
Execution Manager (KIEM)

Deprecated since 0.12

This article is deprecated. The described features are no longer available in current releases.

Project Overview

Responsible:

Christian Motika

Related Theses:

Christian Motika, , December 2009 ()Semantics and Execution of Domain Specific Models – KlePto and an Execution Framework pdf
Sören Hansen, , March 2010 ()Configurations and Automated Execution in the KIELER Execution Manager pdf

KIEM - KIELER Execution Manager

Topics

JavaDoc
Quick start
Launch Configuration
How does it work?
Download
Case Studies

This sub project implements an interface of the KIELER project for the simulation and execution of graphical domain specific models (e.g., EMF models). It
itself does not do any simulation computation but bridges simulation components, visualization components and a user interface within the KIELER Eclipse
rich client platform. To get a first impression about this sub project please feel free to watch the following .Flash demo video

JavaDoc

Find the official of the KIELER Execution Manager.JavaDoc documantation

Quick start

Install

Check out the Eclipse plug-in project and enable it in your run configuration. Make sure to enable all required projects and to include all KIEM
DataComponents you wish to use e.g., for visualization or simulation (s.b.).

Launch Configuration

The KIELER Execution Manager offers a launch configuration extension, see .KIEM - KIEM Launch Configurations

How does it work?

http://www.informatik.uni-kiel.de/rtsys/kontakt/cmot/
http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/soh-bt.pdf
http://rtsys.informatik.uni-kiel.de/%7Ekieler/videos/kiem-demo/KIEMvideo.htm
http://rtsys.informatik.uni-kiel.de/%7Ekieler/files/nightly/release/kieler-doc_v201108110120.zip
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/trees/master/plugins/de.cau.cs.kieler.sim.kiem
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KIEM+-+Launch+Configuration

1.
2.
3.
4.
5.

Scheduling

All components have in common that they are called by the Execution Manager in a linear order. This can be defined by the user in an execution setting
and exactly reflects the order of the DataComponent list in the KIEM View shown in the example figures below. Because the execution is an iterative
process --- so far only iteratable simulations are supported --- all components (e. g., a simulation engine or a visualizer) should also preserve this iterative
characteristic. During an execution KIEM will stepwise activate all components that take part in the current execution run and ask them to produce new
data or to react to older data. As KIEM is meant to be also an interactive debugging facility, the user may choose to synchronize the iteration step times to
realtime. However, this might cause difficulties for slow DataComponents as discussed below.

All components are executed concurrently. In particular, components that cannot run concurrently due to implementation and scheduling restrictions share
a common thread. Apart from that, components are executed in their own threads. For this reason, DataComponents should communicate (e. g.,
synchronize) with each other via the data exchange mechanism provided by the Execution Manager only to enforce thread safety. There are also
additional scheduling differences between the types of DataComponents listed below. These concern two facts: First, DataComponents that only produce
data do not have to wait for any other DataComponent and can start their computation immediately. Second, DataComponents that only observe data,
often do not need to be called in a synchronous blocking scheme since no other DataComponent depends on their (nonexistent) output.

Extension Points and Interfaces

If you want to contribute a simulation or execution engine or any visualization facility to the KIELER project, you just need to understand about the two
Extension Points that are explained below:

de.cau.cs.kieler.sim.kiem.json.datacomponent (handles JSONObjects)
de.cau.cs.kieler.sim.kiem.string.datacomponent (handles JSONStrings)

Both Extension Points are based on the same (abstract) super-class which is called AbstractDataComponent () and itself AbstractDataComponent.java
implements an interface called IDataComponent (). A DataComponent may handle JSONObjects (using the following IDataComponent.java JSON

 for java:) directly or it may handle JSONStrings only. This is where the two Extension Points differ and what is implementation http://www.json.org/java/
necessary to decide prior to the implementation of a concrete JSONObjectDataComponent or JSONStringDataComponent.

If you take a look at the of the extension package, you will see that there are 5 methods that every DataComponent needs to supply:class diagrams

initialize()
wrapup()
step()
isProducer()
isObserver()

The first method is called during the initialization phase, that is, the execution is about to begin (but not yet has begun). This happens when for example
the user clicks on play, step or the pause button in the GUI or such function is triggered by a DataComponent. This method can be used to do Master
some initialization work that needs to be done prior to the execution, like saving opened files, doing some model transformations or resetting some data.

