
Project Management (Prom)

Deprecated since 0.14

This article is deprecated. The described features are no longer available in current releases.

Prom - Project Management in KIELER
Topics

Overview
Project Wizards
File Wizards
The Project Builder

Build Configuration via KiBuild
Project Drafts

Placeholders
Paths for imported resources

Wrapper Code Generation
Simulation templates
FreeMarker

Problem Solving
CDT Projects

Overview

The KIELER Compiler (KiCo) can generate different code targets from models. For example it is possible to generate C and Java code from an SCT file.
As a result KIELER has to integrate with existing development tools and practices for the C and Java world. In the context of embedded systems, the
target device also varies heavily.

Therefore the KIELER Project Management (Prom) has been developed. It eases the creation, compilation and deployment of projects, when using
models that can be compiled via KiCo (e.g. SCCharts, Esterel). Furthermore it eases the creation of wrapper code, which is used to deploy, run, or
simulate the model.

The features provided by prom include:

Project and file creation wizards
An incremental that performs several tasks, namelyproject builder

Compilation of model files using KiCo
Template processing to generate code for deployment or simulation
Compilation of simulation code to an executable

A of the project buildDSL for configuration

In the following it is explained in further detail how to use and extend these features.

Project Wizards

SCCharts can be compiled for example to C using the KIELER Compiler and there is existing tooling for the C language in Eclipse. Using the SCCharts
project wizard, such existing tooling for a target language or platform can be re-used.

Therefore the actual project creation is delegated to another project wizard. Afterwards additional files are created within this newly created project by the
SCCharts project wizard. For instance a model file and files for configuration of the build or templates for wrapper code might be added to the project.
Further the created project properties are extended with information specific to SCCharts projects, e.g., that the Prom project builder should be used. This
approach makes it possible to re-use project wizards from the CDT or JDT and get a working setup with a model file that can be compiled, simulated and
deployed with low configuration effort.

Which project wizard from existing tooling should be used and which files should be created afterwards can be configured in the Eclipse preferences. Pre-
defined setups for various languages and target platforms can be created this way.

File Wizards

There are various file wizards for the DSL that come with KIELER. These create a file with some default content.

File wizards exist for

SCCharts text files (files)sctx
Build configurations (files)kibuild
Simulation configurations (files)kisim
Simulation visualization configurations (files)kivis
Freemarker Templates (files)ftl

The Project Builder

The incremental project builder is run by Eclipse either in the background when resources changes (), or manually by the user (Project > Build automatically
). What and how files are built can be configured using a new DSL (kibuild files). Errors and warnings that occur during the build are Project > Build Project

added as to the resources where they occur, which is a known concept in the Eclipse IDE. For instance when working with Java, compiler errors markers
are added as markers to files when they are saved. This is now also possible for SCCharts text files and provides faster compiler feedback to users, e.g.
because a model can not be compiled, as long as the automatic build is active.

Several actions are performed when a project is built:

Model files are compiled
Optionally a template is processed for each model to generate the simulation code for the model.

Simulation code is compiled to an executable, which can be started using the new simulation
Freemarker templates are processed to generate code.
Depending of the type of the template, additional variables are injected into the template

Wrapper code templates are used to create the wrapper code for a specific model.
Annotations on inputs and outputs in the model can be used to define which code snippets are injected as part of the build. These code
snippets typically contain code to read or write the corresponding inputs and outputs.
Simulation code templates are used to create wrapper code for simulation of models.
Thus it is a special form of wrapper code template. Instead of user defined annotations, the injected code snippets are determined by the
variables in the model.
This kind of template can be configured as part of a model compiler to automatically generate the simulation for all compiled models.
Simple templates are self contained and no additional variables are injected.

If all of these are defined, an incremental project build could consist for example of the following steps:

Build a model file A.sctx
Afterwards process a simulation template to generate its simulation code Sim_A.c

Compile the simulation code to an executable using gccSim_A.c
Create wrapper code for the model, that is ready to be deployed

Note that if the option is set, it is possible to (re-)start a simulation without the need to (re-)compile the corresponding model Build automatically
beforehand. This is because the simulation executable has been created in the background as part of the build and is updated if the model changes. This
results in a faster code-test-workflow compared to the previous approach, in which a model was always re-compiled before its simulation was started.

