
Eclipse Plug-ins and Extension Points
Welcome to this tutorial! We will walk you through the process of starting Eclipse for the first time, importing existing plug-ins, and creating a simple plugin
yourself.

Preliminaries
There's a few things to do before we dive into the tutorial itself. For example, to do Eclipse programming, you will have to get your hands on an Eclipse
installation first. Read through the following sections to get ready for the tutorial tasks.

Required Software

Install . For what we do, we recommend installing the Eclipse Modeling Tools.Eclipse

Finding Documentation

During the tutorial, we will cover each topic only briefly, so it is always a good idea to find more information . Here's some more resources that may online
prove helpful:

Java™ Platform, Standard Edition 8 API Specification
As Java programmers, you will already know this one, but it's so important and helpful that it's worth repeating. The API documentation contains
just about everything you need to know about the API provided by Java.
Eclipse Help System
Eclipse comes with its own help system that contains a wealth of information. You will be spending most of your time in the Platform Plug-in

, which contains the following three important sections:Developer Guide
Programmer's Guide
When you encounter a new topic, such as SWT or JFace, the Programmer's Guide often contains helpful articles to give you a first
overview. Recommended reading.
References -> API Reference
One of the two most important parts of the Eclipse Help System, the API Reference contains the Javadoc documentation of all Eclipse
framework classes. Extremely helpful.
References -> Extension Points Reference
The other of the two most important parts of the Eclipse Help System, the Extension Point Reference lists all extension points of the
Eclipse framework along with information about what they are and how to use them. Also extremely helpful.

Eclipsepedia
The official Eclipse Wiki. Contains a wealth of information on Eclipse programming.
Eclipse Resources
Provides forums, tutorials, articles, presentations, etc. on Eclipse and Eclipse-related topics.
Eclipse Layout Kernel
Documentation on how the layout infrastructure works and on how to write your own layout algorithms. This is our project, so if you find that
something is unclear or missing, tell us about it!

You will find that despite of all of these resources Eclipse is still not as well commented and documented as we'd like it to be. Finding out how stuff works
in the world of Eclipse can thus sometimes be a challenge. However, you are not alone: this also applies to many people who are conveniently connected
by something called . It should go without saying that if all else fails, often turns up great tutorials or solutions to problems you may run The Internet Google
into. And if it doesn't, your advisers will be happy to help.

As far as KIELER documentation is concerned, you will find documentation at the . The documentation is not as complete as we (and KIELER Confluence
especially everyone else) would like it to be, however, so feel free to ask those responsible for help if you have questions that the documentation fails to
answer.

First Steps with Eclipse

Starting Eclipse

http://eclipse.org/downloads
http://en.wikipedia.org/wiki/Internet
http://docs.oracle.com/javase/8/docs/api/
http://help.eclipse.org/juno/index.jsp
http://wiki.eclipse.org/Main_Page
http://www.eclipse.org/resources/
https://github.com/eclipse/elk/wiki
http://www.google.de
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Home

1.

2.

1.
2.
3.

Eclipse uses workspaces to store, for instance, user preferences. Upon the first start of Eclipse you will be asked to specify a location. Select one
as you like.

Switch to the workbench, you should see something like this

Importing Existing Plug-ins

Download the zip file with an example plug-in from our Stash. Unzip the file.
Open the context menu within the (on the very left, right-click the empty space).Package-Explorer
Select . Then chose .Import General > Existing Projects into Workspace

https://git.rtsys.informatik.uni-kiel.de/plugins/servlet/archive/projects/MISC/repos/tutorials?at=refs/heads/plugins

4.

1.
2.
3.

a.
b.
c.
d.

4.
5.
6.

1.
2.
3.
4.
5.

6.

Browse to the location where you unzipped the downloaded plug-in. Click open. Check the checkbox in front of the de.cau.cs.kieler.
 plug-in and press tutorials.plugins.shouter Finish.

Running Eclipse

In Eclipse, we develop plug-ins that extend the basic functionality of Eclipse itself. As we do not always want to run Eclipse with all the functionality there
is, we can use to precisely specify the functionality we want.Run Configurations

Click > Run Run Configurations...
Right-click and click . Set the configuration's name to .Eclipse Application New Eclipse Test
On the tab, set to . Plug-ins Launch with plug-ins selected below only

Click .Deselect All
Check the item in the tree.Workspace
Check the plugins under org.eclipse.ui.ide.application Target Platform
Click . Press it twice (just to be sure!).Add Required Plug-ins

Click to save your changes and then to start an Eclipse instance to test with.Apply Run
In the newly started Eclipse, open the context menu of the Project Explorer.
You should see a entry which shouts out if you press it.Hello Shouter Hello

Note that you can run your configuration also by using the debug button in the main menu. In that case you will be able to use debug features and code
changes will be directly active in your Eclipse instance after saving. In the rather rare cases where this is impossible you will be notified.

Creating Your First Plug-in

Open the context menu within the (on the very left, right-click the empty space).Package-Explorer
New -> Project...
In the project wizard, choose and click .Plug-in Project Next
As the project name, enter . Click .de.cau.cs.kieler.tutorials.myshouter Next
As the name, enter . Uncheck all checkboxes. Click . (Eclipse might ask you whether you want to switch to the Simple Shouter Finish Plug-in

, which configures Eclipse to provide the views that are important for plug-in development. Choose . Or . It won't Development Perspective Yes No
have a big influence on your future...)
Eclipse has now created your new plug-in and was nice enough to open the , which allows you to graphically edit two Plug-in Manifest Editor
important files of your plugin: (which has not been created yet) and . Basically, those two files provide plugin.xml META-INF/MANIFEST.MF
information that tell Eclipse what other plug-ins your plug-in needs and how it works together with other plug-ins by providing extensions and
extension points. Our new plug-in will depend on the previously imported plug-in, so switch to the tab of the editor and add a Dependencies
dependency to . Save the editor and close it. (You can always reopen it by opening one de.cau.cs.kieler.tutorials.plugins.shouter
of the two mentioned files from the .)Package Explorer

Extending Functionality

1.

a.
2.
3.

4.
5.

We will now use the extension point mechanism of Eclipse to add some behavior to the plugin. de.cau.cs.kieler.tutorials.plugins.shouter
An is basically a well-defined point where other plug-ins can register to add functionality. The extension point is basically defined by an extension point
XML Schema file that defines an interface; other plug-ins may access this interface using XML code in their file, so-called .plugin.xml extensions

The plug-in defines such an extension point to register . A shouter is a Java class that de.cau.cs.kieler.tutorials.plugins.shouter Shouters
implements the following interface.

public interface IShouter {
 String getShoutString();
}

In your previously created plugin () create a new class that implements the de.cau.cs.kieler.tutorials.myshouter MyShouter IShouter
interface.

From the Package Explorer context menu select .New > Class
Open the of your plugin and navigate to the tab. MANIFEST.MF Extensions
Press and select the extension point. Press .Add de.cau.cs.kieler.tutorials.plugins.shouters Finish

Give it a name and using the button select your previously created class implementing the interface.Browse IShouter
Start your Eclipse instance again using the created run configuration and test your very own shouter.

	Eclipse Plug-ins and Extension Points

