
Build Management
An Overview of KIELER Build Automation
In order to keep the KIELER code as stable as possible, we use automatic continuous integration builds. Once you push something into one of the KIELER
repositories, you trigger the automatic build process. If the build fails for whatever reason – be it failed unit tests or simply compilation errors – you are
notified of the problem.

This page describes the software and setup we use to implement all of this.

Content

Software We Use
Maven / Tycho
Apache Ant
Bamboo

The Automatic Build Process
POM Files
Using the KIELER Maven Build
What to Be Aware of

Continuous and Nightly Builds
Update Sites and Redistributables

Software We Use

To implement our automatic builds, we use the popular tool in conjunction with , a set of Maven plug-ins that allow Maven to build Eclipse Maven Tycho
projects. Our KLay layouters library is built using . To implement our continuous integration builds, we use .Apache Ant Atlassian Bamboo

Maven / Tycho

Maven is a build tool for Java projects. It takes care of dependency management, including in-build dependencies (the order in which packages are
compiled) as well as dependencies to third-party libraries. The latter are automatically fetched from special Maven repositories. Without getting too
technical, a Maven build consists of several phases, such as and . Within each phase, several Maven plug-ins handle different (or compile package tasks go

, as Maven calls them). The for example compiles files into files.als maven-compile-plugin .java .class

To correctly compile a project, Maven needs to be told about the project. While the popular Ant build tool uses files to describe the steps to be build.xml
executed for building a project, Maven uses files to describe the project and figures out the steps for itself. The POM files may inherit settings pom.xml
from a parent POM file.

Tycho is a set of Maven plugins that handles compiling and dependency management as well as bundling of Eclipse plug-ins. Tycho understands Eclipse
metadata files such as or , provides dependency information extracted from those files, and provides an Eclipse instance for plugin.xml feature.xml
compiling and packaging Eclipse bundles.

Apache Ant

Ant is a very popular Java build tool. While Maven wants to know metadata about a project and then knows what to do to build it, Ant works by specifying
exactly what to do to build a project. These steps are configured in a file. We try to avoid using Ant, but still have Ant build files around for jobs build.xml
too specialized to be properly handled by Maven.

Bamboo

While Maven and Tycho know how to compile KIELER, Bamboo knows when to compile KIELER and what to do with the compiled project. Bamboo has
access to our source code repositories and triggers continuous integration builds every time someone pushes new code into a repository. It also does a full
build every night and copies the results onto our nightly build update site to be accessed by people all around the world. And beyond. Tell your friends!

The Automatic Build Process

This section describes how our POM files are distributed throughout the repository structure, and how you can trigger an automatic build of KIELER.

POM Files

The basic structure of the POM files is the same for both, the pragmatics and semantics repository, and can be seen below:

http://maven.apache.org/
http://eclipse.org/tycho/
http://ant.apache.org/
http://www.atlassian.com/software/bamboo/overview

1.

2.

1.

Each plug-in and feature has a corresponding (usually rather small) POM file. The POM files in the and directories know about the features plugins
different features and plug-ins. The parent POM file, which all other POM files copy basic configuration from, knows about the feature and plug-in POM
files, as well as about every kind of build configuration we have (for building the pragmatics repository, for building the KWebS product, etc.). In addition,
the directory also contains a bunch of subdirectories housing POM files that produce our p2 repositories and our products.build

Using the KIELER Maven Build

Using the KIELER Maven build requires two things: a working Maven installation (d'oh...) and knowledge about how exactly to trigger a build. We leave the
former to you, but the latter is what this section is about.

To actually build KIELER, navigate to the directory and run the following command line:/build/

. /home/java/java-env # Only necessary when working on our servers
mvn clean package -P <profile>

Once Maven has finished, the different build artifacts may be found in the directories. /build/de.cau.cs.kieler.<profile>.repository/target
The following build profiles are available in the KIELER Pragmatics repository:

klighdning – Builds a standalone version of the KLighDning server, based on the current nightly pragmatics update site.
kwebs – Builds a standalone version of the KWebS server, based on the current nightly pragmatics update site.
pragmatics – Builds a p2 repository that contains our pragmatics features. This is what would usually be pushed online for people to download as
our nightly pragmatics build.
ptolemy-rcp – Produces a standalone version of our Ptolemy Model Viewer, based on the current nightly build pragmatics update site.

