
Annotations and Pragmas
Annotations
The textual SCCharts language supports several annotations to influence the visual representation of the model.

Annotation are processed in sequential order.

Pattern Usage Description Example

@diagra
m
[<key>]
<value>

Location: scchart

<key> The name of the synthesis option. The
given name is evaluated case-insensitive
and whitespace-ignoring. The options are
searched for the first matching .prefix

<value> The value type depends on the option
type:

CheckBox: or true false

Choice: Name of choice item

Slider: Float value

Sets the synthesis option identified by <key> to the given value.

The available synthesis options for a diagram are displayed in
the sidebar of the diagram view.

The values from the sidebar will be ignored if a corresponding
annotation is present.

initiallyc
ollapsereg
ions

Collapses all regions. helpful for Very
lager models, since it fastens initial
diagram rendering.

@diagram
[paper] true
scchart
Testing {
 initial
state A
 --> B;
 final state
B;
}

@layout
[<key>]
<value>

Location: scchart, state, region, transition

<key> The ID of the layout option. The options
are searched for the first matching .postfix

<value> The value type depends on the option
type. The value is parsed case-sensitive.

Sets the layout property identified by <key> to the given value
on the annotated element.

The available layout options are documented .here

Layout options will only affect the annotated element and no
underlying hierarchy levels.

If a layout direction is specified with this annotation it overrides
the layout direction set by HV-/VH-Layout in any parent element
for this element.

Special case: If the direction is set on the scchart element (top
level) it overrides the default alternating layout.

The layout option is identified by matching a postfix. Hence the
key matches both direction org.eclipse.elk.

 and direction org.eclipse.elk.layered.priority.
.direction

If none or multiple options match a warning is displayed.

elk.direction Layout direction

elk.priority Influences the order of regions

scchart
Testing {
 @layout
[algorithm]
org.eclipse.
elk.graphviz.
circo
 region:
 initial
final state A
 --> B;
 state B
 --> C;
 state C
 --> A;
}

scchart
Testing {
 @layout
[elk.
direction] UP
 region
"up":
 initial
state A
 --> B;
 final
state B;
 @layout
[elk.
direction] LEFT
 region
"left":
 initial
state A
 --> B;
 final
state B;
}

@HVLayo
ut
@VHLayo
ut

Location: scchart, state, region Defines the order of the alternating layout directions.

The annotation can be mixed and nested in the SCChart and
will only affect succeeding hierarchy levels.

The default is an implicit HVLayout starting at the top level state.

@VHLayout
scchart
Testing {
 initial
state A
 go to B;
 final state
B;
}

https://www.eclipse.org/elk/reference/options.html

@collap
se
@expand

Location: region The annotated region will be initially collapse or expanded.
scchart
Testing {
 @collapse
 region {
 initial
state A
 go to B;
 final
state B;
 }
}

@hide
Location: scchart, state, region, transition The annotated element will be excluded from the diagram.

Transitions with a hidden source or target state will be hidden
as well.

scchart
Testing {
 initial
state A
 go to B;
 @hide
 final state
B;
}

Pragmas
Pragmas are annotations that are valid for the whole file in contrast to annotations that are valid for semantic model elements. They are placed in front of
an .sctx.

Example

#pragma
scchart Testing {
 ...
}

Pragma Effect

#KiCoEnv
{<json>}

Configures the compiler environment.

#hostcode
<code>

#hostcode-[c | c-
header | java]
<code>

Allows hostcode additions that are placed at the beginning of the generated code file. The exact handling may depend on the used
code generator.

NEW IN 1.1

There are also language specific variants that will only affect the specific code generation, e.g. #hostcode-java.

#code.naming NEW IN 1.1

Configures the code generation to use different names for generated functions.

#code.naming <TICK_FUNCTION_NAME>, <RESET_FUNCTION_NAME>, <LOGIC_FUNCTION_NAME>,
<TICKDATA_STRUCT_NAME>
Sets the name for the four functions. All four parameters must be present.

#code.naming suffix
#code.naming prefix
Code generation will use default function names but will prefix/suffix these names with the model name.

#resource <file
| directory>

NEW IN 1.1

The given resources (single files or directories) will be copied to the generated code folder (usually). Since this is the kieler-gen
working directory for the compilation KIELER these files can be included via hostcode integration.
If the compilation contains any down-stream compiler invocation (e.g. gcc) all given files and all files in given directories that match
the usual source code file extension (e.g. *.c) will be included in the compilation and compile into an executable with the generated
code.

All non-absolute paths will be resolved relative to the model file.

Example

#resource "myheader.h"
#resource "mycode.c"
#hostcode "#include \"myheader.h\""
scchart Testing {
 ...
}

#HideImportedS
CCharts

NEW IN 1.1

This will hide all SCCharts that are imported from other files in the diagram, if the 'All SCCharts' synthesis option is activated.

	Annotations and Pragmas

