
Simulation Visualization (KiVis)

Deprecated since 0.14

This article is deprecated. The described features are no longer available in current releases.

Visualize the Simulation State with an SVG Image

Visualize the Simulation State with an SVG Image
Overview
Creating an SVG Image

Groups and Layers
Flowed Text
Text Colors

Creating a Configuration File
Animation Handler Base Class
Color Animation
Text Animation
Move Animation
Rotate Animation
Walk Path Animation
Attribute Values
Interaction with the Simulation

Color Functions
Example Model

Overview

The Data Pool View shows all variables present in the simulation. However it can be difficult for humans to interpret the state of a model when having only 
a load of numbers and variables. The former KIELER Environment Visualization (KEV) had been developed to display the simulation state in a more 
pleasant way. Therefore KEV loaded an SVG image and could manipulate it to reflect the state of the simulation.

This approach has been developed further in KIELER Visualization (KiVis) to integrate with the new simulation. Furthermore a DSL for kivis files has been 
created to configure how the SVG image will be manipulated.

Besides displaying the state of the simulation, KiVis is also able to interact with the simulation, e.g., when an element in the simulation is clicked. Thus 
buttons in the SVG image can be created to set variables in the simulation, or to step, stop, play and pause the simulation.

Creating an SVG Image

In this section the open-source vector graphics program  is used to illustrate how to create an SVG image that can be used with KiVis.Inkscape

It is advisable to first set the document size. In Inkscape this is done under . In the image below the size is set to 512x512 px. File > Document Settings
This setting defines the coordinate system of the file, which is useful when animating, e.g., movement later. Anyhow, SVG images can be scaled to any 
size.

Version 0.13 RC1

This page is part of the SCCharts Editor 0.13 RC1 documentation. We are still in the process of creating This page is still under construction. 
the release candidate. Please excuse any missing or incomplete entry. We apologize for any inconvenience.



Afterwards three circles and a rectangle have to be created. The circles will simulate the red, green and yellow lights of a traffic light, and thus are colored 
accordingly. The rectangle will show the same information, but using different animations.

After the elements of the image have been created, it is necessary to give elements that should be animated a unique name. This can be done in Inkscape 
by selecting the object and using . In the window that opens, an  can be set in the  (the value without leading Right click > Object properties id first field
hash, labelled "Kennung" in german). Name the circles according to their color, ,  and . The rectangle gets the id theRedOne theYellowOne theGreenOne t
heRect.

Note that a new id has to be applied using the button in the object properties window!

Finally, save the result as  (recommended) or  and name it .Inkscape-SVG Normal-SVG Lights.svg

Groups and Layers

SVG is an XML format. Elements can be grouped and layers can be created which forms a hierarchy. When working with groups and layers in Inkscape, it 
can be useful to work with the XML-Editor (Ctlr+Shift+X).



Flowed Text

In Inkscape it is possible to create a flowed text element, which is text that wraps its content inside a user defined area. However this is not a fully specified 
feature in SVG and thus not supported by many SVG viewers. For instance Gimp displays these elements as black box and Firefox does not display them 
at all.
KEV and the newer KiVis uses Apache Batik for SVG rendering, which also does not support flowed text. If you encounter issues with text object, try to 
convert them to simple text in Inkscape, via . Text > Convert to normal text

For more information see also the Inkscape FAQ for this topic: http://wiki.inkscape.org/wiki/index.php
/Frequently_asked_questions#What_about_flowed_text.3F

Text Colors

Sadly the Batik SVG Renderer that is used in KIELER does not handle text colors as well as Inkscape does. When setting the fill color directly on a text 
element in Inkscape, it will not be displayed in the Simulation Visualization View. The text will be black.

However there is a simple workaround: Select the text objects that should be colored, group them (Ctrl + G), then set the fill color on this group. The child 
elements will inherit the color and (for whatever reason) this does also work in Batik.

Creating a Configuration File

The configuration depends on the model to be simulated. In the following a simple kivis file is shown for the example model below.

Example KiVis File

image: "Lights.svg"

animate theRect {
  apply color using showLight {
    fillColor: 0 is "red", 1 is "yellow", 2 is "green"
  }
}

animate theRedOne {
  apply color using showLight {
    opacity: 0 is 1, 1-2 is 0
  }
}

animate theYellowOne {
  apply color using showLight {
    opacity: 0 is 0, 1 is 1, 2 is 0
  }
}

animate theGreenOne {
  apply color using showLight {
    opacity: 0-1 is 0, 2 is 1
  }
}

This configuration will animate the   with the id . The value of the  is used to determine the attributes of the svg element theRect  variable showLight color 
, in this case the  is set. The value 0 of showLight is mapped to the value "red" for the attribute, 1 is mapped to "yellow" and 2 animation fillColor attribute

is mapped to "green".

The animations of theRedOne / theYellowOne / theGreenOne is used to show this element (opacity is 1) when the showLight variable is 0 / 1 / 2 and to 
hide them otherwise (opacity is 0). This represents a very simple traffic light.

When writing a visualiation configuration, code completion can be used to show the available attributes of an animation. In the following the available 
animations are explained.

Animation Handler Base Class

The attributes of this class are also available for all other animation handlers and provide generic features.

Attribute Domain Description

http://wiki.inkscape.org/wiki/index.php/Frequently_asked_questions#What_about_flowed_text.3F
http://wiki.inkscape.org/wiki/index.php/Frequently_asked_questions#What_about_flowed_text.3F


recursive Boolean Applies the animation to this element as well as all child elements recursively.

This might be useful, e.g., to set the opacity of an element and also in its children and their children.
However, in most cases this option is not required.