The second method (wrapup) is called when the execution has stopped and enables a component to provide some cleanup code that needs to be
executed.

https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/IJSONObjectDataComponent.java
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/IJSONStringDataComponent.java
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/internal/AbstractDataComponent.java
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/IDataComponent.java
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/trees/master/plugins/org.json
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/trees/master/plugins/org.json
http://www.json.org/java/
http://rtsys.informatik.uni-kiel.de#ClassDiagrams

1.
2.

The method step() is called during the execution. It depends on the interface that is implemented what kind of data is passed as a parameter (JSONString
or JSONObject) and also what (same!) kind is expected to be returned by the implementation. The parameter of the step() method contains the requested
data. It depends on the following:

method to
override

standard
return

info

isObserver() n/a If returned false, the DataComponent will always get a null value as a parameter.

provideFilter
Keys()

null A String[] array of keys that the DataComponent wants to listen to should be returned.
If null is returned then the DataComponent will always get all unfiltered data.

isDeltaObser
ver()

false If true is returned, the DataComponent will get only the new or updated data since the last step it was scheduled (and not
skipped, see data observers in scheduling section). pure
If false is returned, the DataComponent will always get the complete (updated) data since the first execution step

The methods isProducer() and isObserver() must be implemented and should return a boolean value indicating whether the DataComponent wants to
receive any data (s.a.) or produces data or even both. There is a possibility of so called DataComponents that neither receive nor produce any Initialization
data but only are used during the initialization and wrap-up phase when their initialize() and wrapup() method is called.

Take in mind that if your DataComponent is not both, an observer a producer of data, it's step() method will not be called in a blocking scheme during and
the scheduled execution (for details please see above). If this is required, then you need to set the according return values to both being true.

Components and Properties

DataComponents may provide properties that enable the user to configure them prior to an execution run. To do so, a DataComponent needs to
@Overrride the method provideProperties() that returns an array of elements of the type KiemProperty. There are several build-in types like for String,
Integer, Boolean values or for a list of choices, a file browser or for selecting an open editor. The following code should demonstrate the use of those build-
in properties.

 @Override
 public KiemProperty[] provideProperties() {
 KiemProperty[] properties = new KiemProperty[7];
 properties[0] = new KiemProperty(
 "state name",
 "state");
 properties[1] = new KiemProperty(
 "some bool",
 true);
 properties[2] = new KiemProperty(
 "an integer",
 2);
 properties[3] = new KiemProperty(
 "a file",
 new KiemPropertyTypeFile(),
 "c:/nothing.txt");
 String[] items = {"trace 1","trace 2", "trace 3", "trace 4"};
 properties[4] = new KiemProperty(
 "a choice",
 new KiemPropertyTypeChoice(items),
 items[2]);
 properties[5] = new KiemProperty(
 "workspace file",
 new KiemPropertyTypeWorkspaceFile(),
 "/nothing.txt");
 properties[6] = new KiemProperty(
 "editor",
 new KiemPropertyTypeEditor(),
 "");
 return properties;
 }

Please note that all values are the canonical string representatives and hence all property values need to be serializable. This is also required for own
property types that can easily be created when deriving from the abstract class KiemProperty. A custom KiemProperty needs to implement the
IKiemProperty interface and hence to provide the following two methods:

getValue()
setValue()

The Object values of the first two methods depend on the cell editor used by this property type. By default this is the TextCellEditor that handles Strings.
You can @Override the provideCellEditor() method and provide another cell editor here. For example the ComboBoxCellEditor operates on integer values.
Take in mind that only the String representation, that is accessible thru a call to KiemProperty.getValue()/KiemProperty.setValue() is the one that will be
stored and should be unique to be distinguishable.

 @Override
 public CellEditor provideCellEditor(Composite parent) {
 cellEditor = new ComboBoxCellEditor(parent, BOOL_ITEMS, SWT.Deactivate);
 }

1.

2.
3.
4.
5.

6.

With overriding the provideIcon() method you are able to provide a customized Image for the KiemPropertyType. If you return null (which is the default) the
standard image will be used.

