Project Creation, Initialization and Launch (Prom)
Prom - Project Management in KIELER

Topics

® Overview
® The KiCo Launch Configuration
® Launch Groups
® Prom Environments
® Paths for imported resources
® Project Wizards with Prom
® Wrapper Code Generation
® FreeMarker
® Automatically generated files

Overview

The KIELER Compiler (KiCo) can generate different code targets from models. For example it is possible to generate C and Java code from an SCT file.
As a result KIELER has to integrate with existing development tools and practices for the C and Java world. In the context of embedded systems, the
target device also varies heavily.

Therefore the KIELER Project Management (Prom) has been developed. It eases the creation, compilation and deployment of projects, when using
models that can be compiled via KiCo (e.g. SCCharts, Esterel). Furthermore it eases the creation of wrapper code, which is used to initialize and run the
model. To do so, there are mainly three components: An Eclipse Launch Configuration, so called Environments, and Project Wizards, which will be
introduced in the following.

The KiCo Launch Configuration

Prom provides a launch configuration (launch config) to

1. compile code from models via KiCo

2. at the same time, generate wrapper code for these model files

3. afterwards run an associated launch configuration (e.g. for a Java Application) and

4. execute arbitrary shell commands sequentially if the KiCo compilation and wrapper code generation finished successfully

KiCo launch configurations work per project basis so that every project has to create its own launch config. This is done automatically when performing Rig
ht Click > Run As > KiCo Compilation on a model file.

The Run As command will search for a KiCo launch config for the project. If there is such a config, the selected file is only added to the list of model files
that should be compiled. If there is none, a launch config is created by using the main file and environment the project has been created with. If the main
file and environment information could not be found, dialogs will query it from the user.

https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=31162403

Main | Compilation . Execute O common

Create, manage, and run configurations
< Files Main | Compilation
Ard1Model.sct Add... Commands
CEX B Name: Ard1 R Execute Nam
@ || |Main’, Compilation| Execute [common
— @Arduino Launch Project Up
@t Ard1 - Browse Projects. o
Skclipse Application Main file & =
?java :w:et . Ard1 fl Browse Resources, Target
[java Application
Jojunit Environment CCode v Name
5% JUnit Plug-in Test Arduino ~ || Resetvalues
— @Kico Compilation File extension .ino
M Ardt
Output template Browse Resources... Command
% KIELER Execution
(3 Mwe2 Launch Target directory kieler-gen (@) Same as input files
& 056i Framework)
2, Remote Java Application Wrapper code generation
Input file ${main_path} Browse Resources...| | Variables... Associated Launch
Snippets directory snippets/arduino Browse Folders... Variables... Arduino Launch

E—)
Filter matched 13 of 13 items

@ Debug Close

A main file typically contains the entry point of the program on the target environment. Its wrapper code initializes and runs the model and sets inputs and
outputs to the physical components of the target device. The main file of the launch config is used to set several file path variables, which can be used in
several fields of the configuration, notably the shell commands to be executed, and wrapper code input. To use a variable, the syntax is ${variable_name}.
The variables that are set are

main_name : The file name, including its file extension (e.g. MyModel.sct)

main_path : The project relative path (e.g. src/MyModel.sct)

main_loc : The absolute file system path (e.g. /Thome/me/workspace/MyProject/src/MyModel.sct)
main_name_no_ext : The file name without its file extension (e.g. MyModel)

Further, similar variables for the compiled main file are set, which is the main file in the directory of kieler generated files (see below)

compiled_main_name : The file name, including its file extension (e.g. MyModel.java)

compiled_main_path : The project relative path (e.g. kieler-gen/MyModel.java)

compiled_main_loc : The absolute file system path (e.g. /home/me/workspace/MyProject/kieler-gen/MyModel.java)
compiled_main_name_no_ext : The file name without its file extension (e.g. MyModel)

e

ﬁ Selpct W abin &

Ehooss sweteble |7 o afy charecter, * « @y akringl

Foldri_giumgl

O

|w_a s r_rages
jims_Cppe_mamie

launched_project_lac

g i
.
LI LT

AR g

i e

Punmae_srnmpk

prapor_clssmach

prapect lec

=

C il vamalisi

¥anable Deacrmtian
Farra o i85 main Fle of the e bad spplicstion j

T aK Camal

The values of the launch config can also be (re)set to an environment. This will revert the fields for the compilation target, wrapper code generation and
command execution.