Build Configuration via KiBuild

The new project builder is configured using a domain specific language, namely KiBuild. Corresponding to the actions that are performed during the build,
its configuration consists of , and . A template processor is either a , model compilers simulation compilers template processors simple template processor wr

 or .apper code template processor simulation template processor

When writing the configuration, use code completion to see available attributes for the entities. The following table describes the available attributes.

Attribute Domain Default Value Description

KiCo
Model
Compiler

outputFolder String kieler-gen The folder in which compilation output is saved

whitelist String, Regular expression - Only model files that have a location matching this regular expression are compiled. Thus to
compile only a specific model, one can use the expression "ModelName.sctx"

blacklist String, Regular expression - Model files that have a location matching this regular expression are exluded from the build.
Thus to exclued all models and skip compilation, one can use ".*", which matches everything.

outputFileE
xtension

String c Compiled models are saved with using this file extension. Thus this attribute should match the
code format that is generated by KiCo at the end of the compilation.

outputTemp
late

String, Project relative file path - An optional template to add surrounding code to KiCo generated output for every compiled
file. In the template the placeholder can be used an will be replaced with the ${kico_code}
compiled code.

compileCha
in

String, Id of a pre-defined
compilation system or
processor id or a project
relative file path to a kico file

Can also be a list of the above
to compile models in several
steps

Can also be a map to define
the compilation of different
model types

compileChain {
 sctx: de.cau.cs.
kieler.sccharts.
netlist.simple
 strl: de.cau.cs.
kieler.esterel.
netlist.simple
}

de.cau.cs.kieler.
sccharts.netlist.simple

The compilation system that is used by KiCo to determine the compile chain.

communicat
eRegisterV
ariables

Boolean true Determines if the variables that save the internal state of a model should be communicated to
the simulation generation. If set to false, stepping back and forth in the simulation history will
not change the internal state of the model.

Simulation
Compiler

command String For C:

"gcc -std=c99 -
Werror=int-conversion -
o \"./${outputFolder}
/${executable_name}\""

For Java:

"jar cvfe \"..
/${outputFolder}
/${executable_name}\""

The command that is called to compile simulation code to an executable.

In case of the C simulation, the compiled file is added implicitly as additional parameter, to
create an executable.

In case of Java, all class files and the class file of the compiled model are added implicitly to
create an executable JAR file.

outputFolder String, Project relative folder
path

kieler-gen/sim/bin The folder in which compiled output will be saved.

Note that it is possible to use a command that creates the compiled files in a different location.
However the folder specified in this attribute is created before the command is executed and
refreshed afterwards. This ensures that the folder exists and changes will be noticed in the
Eclipse workspace.

libFolder String, Project relative folder
path

kieler-gen/sim/lib The folder where additional files are saved before the command is run. These files can be
linked into the simulation code, e.g., for JSON handling.

timeout int 10 Time in seconds that is waited for the executed command to finish. If the command runs
longer, it is assumed to be failed and aborted.

Template
Processor

file String, Project relative file path - The template file that should be processed

target String, Project relative file path - The file in which the output should be saved

Wrapper
Code
Template
Processor

modelFile String, Project relative file path - The model file that is searched for annotations to determine the code snippets to be injected.

Simulation
Code
Template
Processor

modelFile String, Project relative file path - The model file that is searched for annotations to determine the code snippets to be injected

compiledMo
delFile

String, Absolute file system
path

- The absolute path of the compiled model file for which the simulation is created. This is used
to replace the placeholder ${compiled_model_loc} in the simulation code template

variables Map, e.g.,

variables {
 input: myVar1
 output: {
 bool: myVar2
 int: myVar3[2]
[3]
 }
}

- Optional additional variables that should be communicated to the outside

interfaceTy
pes

String, List of Strings - The interface types that should be communicated in the simulation, e.g., input, output, internal

