
Graph Analysis (GrAna)

Project Overview

Related Theses:

Martin Rieß, , September 2010 ()A Graph Editor for Algorithm Engineering pdf

The Graph Analysis (GrAna) project allows to examine a broad variety of structural properties of a graph (node count, edge count, etc.) as well as
properties of the final drawing (area, edge crossings, etc.). An analysis can either be performed on a single graph or batch-like on large collections of
graphs, in which case the results are written to a file. We support a variety of input formats, namely every format our formats service knows about.

Single Graphs Within the Editor
Batch Executions

Textually
Eclipse Wizard

Required Plugins

Single Graphs Within the Editor
Within Eclipse we provide a view, which can be found via Eclipse's dialog. Graph Analysis Windows->Show View->Others
In the top right corner of this view you can find two buttons, one of which performs the analysis on the lastly selected diagram. The other button allows you
to configure the analysis, i.e. select specific analyses to perform. The following screenshot shows an example. On the very left it can be seen that the
analysis was configured to list the node and edge count, the area, and the number of edge crossings. According to the results, the graph contains 4 nodes
and 5 edges. This is correct because the between nodes N2, N3, and N4 is structurally composed out of two edges and just drawn as a single hyperedge
edge. Counting hyperedges could be a different analysis. Moreover, the area is reported as 25800 and 0 edge crossings are present.

Batch Executions
A frequent use case is to analyze a large set of graphs with regards to some metric. For instance, you finished your awesome new algorithm to minimize
the number of edge crossings in a graph and want to know how well it performs. The web offers large sets of graphs that already served as benchmarks in
the past. GrAna allows batch analyses to be executed in two ways, textually and using an Eclipse Wizard.

Textually

We provide a concise DSL to specify the sets of graphs, the layout algorithm and options, and the analyses textually and store them in a file. The .grana
DSL is based on Xtext, hence the editor comes with syntax highlighting, content assist, and formatting. An example specification can be found below.

A word of warning. Please scrutinize any results you get from GrAna. A lot of the existing analyses were written with certain graphs structures
and use cases in mind. For instance, if the analysis does not account for self loops but your graph contains them, the results might be wrong.

http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/mri-bt.pdf

You can specify a list of s. A job is a self-contained unit of work. It specifies the previously mentioned data using the following keywords: , Job resources l
, , and . Layout options are specified by blocks that start with an arbitrary identifier followed by curly brackets. It is ayoutoptions analyses output

possible to specify multiple blocks of layout options. Each block results in a separate layout run allowing, for instance, to first execute a node placement
algorithm and then an edge routing algorithm. For convenience it is possible to specify resources and output files globally at the beginning of the file and
then use the keyword to reference them from a job.ref

Besides jobs, there are also A RangeJob can be used to analyze the effect of a specific layout option onto a specific RangeJobs and CompareJobs.
metric. In the example below, the layout option is registered using the keyword. An integer range is specified resulting in all thoroughness rangeoption
values between (inclusive) 1 and 50 being tested. While the analyses specified using the keyword are only measured on the initial graph, the analyses
analysis specified using the keyword will be measured for every tested value of the range layout option. Since analyses can be rangeanalysis
composed out of multiple components (e.g. the edge crossing analysis states the minimum, maximum, and average number of crossings per edge as well
as the sum – four components), the keyword tells GrAna which component to write to the output file. The CompareJob can apply two different component
layouts to a graph and compare the results (the graph is copied internally so the layouts do not influence each other). The two layouts are specified via two
layout blocks as shown in the avg_distance example below. This kind of job can be used to analyze the effect of a layout on the individual nodes (e.g. the
distance nodes are moved).

To execute GrAna based on a file, right click the file and select .grana Execute Analysis Batch ...

globalResources
 random "/Test/random/" filter ".*kgx"
 north_graphs "file://D:/graphs/north" filter ".*graphml"
 secret "/Test/secret/" filter ".*json"

globalOutputs
 original_alg "/Test/results/original.csv"
 awesome_alg "file://workspaces/eclps/Test/results/new.csv"
 thoroughness "/Test/results/thorough.csv"
 compare "/Test/results/compare.csv"

execute all

job original
 layoutBeforeAnalysis
 resources
 ref random
 ref north_graphs
 ref secret
 layoutoptions
 klay {
 de.cau.cs.kieler.algorithm: de.cau.cs.kieler.klay.layered
 de.cau.cs.kieler.klay.layered.crossMin: LAYER_SWEEP
 }
 analyses
 de.cau.cs.kieler.kiml.grana.nodeCount
 de.cau.cs.kieler.kiml.grana.edgeCrossings
 output ref original_alg

job my_awesome
 layoutBeforeAnalysis
 resources
 ref random
 ref north_graphs
 ref secret
 layoutoptions
 klay {
 de.cau.cs.kieler.algorithm: de.cau.cs.kieler.klay.layered
 de.cau.cs.kieler.klay.layered.crossMin: LAYER_SWEEP
 de.cau.cs.kieler.klay.layered.crossMin.awesome: true
 }
 analyses
 de.cau.cs.kieler.kiml.grana.nodeCount
 de.cau.cs.kieler.kiml.grana.edgeCrossings
 output ref awesome_alg

rangejob thoroughness
 resources
 ref random
 layoutoptions
 klay {
 de.cau.cs.kieler.algorithm: de.cau.cs.kieler.klay.layered
 de.cau.cs.kieler.klay.layered.crossMin: LAYER_SWEEP

 }
 analyses
 de.cau.cs.kieler.kiml.grana.nodeCount
 rangeoption
 de.cau.cs.kieler.klay.layered.thoroughness
 intrange 1 to 50
 // floatvalues 0.3, 0.4, 0.5
 rangeanalysis
 de.cau.cs.kieler.kiml.grana.edgeCrossings
 component 3
 output ref thoroughness

comparejob avg_distance
 resources
 ref random
 layoutoptions
 l1 {
 algorithm: fixed
 }
 l2 {
 algorithm: layered
 }
 analyses
 de.cau.cs.kieler.grana.compare.averageDistance
 output ref compare

Eclipse Wizard

Second, you can use an Eclipse to select one or more sets of graphs, specify and configure a layout algorithm, and select a set of analyses. Wizard
Results are then written to a file (or more precisely semicolon-separated-file)..csv
The following series of screenshots illustrates the process of using the wizard.

Required Plugins
Core:

de.cau.cs.kieler.grana
Textual DSL:

de.cau.cs.kieler.config.text
de.cau.cs.kieler.config.text.ide
de.cau.cs.kieler.config.text.ui
de.cau.cs.kieler.grana.text
de.cau.cs.kieler.grana.text.ide
de.cau.cs.kieler.grana.text.ui

	Graph Analysis (GrAna)