The compilation via KiCo is configured on the Compilation tab. Here you can add/remove files that should be compiled via KiCo and the target language
as well as the file extension for the language (such as .java for Java). The files will be compiled sequentially in order of appearance in the list. Further, it is
possible to add a file path to a template for the output. This is useful to add surrounding content to the KiCo output. The placeholder ${kico_code} can be
used in the template.

On the Execute tab, a list of shell commands can be added. They are typically used to further compile the KiCo and wrapper code output and afterwards
deploy the result to the target platform. The commands are executed sequentially in order as they appear in the list, after the KiCo compilation and
wrapper code generation finished successfully. If a command fails (returns a non-zero exit code), following commands will not be excuted. The name of
commands have to be unique and must not contain a comma.

The standard streams of executed shell commands (stdin, stderr, stdout), as well as errors from the KiCo compilation and wrapper code generation, are
printed to the Console View.

) console 2 &% KIELER Compiler Selection s X x| mAEE #E-00-=0
<terminated> Driver [KiCo Compilation] Deploy and Run 1 Project Launch Display Selected Cansole|
1eJ0S NXJ= Linking... 2 <terminateds Driver [KiCo Compilation] Compile B
leJOS NXJ= Uploading... « 3 <terminateds Driver [KiCo Compilation] Deploy and Run

1eJ0S NXJ> Searching for any NXT using Bluetooth inquiry
1eJ0OS NXJ= Error: Search failed.
1eJ0S NXJ=> Caused by lejos.pc.comm.NXTCommException: Bluetooth stack not detected

1eJ0S NXJ> at lejos.pc.comm.NXTCommBluecove.search(NXTCommBluscove.java:54)
1eJ0S NXJ> Caused by javax.bluetooth.BluetoothStateException: Bluetooth Device is not available
1eJOS NXJ= at com.intel.bluetooth.BluetoothStackBlueZ.nativeGetDeviceID(Native Method)

1eJ0OS NXJ> Failed te find any NXTs
1eJOS NXJ= Failed to connect to any NXT
No MXT found - 1s 1t switched on and plugged in (for USB)?

[«]

Launch Groups

The list of shell commands are a simple mechanism to further compile and deploy code via command line tools. However, there are cases in which
command line tools are not available or reasonable to use, for example because a different Eclipse launch configuration does a better job.

In this case it is desirable that the KiCo launch config only compiles the model and another Eclipse launch config does the rest. This can be achieved via la
unch groups. They let you define a launch configuration, which starts other launch configurations sequentially. To illustrate this, another use-case for
launch groups is that you have a Client-Server application and want to start the client right after the server for debugging. Then you can create a launch
config for the server and a launch config for the client. Afterwards you create a launch group with aforesaid configurations.

Lradfh BEANG, V3 T el R

B=F- ([T Erre——
& |k T e
4 e md e e b wtian
r [—— =
= = —
A a3 e BT W
I e imH

Launch groups are a part of the C/C++ Development Tools (CDT), although they provide a general mechanism that could be a part of any Eclipse IDE.
The CDT is available in the Eclipse Marketplace (Help > Eclipse Marketplace)

Prom Environments

Environments are used to provide default settings for project creation and launch. They are configured in the preferences (Window > Preferences >
KIELER > Execution Environments).

An environment consists of

. a unigue name, which may not contain a comma

. an associated project wizard

. the path of the default model file for the project

. the path of the default main file for the project

. information about folders and files that should be imported at project setup
. default values for the KiCo compilation

OO WNBE

Besides the name, all of these are optional, but can improve the workflow.

The associated project wizard is run as part of the Prom project wizard and takes care of the actual project creation. Afterwards the model file is created
and finally other folders and files are imported.

The default values for the KiCo compilation are used to compile model files in the project.

