
1.
2.
3.
4.

Project Creation, Initialization and Launch (Prom)
Prom - Project Management in KIELER

Deprecated since 0.13

This article is deprecated. The described features are no longer available in current releases.

Project are now build using an incremental project builder.

Please see the new Project Management (Prom)

Topics

Overview
The KiCo Launch Configuration

Launch Groups
Prom Environments

Paths for imported resources
Project Wizards with Prom
Wrapper Code Generation

FreeMarker
Automatically generated files

Overview

The KIELER Compiler (KiCo) can generate different code targets from models. For example it is possible to generate C and Java code from an SCT file.
As a result KIELER has to integrate with existing development tools and practices for the C and Java world. In the context of embedded systems, the
target device also varies heavily.

Therefore the KIELER Project Management (Prom) has been developed. It eases the creation, compilation and deployment of projects, when using
models that can be compiled via KiCo (e.g. SCCharts, Esterel). Furthermore it eases the creation of wrapper code, which is used to initialize and run the
model. To do so, there are mainly three components: An Eclipse , so called , and which will be Launch Configuration Environments Project Wizards,
introduced in the following.

The KiCo Launch Configuration

Prom provides a launch configuration (launch config) to

compile code from models via KiCo
at the same time, generate wrapper code for these model files
afterwards run an associated launch configuration (e.g. for a Java Application) and
execute arbitrary shell commands sequentially if the KiCo compilation and wrapper code generation finished successfully

KiCo launch configurations work per project basis so that every project has to create its own launch config. This is done automatically when performing Rig
ht Click > Run As > KiCo Compilation on a model file.

The command will search for a KiCo launch config for the project. If there is such a config, the selected file is only added to the list of model files Run As
that should be compiled. If there is none, a launch config is created by using the main file and environment the project has been created with. If the main
file and environment information could not be found, dialogs will query it from the user.

https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=31162403

A typically contains the entry point of the program on the target environment. Its wrapper code initializes and runs the model and sets inputs and main file
outputs to the physical components of the target device. The main file of the launch config is used to set several file path variables, which can be used in
several fields of the configuration, notably the shell commands to be executed, and wrapper code input. To use a variable, the syntax is . ${variable_name}
The variables that are set are

main_name : The file name, including its file extension (e.g.)MyModel.sct
main_path : The project relative path (e.g.)src/MyModel.sct
main_loc : The absolute file system path (e.g.)/home/me/workspace/MyProject/src/MyModel.sct
main_name_no_ext : The file name without its file extension (e.g.)MyModel

Further, similar variables for the are set, which is the main file in the directory of kieler generated files (see below)compiled main file

compiled_main_name : The file name, including its file extension (e.g. MyModel.java)
main_pathcompiled_ : The project relative path (e.g.)kieler-gen/MyModel.java
main_loccompiled_ : The absolute file system path (e.g.)/home/me/workspace/MyProject/kieler-gen/MyModel.java
main_name_no_extcompiled_ : The file name without its file extension (e.g.)MyModel

The values of the launch config can also be . This will revert the fields for the compilation target, wrapper code generation and (re)set to an environment
command execution.

The is configured on the tab. Here you can add/remove files that should be compiled via KiCo and the target language compilation via KiCo Compilation
as well as the file extension for the language (such as for Java). The files will be compiled sequentially in order of appearance in the list. Further, it is .java
possible to add a file path to a template for the output. This is useful to add surrounding content to the KiCo output. The placeholder can be ${kico_code}
used in the template.

1.
2.
3.
4.
5.
6.

On the tab, a list of can be added. They are typically used to further compile the KiCo and wrapper code output and afterwards Execute shell commands
deploy the result to the target platform. The commands are executed sequentially in order as they appear in the list, after the KiCo compilation and
wrapper code generation finished successfully. If a command fails (returns a non-zero exit code), following commands will not be excuted. The name of
commands have to be unique and must not contain a comma.

The standard streams of executed shell commands (stdin, stderr, stdout), as well as errors from the KiCo compilation and wrapper code generation, are
printed to the .Console View

Launch Groups

The list of shell commands are a simple mechanism to further compile and deploy code via command line tools. However, there are cases in which
command line tools are not available or reasonable to use, for example because a different Eclipse launch configuration does a better job.

In this case it is desirable that the KiCo launch config only compiles the model and another Eclipse launch config does the rest. This can be achieved via la
. They let you define a launch configuration, which starts other launch configurations sequentially. To illustrate this, another use-case for unch groups

launch groups is that you have a Client-Server application and want to start the client right after the server for debugging. Then you can create a launch
config for the server and a launch config for the client. Afterwards you create a launch group with aforesaid configurations.

Launch groups are a part of the C/C++ Development Tools (CDT), although they provide a general mechanism that could be a part of any Eclipse IDE.
The CDT is available in the Eclipse Marketplace ()Help > Eclipse Marketplace

Prom Environments

Environments are used to provide default settings for project creation and launch. They are configured in the (>preferences Window Preferences >
).KIELER > Execution Environments

An environment consists of

a unique , which may not contain a commaname
an project wizardassociated
the path of the default for the projectmodel file
the path of the default for the projectmain file
information about that should be imported at project setupfolders and files
default values for the KiCo compilation

Besides the name, all of these are optional, but can improve the workflow.

