
create such a . t ar get file is pretty much unusable, you are welcome to use the following script.

#1/ bi n/ bash

This script can be used to automatically create an eclipse target
platformdefinition fromthe contents of a p2 repository.

$NAME - The nane of the created file

$SEQ N - A sequence nunber within the target definition. This should
be higher than the numbers used before as eclipse
uses it to cache states internally

$TARGET_PLAT_* - U ls to the used p2 repositories

HOHH R H R H R

NAVE="pr agnati cs_| una44l.target”

SEQ_N=40

TARGET_PLAT="http://rtsys.informatik. uni-Kkiel.de/~kieler/repository/luna441/"
TARGET_PLAT_DELTA="http://rtsys.informatik.uni-kiel.de/~kieler/repository/lunad44l_delta/"

#
| npl ement ati on bel ow
#

Ignore any platformspecific fragnents for the target definition.
They will be resolved automatically.
| GNORE_FRAGMVENTS="11i nux\ | wi n\ | cocoa\ | nac\ | sol ari s\ | ai x\ | hpux"

function to downl oad the contents.jar froman p2 repository
and extract all the installable units

$1 - url of the p2 repository

function parseContent {

TVP="t np"

nkdir $TMP

wget -P $TMP "$1/content.jar" > /dev/null 2>&1
unzip "$TMP/ content.jar" -d $TMP > /dev/null 2>&1

CvD="cat $TMP/content.xml | grep -e '<unit .*' | grep -v -e '$I GNORE_FRAGVENTS' | sed \"s/singleton='fal se'
/1g\" | sed \"s/>/\/>g\""
UNI TS=$(eval $CMD)

rm-r $TWP

echo -e "$UNI TS"
}

function assenbling a location
$1 - the url of the p2 repository
$2 - a list of units that should be part of the target definition
function location {
LOCATI ON=' <l ocation includeAllPlatfornms="fal se" includeConfigurePhase="fal se" includeMde="slicer"

i ncl udeSource="true" type="InstallableUnit">
g2
<repository location=""'$1""/>
</l ocation>

echo -e "$LOCATI ON'

HEAD=' <?xm versi on="1.0" encodi ng="UTF-8" standal one="no"?> \n
<?pde version="3.8"?> \n
<target nane="'$NAME' " sequenceNurmber="'$SEQ N "> \n
<l ocations> \n

FOoOoT="
</l ocations> \n
</target>'

print the header of the target definition
echo -e $HEAD > $NAME

parse the provided content.xm file
UNI TS=$(par seCont ent " $TARGET_PLAT")
echo -e "$(location "$TARGET_PLAT" "$UNITS")" >> $NAVE

UNI TS=$(par seCont ent " $TARGET_PLAT_DELTA")
echo -e "$(location "$TARGET_PLAT_DELTA" "$UNITS")" >> $NAME

finish the target definition
echo -e $FOOT >> $NAME

	Eclipse Server Installation