Preferences

a Environments g v e -
. + General
! + Annotations Environments
+ Ant Mindstorms NX] Add
| + Arduino Mindstorms EV3 Remove
 + CICH Arduino
i Up
FreeMarker Generic
=+ Help Generic Java hd Do
Tt Java General Compilation Execute
+ KEffects
Name
+ KEXT
Mindstorms NXJ
— KIELER
+ KIELER Layout LeJOS NXT Project A

+ KIELER Simulation
+ KIELER View Managemer

Model file

Model file src/${project_name}

le]OS EV3
leJO5 NXJ Main file
+ Mwe2 Main file sro/${project_name}Main.ftl

| + Plug-in Development
+ Run/Debug

Initial Resources

+s Project relative path Origin Add
| st 5rc/${project,name}Mai§platform:fp\ugin.fde‘cau‘cs.kie\er‘sccharts‘ R
t: i platform:/pl /de.cau.cs.kieler.sccharts.
+ Team snippets - Eplaﬂmrm p‘ugm de cau cskle‘ersccha s, o
snippets/care. i platform:/plugin/de.cau.cs.kieler.sccharts.
+ Xtext H Down
O Restore Defaults. Apply

| @ OK Cancel

Paths for imported resources
To import a resource (folder or file), its project relative path has to be specified. The resource will be created at this location in the project.

Furthermore, it is possible to specify initial content for these resources. This is done in the field origin. Without an origin specifed, an empty resource will be
created.

To specify intial content for a file, the origin has to be an absolute file path or an URI with the platform scheme of Eclipse. Such an URI has the form plafto
rm:/plugin/a.plugin.name/folder/in/the/plugin/file.txt

Specifying intial content for a folder is analog. Its origin has to be an absolute directory path or an URI in the form plaftorm:/plugin/a.plugin.name/folder/in
/the/plugin

Project Wizards with Prom

Prom provides project wizards, which can create and initialize a project with a model file, and imported resources. The wizards for different model file
types (e.g. SCChart project vs Esterel project) differ only in the initial content for the model file. Other initial content is choosen from the environment,
which is selected on the first page of a Prom wizard. The project creation itself is done by another wizard, that is started from within the Prom wizard.

For example to create a project to develop Minstorms running 1eJOS, one can choose the SCCharts project wizard. In this wizard, one can choose the
Mindstorms NXT environment and define what will be initialized in the project (model file, initial resources). Now, when pressing the finish button, the
associated project wizard from the leJOS plugin will be started. When it finishes, the newly created project is initialized with a model file and the defined
resources.

Sef the emarcnment for the progect

EFviraniment
Mindstorms NX]

The ensranment spedifies thed et wizard
and is used toinitialze unches and rescurces.
Ernsiranmients are configurad in the preferenes

Praject intialza

ian
Create model file

Create initial resources

2 < Baxk Fintish Cangel

Wrapper Code Generation

When modeling a program for an embedded system, it is necessary to set inputs and outputs of physical components (sensors/actuators) to inputs and
outputs of the model. This is typically done using wrapper code. However, wrapper code is often similar for a specific device and programming language.

Therefore one can write wrapper code snippets for a target device. These can then be injected to a template file as part of a KiCo launch. What snippets
are injected is defined using annotations on inputs and outputs directly in the model file.

In SCT files, annotations are added as in java, with an at-sign e.g. @Wrapper Clock, "500". You can write implicit and explicit wrapper code annotations.
Explicit annotations have the form @V apper Sni ppet Name, argl, arg2, ..., argN. An explicit wrapper annotation raises an error if the snippet
does not exist, thus it is recommened to use the explicit @Wrapper annotation. Every other annotation is tried as wrapper code annotation as well, but
will be ignored, if no such snippet could be found. Thus you can write the above explicit annotation as @ni ppet Nane argl, arg2, ., argN, but
there will be no error if the snippet with this name does not exist or could not be found, for example because of a typo.

Note: Annotation names and parameters are case sensitive. That means that Clock, clock, Floodlight, FloodLight are all different annotations.

Maodel file

Select snippets
from annotations

Template

Engine
Template file
Inject macro calls

of snippets

Wrapper Code

${file_name} is replaced with the name withouth extension of the file that is generated (e.g. Main.java will be Main).

In the template file one can use special placeholders.

${model_name} is replaced with the name of the last compiled model.

