Transformation Mapping (KTM)
KTM - KIELER Transformation Mapping

Topics

Transformation Tree Model
Extensions

Implementation Details
Example

Visualisation

This subproject provides a tracing mechanism for arbitary model-elements across multiple model transformations, based on EMF.

The main propose of KTM is to allow bidirectional information transfer between abstract models and their resultant transformed models.

Transformation Tree Model

To offer a mapping between model-elements during multiple transformations KTM introduces a model called TransformationTree to represent these
relations.

It is based on an EMF-Metamodel.

E ModelWrapper _source targetTransformations H ModelTransformation
T modelTypelD : EString v.] 0..* | 2 transformationID : EString
T transient : EBoolean target sourceTransformation
) 1 0.1
1 model 19 modelTransFormation
1 | rootObject
1..* | modelObjects 1..* | objectTransformations
5 Eobject] 0.1 [EObjectWrapper source targetTransformations [EObjectTransformation
- 7 displayName : EString -
(From ecore) 1 0..

eObject sourceTransformations

target
1 0..*

The structure of the model can be separated into two parts.

First part (upper half) is a tree of transformations. Each ModelWrapper-class is a representation of a model which is transformed. So ModelWrapper are
nodes and ModelTransformations are edges. Thus the ModelWrapper representing the initial-source-model of all transformation is also the root of a
TransformationTree-model.

Second part (lower half) is object-mapping. Instances of models contain EObjects as their elements, which are represented by EObjectWrapper-class in

this metamodel. The EObjectWrapper of two models are connected with EObjectTransformations-class to express their origination relationship in
corresponding model transformation.

An abstract example of an instance of this model:

Transformation
AtoB

I L

| I
I |
I

A2toB2 I i : EOhbj B2) I
I | | |

EChj A2
| |
AZtoB3 I I_‘I EObj B2) I
I I

Model B

Extensions

Two classes are provided by this project to extend functionality of the core model.

TransformationMapping (JavaDoc)
The main propose of this class is generation of a object-mapping during transformation process.
Therefor it provides different functions for incremental registering of single parent-child-relations between EObjects.

Furthermore, the extension allows to extract the mapping and check completeness of mapped elements against content of transformed models.

TransformationTreeExtensions (JavaDoc)
This class provides all functionalities to easily traverse and search in a TransformationTree.
Furthermore, it allows to modify trees by creating, deleting or appending new transformations and transformed models.

Additionally this extension provides functionality to extract a concrete mapping between two arbitary model intances from a TransformationTree.

Implementation Details

* All references to EObjects in EObjectWrapper are references to a copy of the original EObject. This allows to represent immutable mapping. To
reidentify corresponding EObjects TransformationTreeExtensions provides search functions which will check for structural matching models.

® Models in TransformationTrees may be transient. This indicates that all references to EObjects in all Elements of the transient model are
removed. Thus these models can't be source of a new appended transformation and can not be associated with it's original model. The main
propose of this feature is to improve scalability of TransformationTrees by removing unnecessary references to internal model, but preserve
traversing functionality of the object-mapping.

® Mappings can be incomplete causing resulting transfromation tree to be incomplete. A incomplete tree does not represent every object in a model
with a corresponding Element. This may break some paths of element transformations, but allows to omit model-immanent objects like
annotations from mapping. TranformationMapping extension provies a function to check completeness of mapping against its models.

Example
In this example we will perform some transformations on SCCharts.

The source chart is a ABO, the "Hello World" of SCCharts.

https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/8651445/TransformationMapping.html?version=2&modificationDate=1389351817000&api=v2
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/8651445/TransformationTreeExtensions.html?version=3&modificationDate=1389351811000&api=v2

ABO is already a CoreSCChart, so we will perform normalization and a transformation to SCG.

Creating Mapping during Transformation
In order to note every single element transformation of a model transformation, we use the TransformationMapping extension.
After each creation of new Objects for transformed model the mapping must be updated with it's origin information.

The codeblock blow show a snipped of SCChartCoreTransformation with additional mapping registration.

transformTriggerEffect CodeSnipped

@ nj ect
extensi on Transfornati onMappi ng

/1 NEW - Mapping access del egation
def extract Mapping() {
extract Mappi ngDat a;

/1-- SPLI T TRANSI TI ON --

/1 For every transition T that has both, a trigger and an effect do the follow ng:
I For every effect:

11 Create a conditional C and add it to the parent of T's source state S_src.

/1 create a new true triggered imedi ate effect transition T_eff and nove all effects of T to T_ eff.
/1 Set the T_eff to have T's target state. Set T to have the target C.