Package Organization

The following lists the most important packages and classes of the KIELER Execution Manager.

Overview

This should give an overview about the base packages of the KIEM project:

The contains the KiemPlugin activator, the basic interfaces for the extension points (API), the , the kiem package KiemEvents KiemExceptions
and the externalized strings.
The implements the tree table view and most of the gui part.ui.views package
The contains additional gui helpers like the text fields, icons and special SWT widgets.ui package
The contains some basic KiemPropertyTypes as well as an interface and abstract class to extend those.properties package
The accommodates some internal interfaces and abstract classes for the Extension Points. The class internal package AbstractDataComponent
may be of most interest for deciding which methods to override.
The implements the scheduling and threaded execution.execution package

Please feel free to browse the and the for further more detailed information.source JavaDoc documantation

Download

Source: KIEM
Source: RawTable
Source: ABRO in JAVA
Source: Synchronous Signal Resetter

Source: SimpleRailCtrl Editor
Source: SimpleRailCtrl C-Code Generator
Source: SimpleRailCtrl Ptolemy Simulator
Source: SimpleRailCtrl View Management

Case Studies

ABRO in Java

This illustrates the famous ABRO example, the "hello world" of the synchronous world. It is simply a Java plug-in implementing an observing and producing
DataComponent that reacts to signals A, B, R with producing a present signal O whenever signal A and B just became present (in any order or even at the
same time). The SyncChart then goes into the done state and is reset by signal R, i.e. it becomes ready and again waits for signals A and B. The strong
abortion of the reset transition indicates that whenever R is present, in the same tick no O will be produced.

https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/ui/views
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/ui
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/properties
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/internal
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/src/de/cau/cs/kieler/sim/kiem/execution
http://rtsys.informatik.uni-kiel.de#Download
http://rtsys.informatik.uni-kiel.de/%7Ekieler/files/nightly/release/kieler-doc_v201108110120.zip
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.kiem/
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.table
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.abro
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins/de.cau.cs.kieler.sim.syncsignalreset
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins-dev/de.cau.cs.kieler.simplerailctrl
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins-dev/de.cau.cs.kieler.simplerailctrl.codegen.c
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins-dev/de.cau.cs.kieler.simplerailctrl.sim.ptolemy
https://git.rtsys.informatik.uni-kiel.de/kieler/mainline/blobs/master/plugins-dev/de.cau.cs.kieler.simplerailctrl.viewmanagement

The above example observer and producer DataComponent can be executed by the execution manager. This is illustrated in the following screen
snapshot. Signals can be injected (= made present) by marking the check boxes [X] in the left raw table view. Note that the variables first have to be
declared as being signals by using the adequate toggle button. By using the step button of the execution manager the execution can proceed to the next
step. The DataComponent just resets all present signals at the beginning of the next tick to be absent again so that the Synchronous Signal Resetter
whole execution follows the synchronous semantics. An alternative to this could be to let all signal emitters reset their own signals with the drawback of
introducing relative (macro) ticks.

Simple Rail Control

As another case study there exists a for the of the Christian-Albrechts University of Kiel. It lets you create SimpleRailControlEditor model railway
controllers for the model railway by modeling them with a generated Eclipse GMF editor. These models can be transformed into executable C-Code by a
model2text-Xpand-transformation on the one hand. On the other there exists a complete Xtend-transformation which generates executable and I/O-
equivalent models out of them. The DataComponent is then capable of executing these Ptolemy models using Ptolemy SimpleRailCtrl Ptolemy Simulator
the . Together with the KIELER model visualizer the active states (nodes) of the controller model can then be illustrated during Triq Ptolemy Eclipse plug-in
the execution.

http://www.informatik.uni-kiel.de/%7Erailway/
http://ptolemy.eecs.berkeley.edu/
http://chess.eecs.berkeley.edu/triq/

There also exists a that shows the just described behavior. Whenever the execution is being initialized the Ptolemy simulator will transform demo video
the currently saved EMF model of the opened diagram into a semantically equivalent but executable ptolemy moml-File.

http://rtsys.informatik.uni-kiel.de/%7Ekieler/videos/kiem-demo/KIEMvideo.htm

	Execution Manager (KIEM)