Color Animation

It is used to change the appearance of elements. The fill color, stroke color and with as well as opacity can be changed.

Attribute Domain Description

fillColor String, either a color name of predefined colors,
or a hexadecimal rgb color

Sets the fill color

fillOpacity Float, ranges from 0 (fully transparent) to 1 (fully visible) Sets the opacity of the filling

strokeColor Same as fillColor Sets the color of the outline / stroke

strokeOpacity Same as fillOpacity Sets the opacity of the outline / stroke

opacity Same as fillOpacity Sets the overall transparency

Text Animation

This animation can be used for text objects in the SVG to set the font and text.

Attribute Domain Description

text String Sets the text of the element

fontSize Integer Sets the size of the text element

fontFamily String, name of an installed font (e.g. "Arial Black" or "serif") Sets the font family

Move Animation

This animation changes the position of an SVG element.

Attribute Domain Description

x Float The x coordinate relative to the original position

y Float The y coordinate relative to the original position

absolute Boolean Determines if the given position is absolute or relative to the element's original position

Rotate Animation

This animation changes the rotation of elements.

Attribute Domain Description

angle Integer The angle in degrees that the object should be rotated

anchorX Float, 0 to 1 Relative position inside the SVG element where the anchor point of the rotation will be.

0 is at the left side, 1 is at the right side. Default is 0.5, which is the middle.

anchorY Float, 0 to 1 Relative position inside the SVG element where the anchor point of the rotation will be.

0 is at the top side, 1 is at the bottom side. Default is 0.5, which is the middle.

Walk Path Animation

This animation is used to position SVG elements on SVG paths. Therefore the start value of the path and the end value of the path have to be defined. 
The position is then interpolated linearly between start and end.

This is a powerful animation to position SVG elements, because the position can be drawn as path in the svg itself.



Attribute Domain Description

name String The id of the path in the SVG image

start Float The start position of the path.

When the position value is the same as the value of this attribute, the object will be position at the beginning of the path.

end Float The end position of the path.

When the position value is the same as the value of this, the object will be position at the end of the path.

length Float The length of the path.

Can be used instead the absolute end position. In this case the end position is calculated as
end = start+length

position Float Used to set a fixed position on the path. Normally the position is taken from a variable in the simulation data pool, but it 
can also be set to a fixed value with this attribute.

The value should be between start and end of the path

autoOrient
ation

Boolean, true 
/ false

Determines if the object should also align its rotation to the path

angleOffset Integer When autoOrientation is true, this offset in degrees is added to the calculated rotation on the path.

For example if the element is facing with in the wrong direction when it is walking the path, an offset of 180 can be used 
to turn it.

angle see rotate 
animation

see rotate animation

anchorX see rotate 
animation

see rotate animation

anchorY see rotate 
animation

see rotate animation

Attribute Values

Attributes can be set to a single constant value, a single variable in the simulation or using a more complex mapping from variable values to attribute 
values as shown in the example below.

image: "Lights.svg"

animate theRect {
  apply color using showLight {
    stroke-color: 0 is "green", 1 is "blue", 2 is "orange"          // The attribute is set depending on the 
value of the variable in the using declaration
    stroke-opacity: 0-2 is 1-20                                     // The attribute is set depending on the 
value of the variable in the using declaration and mapped linearly to the target domain
    stroke-width: showLight                                         // The attribute is set to the value of a 
variable in the pool
    fillColor: "red"                                                // The attribute is set to a constant value
  } if showLight >= 1
}

There are two keywords for mapping variable values to target values:  is used to match all other variable values that are not specified and define a others
target value for these.  refers to the current value of the variable in the using declaration.value

image: "Lights.svg"

animate theRect {
  apply color using showLight {
    stroke-width: value                          // Set the attribute to the current value of the variable
    stroke-color: 0 is "red", others is "orange" // Define a target value for all other cases
    opacity: 0-1 is value, others is 0.5         // More complex example that uses both keywords
  }
}



Interaction with the Simulation

It is also possible to interact with the visualization. For the image that has been created above, a simple interaction could be configured as follows:

Interaction example

image: "Lights.svg"

animate theRect {
  apply color using showLight {
    fillColor: 0 is "red", 1 is "yellow", 2 is "green"
  } if showLight >= 1
}

perform on click from theRect {
  showLight = 1
  step simulation
} if showLight != 1

This illustrates that animations and interactions can be used with the same SVG element, which is  in this case.theRect

The interaction that is setup in this example is a click listener for theRect. If the element with this id is clicked, the variable showLight will be set to 1 and 
the simulation will perform a macro tick. However this is only done when the condition holds. Thus the simulation will not be stepped, if the showLight 
variable already has a value of 1.

Color Functions

There are also pre-defined functions to interact with the visualization environment. In the following example the variables  and  are set to the color, a, r, g b
corresponding color values of the pixel on position   and  in the svg image. The pixel position is determined by the document size of the svg, which can x y
be defined for example in Inkscape ( ).File > Document Properties

image: "image.svg"

// Get the color of the pixel at position (x, y)
perform {
  color = getColor(x, y)
  a = getAlpha(x, y)
  r = getRed(x, y)
  g = getGreen(x, y)
  b = getBlue(x, y)
}

// Illustrate the position by moving an svg element there
animate theDot {
  apply move {
    x: x
    y: y
    absolute: true
  }
}

Example Model

Create an empty SCChart and fill it with the following content:

scchart TrafficLight {
    output int showLight
 
    initial state init
      go to init do showLight += 1; showLight = showLight % 3
}

This model will set the variable  successively to 0, 1 and 2.showLight



see rotate animation


	Simulation Visualization (KiVis)

