
1.
2.

a.

SCCharts Development
This is a light-weight tutorial for developing transformations/additions for SCCharts in KIELER. It will use Eclipse, EMF, and Xtend and therefore,
finishing the corresponding tutorials could prove useful. However, they are not a strict requirement for this tutorial.

Preliminaries
Required Software
Recommended Tutorials
Helpful Tutorials
Finding Documentation

The SCCharts Metamodel
Model Task

Creating SCCharts Models Programmatically
Creating a Test Project
Creating a Model
Saving a Model

Model Creation Task
Model-to-Model Transformations with KiCo

Creating a new Transformation
Transformation Creation Task

The existing Compilation Chain
Model-to-Model Transformations between Metamodels

Transformation Creation Task 2

Preliminaries
There's a few things to do before we dive into the tutorial itself. For example, to do Eclipse programming, you will have to get your hands on an
Eclipse installation first. Read through the following sections to get ready for the tutorial tasks.

Required Software

As you're going to develop for KIELER SCCharts, we recommend to use the Oomph setup as described in (Oomph Setup). However, Getting Eclipse
you could also install all componentes by yourself. Please consult the other tutorials if you want to do that. You would need to install the Modeling
Tools and the Xtext SDK.

Additionally, install the from the EcoreViz Ecor
 category from the e Model Visualization Ope

 update site: nKieler http://rtsys.informatik.uni-
. kiel.de/~kieler/updatesite/nightly-openkieler/

For this, choose in the Install New Software...
 tab.Help

Due to the ongoing migration you have to
install a workaround for EcoreViz to function.
You have to install the KLighD diagram view
directly from http://rtsys.informatik.uni-kiel.de
/~kieler/updatesite/release_pragmatics_2016-

. Select the features 02/

KIELER Lightweight Diagrams -
Developer Resources and
KIELER Lightweight Diagrams
Generic Diagram View.

(This step should be obsolete in the near
future.)

Recommended Tutorials

We recommend that you have completed the following tutorials before diving into this one (or at least sweep over them). However, this is not a strict
requirement.

Eclipse Plug-ins and Extension Points
Eclipse Modeling Framework (EMF)

Outdated!

The KiCo part "Model-to-Model Transformations with KiCo" is outdated. We will update this tutorials in the near future.

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Getting+Eclipse
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/nightly-openkieler/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/nightly-openkieler/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-02/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-02/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-02/
https://rtsys.informatik.uni-kiel.de/confluence/display/TUT/Eclipse+Plug-ins+and+Extension+Points
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=10751683

2.

a.

3.

1.
2.

1.
2.
3.
4.
5.
6.

1.
2.

a.

b.

This tutorial needs the turingmachine.ecore and the controller you've implemented in the EMF tutorial. If you did not complete the
EMF tutorial, you may download a working turing machine here... (in the future).

Xtend 2 - Model Transformations

Helpful Tutorials

When developing within the KIELER semantics team, you will most likely be confronted with Xtext and . The following Lightweight Diagrams (KLighD)
tutorials may be helpful but not required for this tutorial.

Xtext 2 - Creating a Grammar from Scratch
Lightweight Diagrams (KLighD)

Finding Documentation

You can find additional documentation to the aforementioned topics in the corresponding tutorials. If you get stuck with a particular topic, please
consult that tutorial. For SCCharts, you should read the SCCharts confluence page in our wiki: SCCharts (pre 1.0)

As usual, documentation often gets obsolete or wrong if not maintained regularly, so please, if you find missing, misleading, or outdated information,
please let us know.

Additionally, the following list will give a short overview over the most important publications:

Main paper:
Reinhard von Hanxleden and Björn Duderstadt and Christian Motika and Steven Smyth and Michael Mendler and Joaquín Aguado and
Stephen Mercer and Owen O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’14), Edinburgh, UK, June 2014. ACM. pdf, talk, bib
SLIC Compilation:
Christian Motika and Steven Smyth and Reinhard von Hanxleden. Compiling SCCharts—A Case-Study on Interactive Model-Based
Compilation. In Proceedings of the 6th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2014), volume 8802 of LNCS, page 443–462, Corfu, Greece, October 2014. The original publication is available at http://link.springer.
com. pdf, bib
Theoretical Foundations:
Reinhard von Hanxleden and Michael Mendler and Joaquín Aguado and Björn Duderstadt and Insa Fuhrmann and Christian Motika and
Stephen Mercer and Owen O’Brien and Partha Roop. Sequentially Constructive Concurrency—A Conservative Extension of the
Synchronous Model of Computation. ACM Transactions on Embedded Computing Systems, Special Issue on Applications of Concurrency to
System Design, 13(4s):144:1–144:26, July 2014. pdf, bib
Overview and High-Level Transformations in Detail:
Reinhard von Hanxleden and Björn Duderstadt and Christian Motika and Steven Smyth and Michael Mendler and Joaquín Aguado and
Stephen Mercer and Owen O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. Technical Report 1311,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, December 2013. ISSN 2192-6247. pdf, bib