Example for KiBuild files:

Simple KiBuild Example

// Compile models to C code
model compiler kico {
 outputFolder: kieler-gen // The folder, in which the compilation output is saved
 outputFileExtension: c // The file extension for compiled files
 compileChain: de.cau.cs.kieler.sccharts.netlist.simple // The system that determines the compile chain
within the KIELER compiler

 // Generate C simulation for compiled models
 process simulation template {
 file: assets/CSimulation.ftl // A template for simulation code
 }
}

// Compile simulation code
simulation compiler c {
 libFolder: kieler-gen/sim/lib // Create additional libraries required for compilation in this folder
 outputFolder: kieler-gen/sim/bin // Create the executables in this folder
 command: "gcc -std=c99 -o ./${outputFolder}/${executable_name} ${file_path} " // Use gcc to compile the code
}

1.
2.
3.
4.
5.

Complex KiBuild Example

// Compile models to Java code
model compiler kico {
 outputFolder: kieler-gen
 outputFileExtension: java
 outputTemplate: assets/OutputTemplate.ftl
 compileChain: de.cau.cs.kieler.sccharts.netlist.simple
 whitelist: "ModelA|ModelB" // Only compile models that match this regex

 // Generate C simulation for compiled models
 process simulation template {
 file: assets/JavaSimulation.ftl
 }
}

// Compile simulation code
simulation compiler java {
 libFolder: kieler-gen/org/json
 outputFolder: kieler-gen/sim/bin
 command: "javac -cp kieler-gen -d bin \"${file_path}\" "
 jarCommand: "jar cvfe \"./${outputFolder}/${executable_name}\" sim.code.${file_basename} -C bin . "
}

// Process a simple template
process template {
 file: Template.ftl
 target: Output.txt
}

// Process a template to generate a main file that can be deployed.
process wrapper template {
 file: Main.ftl
 target: kieler-gen/Main.c
 modelFile: MyModel.sctx
}

// Process a template to generate a simulation for a model that has been compiled with some other framework
process simulation template {
 file: assets/JavaSimulationForOtherModel.ftl
 target: kieler-gen/Sim_OtherModel.java
 variables: { // These variables should be communicated to the outside
 input: a,b,c
 output: x,y,z
 }
 interfaceTypes: input, output // Only communicate these interface types. In this case, internal variables
are not communicated.
}

Project Drafts

Project drafts are used to provide default settings for project creation. They are configured in the (>preferences Window Preferences > KIELER SCCharts
).> Project Drafts

An project draft consists of

a unique , which may not contain a commaname
an project wizardassociated
the path of the default for the projectmodel file
the path of the default for the projectmain file
information about that should be imported at project setupfolders and files

Besides the name, all of these are optional, but can improve the workflow.

The associated project wizard is run as part of the Prom project wizard and takes care of the actual project creation. Afterwards the model file is created
and finally other folders and files are imported.

Placeholders

There are some placeholders that can be used in initial resources for projects, which are listed below.

Placeholder Description

${project_name} Will be replaced with the name of the project that is created

${modelFile_path} The project relative path of the initial model file

${modelFile_name} The name of the initial model file

${modelFile_basename} The name of the initial model file without file extension

Paths for imported resources

To import a resource (folder or file), its project relative path has to be specified. The resource will be created at this location in the project. Furthermore, it
is possible to specify initial content for these resources. This is done in the field . Without an origin specifed, an empty resource will be created.origin

To specify intial content for a file, the origin has to be an or an with the platform scheme of Eclipse. Such an URI has the form absolute file path URI plafto
 Specifying intial content for a folder is analog. Its origin has to be an or an rm:/plugin/a.plugin.name/folder/in/the/plugin/file.txt absolute directory path URI

in the form plaftorm:/plugin/a.plugin.name/folder/in/the/plugin

Wrapper Code Generation

When modeling a program for an embedded system, it is necessary to set inputs and outputs of physical components (sensors/actuators) to inputs and
outputs of the model. This is typically done using wrapper code. However, for a specific device and programming language.wrapper code is often similar