11 Add T eff to Cs outgoing transitions.

def Regi on transfornilriggerEffect(Regi on rootRegi on) {
cl ear Mappi ng; //NEW- cl ear previous mapping information to assure a single consistent mapping
/1 Clone the conplete SCCharts region

var target Root Regi on = root Regi on. mappedCopy; //NEW - mappi ng i nformati on (changed copy to mappedCopy)

/1 Traverse all transitions
for (targetTransition : targetRootRegion. getAl | ContainedTransitions) {
target Transi tion. transforniri gger Ef fect (t ar get Root Regi on) ;
}
val conpl eteness = checkMappi ngConpl et eness(r oot Regi on, target Root Regi on); //NEW - DEBUG
t ar get Root Regi on;

}

def void transforniriggerEffect(Transition transition, Region targetRootRegion) {

/1 Only apply this to transition that have both, a trigger (or is a termnation) and one or nore effects
if (((transition.trigger !'= null || !'transition.immediate || transition.typeTerm nation) & !transition.

effects. null O Enpty) ||
transition.effects.size > 1) {
val targetState = transition.targetState
val parentRegion = target State. parent Regi on
val transitionOriginal Target = transition.targetState
var Transition lastTransition = transition
val firstEffect = transition.effects. head
for (effect : transition.effects.imutabl eCopy) {
/1 Optimzation: Prevent transitions without a trigger

if(transition.imediate & transition.trigger == null && firstEffect == effect) {
Il skip
} else {

val effectState = parentRegion. createSt at e(GENERATED PREFI X + "S")

ef fect State. mapParents(transition. mappedParents); //NEW- napping infornation

ef fect St at e. uni queNane

val effectTransition = createl nmedi ateTransiti on. addEf f ect (ef fect)

effect Transi ti on. mapParent s(transition. mappedParents); //NEW- mapping information

ef fect Transi ti on. set Sour ceSt at e(ef fect St at e)
| ast Transi tion. set Target St at e(ef f ect St at e)
lastTransition = effectTransition
}
}

last Transition. set Target State(transiti onOi gi nal Tar get)

Create TransformationTree

The following code will now perform each transformation stepwise and updates a transformation tree each step.

Transform and create TranformationTree

aboSplit TE = SCCtransformation.transformlriggerEf f ect (abo);

Model W apper aboSpl it TEMbdel =

transformationTree.initializeTransfornmati onTree(SCCransfornation. extract Mapping(), "TriggerEffect",

abo, "coreSCChart", aboSplitTE, "coreSCChart-splitTriggerEffect");
aboNor nmal i zed = SCCtransformation. transfornfurfaceDept h(aboSplitTE);
Model W apper aboNor nal i zedMbdel =
transformati onTree. addTr ansf or mati onToTr ee(SCCt r ansf or mat i on. ext r act Mappi ng(), aboSpl it TEMbdel ,
"Sur faceDepth", aboSplitTE, aboNormalized, "nornalizedCoreSCChart");
aboSCG = SCG ransformati on. transf or rSCG aboNor mal i zed) ;
Model W apper aboSCGwdel =
transformati onTree. addTransformati onToTr ee(SC&G r ansf or mat i on. ext ract Mappi ng(), aboNor mal i zedModel ,

" SCC2SCG', aboNornal i zed, aboSCG, "SCG');

tree = transformati onTree. root (aboSCGvbdel) ;

The resulting TransformationTree has following structure and representing each step and model of the transformation.

coreSCChart riggereffect coreSCChart-splitTriggerEffect

ﬂ.ﬂcl InguUt suEpat baed A il LT
inpit ailput boal & P wry 1 stpen b
tp ol el O im0l
oupu boo 01 = S

output boal 02

@ /01 = tains

1
i f 01 = false; 02 = false

¥ f 33 = falss

WWaithR TN

[] fl = e T
(waita) /00w (=) =P L Jone
L >y
___'E_-’_'-"_f_['?‘_"_ﬂl_f_t_”:'f__j Doneh D T

{101 = false; 02 = true SO = lalss

. = =
i

GotAB

5
SurfaceDepth

n

Furthermore the TransformationTree now contains mapping information for the whole transformation chain.
Now we can use an additional feature of KTM, the resolving of mappings between arbitary models.

The following code has starts with an instance of the initial ABO SCChart and SCG, along with the TranformationTree above.

resolveMapping

@ nj ect
ext ensi on Transformati onTr eeExt ensi ons

/1 Find nodes of nodel instances in tree
val aboSCCMbdel W apper = transformationTree. fi ndvbdel (aboSCC, "coreSCChart");
val aboSCGWbdel W apper = transfornationTree.findvodel (aboSCG "SCG') ;

//resolve
val mappi ng = resol venappi ng(aboSCCvbdel W apper, aboSCC, aboSCGWdel W apper, aboSCG);

The returned mapping is a multi mapping between all object in aboSCC and their resulting objects in aboSCG.