The associated project wizard is run as part of the Prom project wizard and takes care of the actual project creation. Afterwards the model file is created
and finally other folders and files are imported.

The default values for the KiCo compilation are used to compile model files in the project.

Paths for imported resources

To import a resource (folder or file), its project relative path has to be specified. The resource will be created at this location in the project.

Furthermore, it is possible to specify initial content for these resources. This is done in the field . Without an origin specifed, an empty resource will be origin
created.

To specify intial content for a file, the origin has to be an or an with the platform scheme of Eclipse. Such an URI has the form absolute file path URI plafto
rm:/plugin/a.plugin.name/folder/in/the/plugin/file.txt

Specifying intial content for a folder is analog. Its origin has to be an or an in the form absolute directory path URI plaftorm:/plugin/a.plugin.name/folder/in
/the/plugin

Project Wizards with Prom

Prom provides project wizards, which can with a , and . The wizards for different model file create and initialize a project model file imported resources
types (e.g. SCChart project vs Esterel project) differ only in the initial content for the model file. Other initial content is choosen from the environment,
which is selected on the first page of a Prom wizard. The project creation itself is done by another wizard, that is started from within the Prom wizard.

For example to create a project to develop Minstorms running leJOS, one can choose the SCCharts project wizard. In this wizard, one can choose the
Mindstorms NXT environment and define what will be initialized in the project (model file, initial resources). Now, when pressing the finish button, the
associated project wizard from the leJOS plugin will be started. When it finishes, the newly created project is initialized with a model file and the defined
resources.

Wrapper Code Generation

When modeling a program for an embedded system, it is necessary to set inputs and outputs of physical components (sensors/actuators) to inputs and
outputs of the model. This is typically done using wrapper code. However, for a specific device and programming language.wrapper code is often similar

Therefore one can write for a target device. These can then be injected to a as part of a KiCo launch. What snippets wrapper code snippets template file
are injected is defined using directly in the model file.annotations on inputs and outputs

In SCT files, annotations are added as in java, with an at-sign e.g. . You can write implicit and explicit wrapper code annotations.@Wrapper Clock, "500"

Explicit annotations have the form . An explicit wrapper annotation raises an error if the snippet @Wrapper SnippetName, arg1, arg2, ..., argN
does not exist, thus it is to use the explicit annotation. Every other annotation is tried as wrapper code annotation as well, but recommened @Wrapper
will be ignored, if no such snippet could be found. Thus you can write the above explicit annotation as , but @SnippetName arg1, arg2, ..., argN
there will be no error if the snippet with this name does not exist or could not be found, for example because of a typo.

Note: Annotation and parameters are . That means that are all different annotations.names case sensitive Clock, clock, Floodlight, FloodLight

In the one can use special .template file placeholders

${file_name} is replaced with the name withouth extension of the file that is generated (e.g. will be).Main.java Main

${model_name} is replaced with the name of the last compiled model.

 ${declarations} and will be replaced with additional declarations of variables and functions (<@decl>...</@decl> of a snippet definition). ${decls}
Declarations should occur before the tick loop of the model file. In general they are not required for Java code but may be useful in C applications (e.g. for e

 calls).xtern

${initializations} and will be replaced with initialization code for components (<@init>...</@init> of a snippet definition). Initialization should occur ${inits}
before the tick loop of the model file.

${inputs} will be replaced with code to set inputs for the model (<@input>...</@input> of a snippet definition). Setting model inputs should occur in the tick
loop, before the tick function call.

${outputs} will be replaced with code to read outputs of the model. (<@output>...</@output> of a snippet definition). Reading outputs of the model should
occur in the tick loop, after the tick function call.

${releases} will be replaced with code to free allocated resources. (<@release>...</@release> of a snippet definition). Releasing resources should occur
after the tick loop at the end of the program.

To ease the modification of the template file, one can open it with the text editor the final code will be for. This will enable syntax highlighting and code
completion for the langauge, but it will not show any errors. You can open the file for example with the Java Editor of Eclipse using Right Click > Open With
> Other > Java Editor

FreeMarker

The wrapper code injection is done using the open source . A wrapper code snippet is basically a definition of template engine FreeMarker Macro
FreeMarker. The Macro is called when the corresponding annotation is found in the model file. The file extension of FreeMarker templates is ..ftl

There is an for FreeMarker as part of the JBoss Tools Project. It can be installed using the Eclipse Marketplace.Eclipse plugin

http://freemarker.org/
http://freemarker.org/docs/ref_directive_macro.html
http://freemarker.org/editors.html

Automatically generated files

Files created by Prom are either saved in the directory or in the they correspond to. This is configured in the kieler-gen same directory as the input files
KiCo launch configuration.

When choosing the kieler-gen folder, the directory structure of input files is retained. However a starting Java source folder will be skipped because kieler-
 itself is a Java source folder.gen

For example

if is not a Java source folder, the file will be save to code code/subfolder/MyModel.sct kieler-gen/code/subfolder/MyModel.sct.
if is a Java source folder, the file , will be saved to src src/subfolder/MyModel.sct kieler-gen/subfolder/MyModel.sct.

	Project Creation, Initialization and Launch (Prom)