Therefore one can write for a target device. These can then be injected to a . What snippets are injected is defined wrapper code snippets template file
using directly in the model file.annotations on inputs and outputs

In SCT files, annotations are added as in java, with an at-sign e.g. . You can write implicit and explicit wrapper code annotations.@Wrapper Clock, "500"

Explicit annotations have the form . An explicit wrapper annotation raises an error if the snippet @Wrapper SnippetName, arg1, arg2, ..., argN
does not exist, thus it is to use the explicit annotation. Every other annotation is tried as wrapper code annotation as well, but recommened @Wrapper
will be ignored, if no such snippet could be found. Thus you can write the above explicit annotation as , but @SnippetName arg1, arg2, ..., argN
there will be no error if the snippet with this name does not exist or could not be found, for example because of a typo.

Note: Annotation and parameters are . That means that are all different annotations.names case sensitive Clock, clock, Floodlight, FloodLight

In the one can use special .template file placeholders

${file_name} is replaced with the name withouth extension of the file that is generated (e.g. will be).Main.java Main

${model_name} is replaced with the name of the last compiled model.

 ${declarations} and will be replaced with additional declarations of variables and functions (<@decl>...</@decl> of a snippet definition). ${decls}
Declarations should occur before the tick loop of the model file. In general they are not required for Java code but may be useful in C applications (e.g. for e

 calls).xtern

${initializations} and will be replaced with initialization code for components (<@init>...</@init> of a snippet definition). Initialization should occur ${inits}
before the tick loop of the model file.

${inputs} will be replaced with code to set inputs for the model (<@input>...</@input> of a snippet definition). Setting model inputs should occur in the tick
loop, before the tick function call.

http://plaftorm/plugin/a.plugin.name/folder/in/the/plugin/file.txt
http://plaftorm/plugin/a.plugin.name/folder/in/the/plugin/file.txt
http://plaftorm/plugin/a.plugin.name/folder/in/the/plugin

${outputs} will be replaced with code to read outputs of the model. (<@output>...</@output> of a snippet definition). Reading outputs of the model should
occur in the tick loop, after the tick function call.

${releases} will be replaced with code to free allocated resources. (<@release>...</@release> of a snippet definition). Releasing resources should occur
after the tick loop at the end of the program.

To ease the modification of the template file, one can open it with the text editor the final code will be for. This will enable syntax highlighting and code
completion for the langauge, but it will not show any errors. You can open the file for example with the Java Editor of Eclipse using Right Click > Open With
> Other > Java Editor

Simulation templates

The task of the simulation code is to read the inputs from the KIELER user for the simulation, execute a tick, then send the outputs that have been
produced back to KIELER. The communication with KIELER is done using a JSON format.

To create the simulation code, a template is used in which code is injected for each variable in the model to fill the JSON object with the current variable
values. This way, the state of the model is communicated to the outside. Before the tick, inputs can be set in the model. Thus there is also code injected
for each variable in the model to change its value using a JSON input.

In conclusion, the simulation code generation is a special form of wrapper code generation. For a simulation template, the injected code snippets are not
selected from annotations in the model. Instead code is injected in a specified form for all variables to communicate their states using a JSON format.

FreeMarker

The wrapper code injection is done using the open source . A wrapper code snippet is basically a definition of template engine FreeMarker Macro
FreeMarker. The Macro is called when the corresponding annotation is found in the model file. The file extension of FreeMarker templates is ..ftl

There is an for FreeMarker as part of the JBoss Tools Project. It can be installed using the Eclipse Marketplace.Eclipse plugin

Example for wrapper code generation from annotations:

http://freemarker.org/
http://freemarker.org/docs/ref_directive_macro.html
http://freemarker.org/editors.html

Problem Solving

CDT Projects

When working with the CDT, the folder that contains the simulation code has to be excluded from the CDT build, because this code is compiled using the
compiler specified in the kibuild file, and every simulation file has an additional main function, which is not the use-case that a CDT project is made for.
These files are self contained and do not interact with other files in the CDT project, thus they should not be built.

	Project Management (Prom)