The SCCharts Metamodel
Navigate to the folder of the plugin . Here, open the models de.cau.cs.kieler.sccharts sccharts

 and right-click on the file and select . Since you also .ecore sccharts.ecore Visualize Ecore Model
installed from the OpenKieler Suite, you should now see a graphical representation of the EcoreViz
SCCharts metamodel. Every SCChart will be a model of this metamodel.

To see all class information check in the Diagram Options on the right. Attributes/Literals

EcoreViz gives you an overview over the selected Ecore diagram. However, Ecore model definitions may
depend on other Ecore definitions that are not displayed in the diagram. You can open new diagrams for
these Ecore files as described before or use the Ecore tree editor to inspect all classes.

Try to understand most parts of the metamodel. You don't have to understand every detail but you
should get the idea.

Model Task

Answer the following questions

How do you describe a superstate in the model?
Outline the relationship between states, regions, transitions, and valued objects.
Name the class of the root element of an SCChart.
What is a valued object?
How do you get the type of an interface variable?
What other metamodels are needed for the SCCharts metamodel and write down
which one is needed for what?

Write down (on paper, text editor, etc) how the following SCChart models look like
Open the wiki page that explains the .Textual SCCharts Language SCT
Search the SCChart, Initial State, State, Transition and Immediate Transition example
and ...

write down (on paper or text editor, etc) how the model of that SCChart looks
like.

http://rtsys.informatik.uni-kiel.de/confluence/display/TUT/Xtend+2+-+Model+Transformations
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=328115
https://rtsys.informatik.uni-kiel.de/confluence/display/TUT/Xtext+2+-+Creating+a+Grammar+from+Scratch
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=10751615
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=6750218
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/pldi14.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/talks/pldi14-talk.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/cgi-bin/bibcgi.cgi?key=vonHanxledenDM+14
http://dx.doi.org/10.1007/978-3-662-45234-9
http://link.springer.com/
http://link.springer.com/
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/isola14.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/cgi-bin/bibcgi.cgi?key=MotikaSvH14
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/tecs14.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/cgi-bin/bibcgi.cgi?key=vonHanxledenMA+14
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1311.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/cgi-bin/bibcgi.cgi?key=vonHanxledenDM+13b
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Textual+SCCharts+Language+SCT

2.

b.

3.

4.

The user now marks C as final. What has to be changed in the model? What
semantic problem do you see?

Now, navigate to the Super State: Strong Abort Transition example. Write down (on
paper) how the model of that SCCharts looks like.
And finally a more sophisticated model: Write down the model of ABO (from).Examples

Creating SCCharts Models Programmatically

Creating a Test Project

We need a project for testing. Do the following:

If you used the standard KIELER Oomph installation setup, create a new Working Set named Tutorial in the Package Explorer. Then...
Create a new empty .Plug-In Project
Add the project that contains the sccharts metamodel as a dependency of your new project through the .Plugin Manifest Editor
Create a simple Java class that implements a main method. Hint: In a new Java class, simply type main and hit Ctrl+Space. Eclipse content
assist will create the method for you.

Creating a Model

To create a model programmatically you cannot directly use the Java classes generated for the model. Instead, the main package contains interfaces
for all of your model object classes. The package contains the actual implementation and the package contains some helper classes. Do impl util
not instantiate objects directly by manually calling . EMF generates a Factory to create new objects. The factory itself uses the singleton pattern to new
get access to it:

SCChartsFactory sccFactory = SCChartsFactory.eINSTANCE;
State state = sccFactory.createState();
Transition transition = sccFactory.createTransition();

Important: The SCCharts grammar is build on top of several other grammars. Therefore, not all language objects can be found in the SCCharts
factory. For example, all expression elements are part of the KExpressions grammar and hence, have their own factory. If you need other factories,
don't forget to add the corresponding plugin to your plugin dependency list.