This mapping can now displayed in models or used for various information propagation between elements of the models.

ABO
input output bool A
input output bool B
output bool O1
output bool 02

/ 01 = false; 02 = false

WaitAB

B /Ol = true

&%
I / Ol = false; 02$

GotAB

Also a more detailed view is available, showing all EObjects relation.

vae: true vae: tue vaue: tase vaue: ke vabue: tue vaue: tue vaue: tatse e fase vaue: fatse vae: take vane: true vae: true vaue: true vae: tue
- t t e = e State ject ject
: ABD name: & name: &
labet 80— gCGrph type: boal type: boal
type: NORMAL A nput: true = nput: true
nmat faise ! outpat: true outpat: true
finat faise / satic: faise aic: faise
{" sgnal: tise sgnal: tase
P ;, NONE NOWE
u: nul
tatet: nul
ject ject ject ject ject — —
name: 02 name: 02 name: 01 name: 01 name: & name: & ;‘ isinstink fale / iminitint falce
type: baal fype: baal tyne: boal tyne: bool type: boal type: boal e
s B W el W e o WS e sate |/ Tansiton
output: true output: true output: true outpat: true output: true output: true e dety: 1 x ControlFlow
static: fatse static: toise mte: fatse atic: fatse s fase static: fase abct: i smmediate: ot
signat faise signat faise signal: take sgna: take sgnal: taise sgnat: taise RS NORMAL._ o Entry tatet: nul
NOME WOME NONE NONE MONE NONE Inftial: true P priarty. 1 — ControlFlow
fnat: take / tyme: TERMINATION
/ aemmen: tmme
Regieasl Mistary: RESET
- Exit Assignment
CH T =
iaet: nusl i e
—_— 4 ‘ControlFlow State
minmnt tae ’," : Danes
/ | 4 ControlFlow S ——
."f 4 ControlFlow I b o A sinmnt faise
ot I/ inmiai: faise /
! l,."},-' + ControlFlow fnak e /
Transition f‘ /4 ControlFlow ! ./f !
I A /
ey 1 11/ 4 ControlFion
smmediste: true { Wi
mbet nul / /) /”
sriarty: 1 State j"/ Fork :
type: WEAKABORT i n
iy tmme = ControlFlow i WanAR Einftisi: false ;
nistory: RESET et ny prorty: 1
type: NORMAL et]
Initial: fabe Jein e !
e e defered: tise 4, i
: foe Einmtial: faise \ ‘ControlFlow Region f.-"

Visualisation

histary: RESET \\\
\

\

State ControlFlow

AN
N\
type: MMLN Conditional

o: Waa
el Waita

gt true 4N N Y T ke mme
mna mse B4 Y

WY N\

RN Y Entry

> mnat: tise

\ Depth

s faise

4
."\
\ \ Yy Surface

\ Y e e

\ A
', ¥ ControlFlow

State
il: Danes 1 Exit
labet: Daned —
Einitial; faise

type: NORMAL
Inftasi: faise
finat true

“t: Handie®

label: Hande g

Transition
detay: 1
mmeaime: mee
tanel: null
mriaty: 1

deferred: take
history RESET

State

o: Wang
mbet Wars

tyne: NORMAL

Iniisi: true
final: taise

Surface

Y flmnnnt foe
type: WEAKABORT i
! S

Depth

isinitat faise

ControlFlow

ControlFlow

= ControlFlow

If you have a TransformationTree file (.ktmt) you can open a KLighD visualisation by right-clicking on file in project-tree and selecting 'Open Transformation

Tree'.

Diagram Options

Model Visualisation: If enabled tries to visaulize selected models with KLighD else a EObject-represenation is created.

EObject Attributes: If enabled shows Attributes of EObject in EObject-represenation.

Selective mapping edges: If enabled shows only selected mapping edges.

Interaction

CTRL+CLICK: Selects a Node in TransformationTree as source and displays its represented model.

SHIFT+CLICK: Selects a Node in TransformationTree as target, displays both models and the resolved mapping as edges (currenly only between States

/Regions).

If Selective selective mapping edge is enabled no mapping edges are displayed. If you select (CLICK) an element in one of the two model its relation to
corresponding element is displayed. You can multi-select with CTRL+CLICK or deselect by clicking on an edge.

	Transformation Mapping (KTM)