${declarations} and ${decls} will be replaced with additional declarations of variables and functions (<@decl>...</@decl> of a snippet definition).
Declarations should occur before the tick loop of the model file. In general they are not required for Java code but may be useful in C applications (e.g. for e
xtern calls).

${initializations} and ${inits} will be replaced with initialization code for components (<@init>...</@init> of a snippet definition). Initialization should occur
before the tick loop of the model file.

${inputs} will be replaced with code to set inputs for the model (<@input>...</@input> of a snippet definition). Setting model inputs should occur in the tick
loop, before the tick function call.

${outputs} will be replaced with code to read outputs of the model. (<@output>...</@output> of a snippet definition). Reading outputs of the model should
occur in the tick loop, after the tick function call.

${releases} will be replaced with code to free allocated resources. (<@release>...</@release> of a snippet definition). Releasing resources should occur
after the tick loop at the end of the program.

/4 Initialization

.;} Tick loop
while(...){

/1

// Reaction of model
scchart.tick();

Input snippets

// Output snippets

To ease the modification of the template file, one can open it with the text editor the final code will be for. This will enable syntax highlighting and code
completion for the langauge, but it will not show any errors. You can open the file for example with the Java Editor of Eclipse using Right Click > Open With
> Other > Java Editor

FreeMarker

The wrapper code injection is done using the open source template engine FreeMarker. A wrapper code snippet is basically a Macro definition of
FreeMarker. The Macro is called when the corresponding annotation is found in the model file. The file extension of FreeMarker templates is .ftl.

There is an Eclipse plugin for FreeMarker as part of the JBoss Tools Project. It can be installed using the Eclipse Marketplace.

http://freemarker.org/
http://freemarker.org/docs/ref_directive_macro.html
http://freemarker.org/editors.html

<#-- Floodlight --> import lejos.nxt.*;[] scchart Blinky {
<#macro Floodlight port>

<@nit> public class Main { output bool floodlight;
static LightSensor lightSensorFloodlightsi } = new LightSensor(SensorPort.s{ 3 public static ${model_name} scchart = new ${model_name}();
<@ initial state init{
<@input> s{inits} during |/ floodlight = !floodlight;
sechart.g{ ame} = lightSensorFloodlights{ t.getFloedlight(); +;
</@ public static void main(String[] args) { }
<Goutput>
| lightSensorFloodlight#{port}.setFloodlight (scchart.s{varname}); scchart.reset();
</@
</#macro= while(!Button.ESCAPE. 1sDown ()){
${inputs}

scchart.tick();

${outputs}

|
Y

import lejos.nxt.*;

public class Main {
public static Blinky scchart = new Blinky();

<#assign phase='init' />
<#assign varname = 'floodlight' vartype = 'bool' /=
<#1f Floodlight??><@Flocdlight 'S3' /=</#if>

public static void main(String[] args) {
scchart.reset();
while(!Button.ESCAPE.isDown (})){
<#assign phase='input' />

scchart.tick();

<#assign phase='output' />
<#assign varname = 'floodlight' vartype = 'bool' />
<#1f Floodlight??7><@Floodlight 'S3' /></#if>
1
}
1

import lejos.nxt.*;

public class Main {
public static Blinky scchart = new Blinky();

static LightSensor lightSensorFloodlight53 = new LightSensor(SensorPort.$3);
public static veid main(string[] args) {
scchart.reset();

while(!Button.ESCAPE.isDown ()] {
scchart.tack();

lightSensorFloodlights3.setFloodlight (scchart.floodlight);

Automatically generated files

Files created by Prom are either saved in the directory kieler-gen or in the same directory as the input files they correspond to. This is configured in the
KiCo launch configuration.

When choosing the kieler-gen folder, the directory structure of input files is retained. However a starting Java source folder will be skipped because kieler-
gen itself is a Java source folder.

For example

® if code is not a Java source folder, the file code/subfolder/MyModel.sct will be save to kieler-gen/code/subfolder/MyModel.sct.
® if src is a Java source folder, the file src/subfolder/MyModel.sct, will be saved to kieler-gen/subfolder/MyModel.sct.

	Project Creation, Initialization and Launch (Prom)