KExpressionsFactory kFactory = KExpressionsFactory.eINSTANCE;
BoolValue boolValue = kFactory.createBoolValue();

For all simple attributes, there are getter and setter methods:

state.setId("Init");
boolValue.setValue(true);

Simple references (multiplicity of 1) also have getters and setters:

transition.setTrigger(boolValue);

List references (multiplicity of > 1) have only a list getter, which is used to manipulate the list:

state.getOutgoingTransitions().add(transition);

KLighD Screenshots

By the way: You can on the Diagram View surface and select to right-click Save as image...
create a screenshot!

Plugin Dependencies

You may have noticed that is was not necessary to add a dependency for the kexpressions classes. The SCCharts plugin reexports the
dependencies of the other EMF metamodels. Look at the plugin.xml in the SCCharts plugin in the dependency tab for more information.

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Examples

1.

2.
3.

Saving a Model

EMF uses the to save models to files and load models from files. It can use different that determine Eclipse Resource concept Resource Factories
how exactly models are serialized. We will use the to save our models to XML files:XMIResourceFactoryImpl

Add a dependency to the and plug-com.google.inject, org.eclipse.core.resources, de.cau.cs.kieler.sccharts.text
ins.

Use something like the following code to save the model from above:

// Create a resource set.
ResourceSet resourceSet = new ResourceSetImpl();

// Register the resource factory -- only needed for stand-alone!
SctStandaloneSetup.doSetup();

// Get the URI of the model file.
URI fileURI = URI.createFileURI(new File("myABO.sct").getAbsolutePath());

// Create a resource for this file.
Resource resource = resourceSet.createResource(fileURI);

// Add the model objects to the contents. Usually, this is the root node of the model.
resource.getContents().add(myModel);

// Save the contents of the resource to the file system.
try
{
 resource.save(Collections.EMPTY_MAP); // the map can pass special saving options to the operation
} catch (IOException e) {
 /* error handling */
}

Model Creation Task

You are now equipped with the fundamentals you need to create models programmatically. Let's try it:

The code fragments listed above do not suffice to create a grammatically correct model. Try to
generate a model that corresponds with the serialized model listed on the right side.

Run the main() method by right-clicking its class and selecting Run as -> Java

Application. Note that this runs your main() method as a simple Java program, not a

complete Eclipse application. EMF models can be used in any simple Java context, not
just in Eclipse applications.
Execute the main method.
Inspect your SCT file. (Press F5 to refresh your file view.)

Now, create a new Java class and proceed as before to generate a model of ABO in the main()
 method.

Root.sct

scchart Root {
 initial state Init
 --> Init with true;
}

Additional Dependencies

Don't worry. You will be experienced enough to add mandatory dependencies quickly in the future. However, for now just add the
dependencies to proceed with the tutorial.

File Extensions

File extensions are important! They define the parser/serializer that EMF uses. Always use the file extension that is defined for a
particular model.

Kext Warning

It is possible that kext generates a Null Pointer Exception when you save
your model this way. This is a known issue. We're working on it. Just ignore
it for now.

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/resInt.htm?cp=2_0_10
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/xmi/impl/XMIResourceFactoryImpl.html

1.
2.
3.
4.
5.

1.
2.

3.

4.

5.
6.

Start your SCChart Editor Eclipse instance and load your SCT file. KLighD should now be able
to visualize your ABO correctly.

For this, open tab and selectRun Run Configurations...
Create a new and name it appropriately.Eclipse Application
As product select .de.cau.cs.kieler.core.product.product
Click (or if you opened)Run Debug Debug Configuration...
Create a new project and add you generated model.

Model-to-Model Transformations with KiCo
You can use the (KiCo) to handle all the model input/output tasks and concentrate on the Kieler Compiler
actual transformation. If you executed the , you should now have a Model Creation Task correctly
complete running SCT Editor instance that looks like the one on the right. You should see the KIELER

 n the lower right part of the working space. Here you can select specific Compiler Selection
transformations that will be applied to the actual model. Simply select a transformation to test it.

Creating a new Transformation

Now, you're going to write your own transformation with *drumroll*, a programming language that Xtend
looks very similar to Java, but which adds some very convenient features. Xtend code compiles to Java
and and was developed using Xtext. In fact, once you gain experience working with Xtend you will
probably appreciate the power of Xtext even more. Xtend is particularly useful to browse & modify EMF
models. You get the point... we like it. :)

Transformation Creation Task

Create your first transformation...
Create a new project within your tutorial working set as before.
Add plugin dependencies to and de.cau.cs.kieler.kico de.cau.cs.kieler.