The following build profiles are available in the KIELER Semantics repository:

What to Be Aware of

There are some things that people need to be aware of to keep the build files in a valid state.

Eclipse metadata and POM files are not synchronized. Thus, if the version of an Eclipse plug-in changes, its needs to be updated pom.xml
accordingly.
The repository POM directories contain product files and product icons. These are copies of the files found in the corresponding branding plug-ing
(such as) and have to be manually synchronized.de.cau.cs.kieler.core.product

Continuous and Nightly Builds

There are basically four different kinds of build plans for each of the KIELER projects:

Continuous Plugins – Compiles the plug-ins and runs the unit tests on them. None of the compiled artifacts are published anywhere (in fact, no
update site or product is even produced). This plan is triggered by pushing stuff into the repositories, giving early feedback regarding whether
committed changes break anything.

ToDo

Document the Semantics build profiles.

2.

3.

4.

1.

Nightly <Product> – Assembles distributable product files and/or update sites. Distributable files are published in the nightly build directory /hom
. Update sites are published in . These e/kieler/public_html/files/nightly /home/kieler/public_html/updatesite/nightly

plans are run once every night.
Nightly Rating – Compiles the plug-ins and runs our code quality rating doclet on them. The result is a website published at /home/kieler

. This plan is run once every night./public_html/rating
Release Builds – Continuous builds of release branches once a release is imminent. These usually run whenever changes are pushed into the
repository. All release builds are placed in a special Bamboo project calles .KIELER Releases

The project has an additional build plan:Semantics

Ptolemy Update Site – Builds the Ptolemy library and produces an update site for it. The build is triggered whenever changes are pushed into
the Ptolemy repository. This build plan is necessary since both, the and the projects use the Ptolemy libraries.Pragmatics Semantics

Update Sites and Redistributables

Our automatic builds produce a bunch of so-called : redistributable applications as well as a number of update sites. This table lists all artifacts, the artifacts
project or repository they belong to, the build file responsible for producing them, the Bamboo build plan that builds them, and the directory they are finally
placed in.

Artifact Repository Build File Bamboo Build Plan Final Directory

KWebS RCA Pragmatics ...kwebs.repository
/pom.xml

KIELER Pragmatics -> Nightly
KWebS

/home/kieler/public_html/files/nightly
/kwebs

KIELER Pragmatics
Updatesite

Pragmatics ...pragmatics.
repository/pom.xml

KIELER Pragmatics -> Nightly
Pragmatics Updatesite

/home/kieler/public_html/updatesite
/nightly/pragmatics/

Papyrus Layout
Updatesite

Pragmatics ...papyrus.repository
/pom.xml

KIELER Pragmatics -> Nightly
Papyrus Updatesite

/home/kieler/public_html/updatesite
/nightly-papyrus/

KIELER RCA Semantics ...semantics.
repository/pom.xml

KIELER Semantics -> Nightly
Semantics Product

/home/kieler/public_html/files/nightly/

KIELER Semantics
Updatesite

Semantics ...semantics.
repository/pom.xml

KIELER Semantics -> Nightly
Semantics Updatesite

/home/kieler/public_html/updatesite
/nightly/semantics/

Ptolemy Libraries
Updatesite

Ptolemy ...ptolemy.repository
/pom.xml

KIELER Semantics -> Ptolemy
Updatesite

/home/kieler/public_html/updatesite
/ptolemy/

Timestamps

Don't be alarmed if the timestamps of the plugin and feature jar files on the updatesite don't match the current time. The time is probably UTC.
Which is nice.

	Build Management