.sccharts
Create a new in you package and name it "DoubleStates" and use Xtend class Abstra

 as superclass.ctProductionTransformation
Here, you can automatically add the missing Xtend files by using the quickfix Add

Alternatively you can simply add , Xtend lib to class path. com.google.guava org.
, , and eclipse.xtext.xbase.lib org.eclipse.xtend.lib org.eclipse.

 to you plugin dependencies.xtend.lib.macro
Click on .Add unimplemented methods
Now, you should have a class similar to the following one.

package tutorial.transformation

import de.cau.cs.kieler.kico.transformation.
AbstractProductionTransformation

class DoubleStates extends AbstractProductionTransformation {

 override getProducedFeatureId() {
 throw new UnsupportedOperationException("TODO: auto-
generated method stub")
 }

 override getId() {
 throw new UnsupportedOperationException("TODO: auto-
generated method stub")
 }

}

Xtend Infos

Lines in Xtend code don't have to and with a semicolon.
We have been explicit about the method's return type, but we
could have easily omitted it, letting Xtend infer the return type.
The keyword declares a constant, while declares a val var
variable. Try to make do with constants where possible.
The methods you call should be declared as since def private
they are implementation details and shouldn't be called by other
classes.
You may be tempted to add a few global variables that hold things
like a global input variable or a pointer to the current state. While

http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Kieler+Compiler

6.

1.

2.
a.

b.

c.

i.
ii.
iii.
iv.
v.

3.

1.

2.

3.

As you can see, it is mandatory to add an id for the transformation and another id of the feature
that this transformation produces. Name your transformation and the id tutorial.doubleStates
of feature you want to produce is .sccharts.doubleStates

KiCo must know about the new feature and also about your new transformation.
Add a new Xtend class with Feature as superclass. Add all unimplemented methods.
Also set as Id. sccharts.doubleStates
Go to the Extension tab inside your plugin configuration.

Add a new Extension Point de.cau.cs.kieler.kico.feature. Create a
new featureClass and point it to your new feature class.
Also add a new Extension Point de.cau.cs.kieler.kico.transformation. Create a
new productionTransformationClass and point it to your transformation class.
Finally, you have to link your transformation to the SCT Editor. Add the
Extension point de.cau.cs.kieler.kico.ui.transformation. Create an editor link
and fill in the following values:

editor: de.cau.cs.kieler.sccharts.text.sct.Sct
features: sccharts.doubleStates
label: Tutorial Compilation
priority: 101
preferred: (leave it blank)

If you start your KIELER instance now, you should get a new compilation chain which
has only one transformation: yours, which doesn't do anything.

If you want to rename your feature in the Compiler Selection (without changing its Id), override
the method and return a new name. Rename your feature appropriately.getName

Now, fill your transformation with life:
Inside your transformation class, add a new method with the following signature: def

. State transform(State rootState, KielerCompilerContext context)
This transformation will be executed if the feature is selected in the Compiler Selection.
Add thew following body to the function and try to understand the Xtend code. Import
unknown class via code assist.

transform

 def State transform(State rootState,
KielerCompilerContext context) {
 val newState = SCChartsFactory.eINSTANCE.createState
=> [
 id = "ololo"
 label = "ololo"
]

 rootState.regions.filter(ControlflowRegion).head.
states += newState

 rootState
 }

When selecting your transformation, the SCChart gets transformed and looks like the
version on the right.

you could to that, methods might offer a better def create
alternative...

Programming Guidelines

You should really think about some constants here. You can also look at the sccharts
transformation and features constants in the sccharts plugin.

Plugin Tasks

In general it is bad to mix non-ui plugins/tasks with ui plugin/tasks
because (in the context of KiCo) even if you're not working with an
active UI your transformations should work (e.g. a command line
compiler). To keep this tutorial simple, you can add this
dependency to your plugin nevertheless. However, you shouldn't
do this in real products. Always keep the UI separated.

Extend the transformation so that the transition is split up in two and connected via a transient
state meaning that the original transformation should point to the new state and a new
immediate transformation then points to the original target state. Try it out.
Xtend supports extensions that can be used to extend the function set of you classes (i.e.
models). Add to the dependencies of your plugin. Now, add the following com.google.inject
code fragment to the beginning of your class.

Code injection

 @Inject
 extension SCChartsExtension

There are several Extensions classes within the KIELER project that extend the functionality of
various classes. Basically, there are one or more for each metamodel (e.g. SCCharts, SCG,
KExpressions, etc). You don't want to invent the wheel again. Use these methods. For example:
there is a method that gives you all contained states of a state in a list: getAllContainedStat

. You can use it on your : . esList rootState rootState.allContainedStatesList
There are also several convenient methods for creating model elements so that you don't have
to use the factories directly.

Extend your transformation so that it is applied on all states (except the root state). Try your new
transformation with ABO. The result should look like the example on the right.

The existing Compilation Chain

Congratulations. You added and executed your own KiCo transformation. Nevertheless, often you want
to extend the existing compilation chain. To do this, you proceed as before but instead of creating your
own compilation chain, you must modify the existing chains (e.g. the netlist compilation in de.cau.cs.
kieler.sccharts.ui). To add a specific transformation at a specific point in the chain, you must tell KiCo
what features are required for the transformation. For that you must override the
method getRequiredFeatureIds and return a set with all required features.

Also, if you're developing for the master chain, you should obey the package structure. Look at the
sccharts plugins. All features, transformation, extensions, the metamodel, ui elements, etc are separated
from each other. You should always do the same!

We will add more content to this subsection in the future...

Model-to-Model Transformations between Metamodels
Transformations from one model to another may be performed within the same metamodel or from metamodel to a different metamodel. Both
methods are used in KIELER and in principle they do not really differ in implementation. Nevertheless, if working within the same metamodel you
should keep in mind that you're potentially changing the actual model instead of changing another instance (after copying). When transforming to
another metamodel, you're always generating a new model. So there is no in-place transformation. Both is possible. Just make sure that you know
what you're doing.

Now, you're going to transform the normalized form of HandleA from ABO to an SCG. The Sequentially Constructive Graph is a control-flow graph
which can be seen as another representation of the same program. The SCG of the normalized version of ABO's HandleA is depicted on the right.

scch
art
ABO_
norm
_Han
dleA

Extensions Naming Scheme

Extensions are also just classes. You can add your own to improve the structure of
your own projects. In KIELER all extensions end with "Extensions"; except
SCChartsExtension for legacy reasons. This will be renamed in after the next
snapshot to SCChartsExtensions. So, if you're going to add new extensions to the
project, please name them accordingly.

{

inpu
t
outp
ut
bool
A;

inpu
t
outp
ut
bool
B;

outp
ut
bool
O1;

outp
ut
bool
O2;

regi
on
Hand
leA:

init
ial
stat
e
Wait
A

-->
_S
imme
diat
e
with
A

-->
_Pau
se
imme
diat
e;

fina
l
stat
e
Done
A;

stat
e _S

-->
_S2
imme
diat
e
with
/ B
=

true
;

stat
e
_S2

-->
Done
A
imme
diat
e
with
/
O1
=
true
;

stat
e
_Pau
se

-->
_Dep
th;

stat
e
_Dep
th

-->
_S
imme
diat
e
with
A

-->
_Pau
se
imme
diat
e;
}

The next figure depicts the direct mapping from normalized SCCharts to
their corresponding SCG.

Inspect the metamodel of the SCGs in plugin de.cau.cs.kieler.scg.
SCGs are used for analyses and optimization and include a lot of
additional elements. However, for this tutorial it should be sufficient to
look at the SCGraph class, its nodes attribute, the important node
classes and the controlflow class. Important nodes for this SCG are
entry, exit, assignment, conditional,

Transformation Creation Task 2

Write a transformation that transforms your normalized version of ABO's HandleA into its corresponding
SCG.

Proceed as before. Create a new plugin (or copy your last one) Make sure, you also add de.cau.
cs.kieler.scg to your dependencies.
Write a transformation that is able to transform into its corresponding ABO_norm_HandleA
SCG.

1.

2.
3.

Verify your generated SCG. If you added your transformation correctly, the SCG should be
displayed automatically as soon as selected. If your SCG looks like the SCG depicted earlier,
then everything is fine.
Check your SCG semantically. Is there anything you could improve/optimize?

Write a second transformation (just as before) and add it to the transformation chain
right after the transformation you already added.
Optimize the given SCG and compare the result with the previous one.
Make sure that the two SCGs are still semantically identical.

Congratulations! You finished the SCCharts Development Tutorial. Ask your supervisor for further
instructions!

	SCCharts Development

