
1.

2.
a.
b.

c.

d.

1.
2.
3.
4.

5.

1.
2.
3.

4.
5.
6.

KiCo - Compilation Processors & System

In this tutorial we will set up a plugin for KiCo compilation and create processor and compilation system that will convert a text file into a text file with
all upper case characters.

Setup Dependencies
Create a Plugin
Create a Processor
Register the Processor
Create a Compilation System
Register the Compilation System
Test your Transformation

Setup Dependencies

To use and develop with KiCo you need to setup or integrate the KiCo framework into your Eclipse IDE.
There are two scenarios:

If you are a KIELER developer, you can set up your KIELER development IDE by following our
Oomph setup tutorial
If you want to use your own eclipse setup, you can use our updatesite to install KiCo

Go to Help > Install New Software
Enter our release updatesite () or http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/
the nightly () if http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/nightly/semantics/
you want to get the latest features and fixes immediately.
Select the feature (see screenshot) You may also KIELER Semantics Framework .
want to add as it is required for other tutorials for KiCo.KIELER SCCharts,
(optional) If you have a target platform defined, you probably need to add the
updatesite and features there too.

Create a Plugin

For this tutorial we will create a new eclipse plugin to carry our processors and systems.

New -> Project...
In the project wizard, choose and click .Plug-in Project Next
As the project name, enter . Click .de.cau.cs.kieler.tutorials.kico Next
As the name, enter . Uncheck all checkboxes in the Options section. Click KiCo Tutorial Finish
.
(Eclipse might ask you whether you want to switch to the , Plug-in Development Perspective
which configures Eclipse to provide the views that are important for plug-in development. We
recommend you do.)
Eclipse has now created your new plug-in and (usually) opened the , Plug-in Manifest Editor
which allows you to configure your plugin. Go to the tab and add a dependency Dependencies
to (see screenshot).de.cau.cs.kieler.kicool

Create a Processor

For implementing processors we recommend the language . In this tutorial we will use Xtend for all Xtend
implementations. However, you can of course use plain Java instead. Xtend will require a few more
plugin dependencies and we have some you may want to look into beforehand. tutorials on Xtend

To create our new processor:

Create a new class and name it UpperCase
Let UpperCase extend de.cau.cs.kieler.kicool.compilation.Processor
The abstract class has two generics for specifying the input and output type of the Processor
processor. In this tutorial we want the read a plain text file. By default, KiCo is able to handle all
kinds of editors. If it is a model-based editor (e.g. EMF or XText editor) the compiler will directly
receive the model instance. In all other cases, the file content will be wrapped in a
CodeContainer. Hence, in this case we want to use de.cau.cs.kieler.kicool.

 as input and output type.compilation.CodeContainer
Add all unimplemented methods.
getId() should return a unique id of the processor: de.cau.cs.kieler.tutorials.uppercase
getName() should return a human readable name for our processor: Upper Case

UpperCaseProcessor.xtend

package de.cau.cs.kieler.
tutorials.kico.processor

import de.cau.cs.kieler.
kicool.compilation.
Processor
import de.cau.cs.kieler.
kicool.compilation.
ProcessorType
import de.cau.cs.kieler.
kicool.compilation.
CodeContainer

/**
 * Converts all characters

Related Publications

Steven Smyth and Alexander Schulz-Rosengarten and Reinhard von Hanxleden. In Towards Interactive Compilation Models. Proceedings
 , volume 11244 of the 8th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2018)

of , page 246–260, Limassol, Cyprus, November 2018. Springer.LNCS

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Getting+Eclipse
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/nightly/semantics/
https://www.eclipse.org/xtend/documentation/index.html
https://rtsys.informatik.uni-kiel.de/confluence/display/TUT/Xtext+and+Xtend
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/isola18.pdf

7.

1.
2.

3.

getType() returns the "job" of the processor. Here we have the processor that should
transform the input and have the same meta-model (or type since CodeContainer is not EMF
based) as input and output, hence we return .ProcessorType.ENDOGENOUS_TRANSFORMATOR

Now we can implement the actual transformation in . Note that the method has no process()
parameters because all information are accessed via getters from the environment of the processor.
Thanks to Xtend, these getter can be accesses as they were fields in the class.

See the code lisitng on the right for an implementation of process. First, the input file is saved in a
variables. gets the input model from the environment. access the list of files in this model files
CodeContainer. Since we know that the input at this point is always a single file, we access the first file in
the list with . Then we the list list of files, because file content in a CodeContainer is head clear
immutable. With we add a new file to the CodeContainer with the same name as the original model.add
but the content () string in upper case.code

Since we have a transformation on the same meta-model we create the output of our transformation by
changing/remodeling our input directly (the input is actually a copy made by KiCo). Hence, in this case
there is nothing more to do. If we would write an we would need to create EXOGENOUS_TRANSFORMATOR
a new target model instance and set it as the result explicitly with but this will model = <myNewModel>
be addressed in more detail in later tutorials.

of an input file into
upper case.
 * @author Alexander
Schulz-Rosengarten
<als@informatik.uni-kiel.
de>
 */
class UpperCase extends
Processor<CodeContainer,
CodeContainer> {

 override getId() {
 return "de.cau.cs.
kieler.tutorials.uppercase"
 }

 override getName() {
 return "Upper Case"
 }

 override getType() {
 return
ProcessorType.
ENDOGENOUS_TRANSFORMATOR
 }

 override process() {
 val file = model.
files.head
 model.files.clear()
 model.add(file.
fileName, file.code.
toUpperCase)
 }
}

Register the Processor

With KiCo 3.0 processors are no longer registered individually vie Eclipse extension points. Instead a
provider is created that is loaded via the and that registers all the processors service loader mechanism
of a plugin in one batch.

First, create a new class that implements the TutorialProcessors de.cau.cs.kieler.kicool.
 interface. Implement and return the registration.IProcessorProvider getProcessors()

UpperCase processor class in a list (see code listing on the right).

Now the provider needs to be registered, for KiCo to be able to find it. This is done according to the
service loader specification:

 In the META-INF folder of your plugin project create a new folder named services
There you create a new file named de.cau.cs.kieler.kicool.registration.
IProcessorProvider
In this file, the fully qualified names of all classes that implement the interface should be listed
(one per line) to make it available to KiCo.
In this case add de.cau.cs.kieler.tutorials.kico.provider.TutorialProcessors

TutorialProcessors.xtend

package de.cau.cs.kieler.
tutorials.kico.provider

import de.cau.cs.kieler.
kicool.registration.
IProcessorProvider
import de.cau.cs.kieler.
tutorials.kico.processor.
UpperCase
/**
 * Registers all tutorial
processors.
 * @author Alexander
Schulz-Rosengarten
<als@informatik.uni-kiel.
de>
 */
class TutorialProcessors
implements
IProcessorProvider {

 override
getProcessors() {
 return #[
 UpperCase
]
 }
}

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

Create a Compilation System

A processor is only one unit in the compilation and KiCo uses compilation systems composed of
processors (and other systems) for compilation. Hence, to actually use our processor we need to include
it in a system.

First, create a new folder for your systems in your plugin project, let's name it . Open the systems build.
 file in your project and tick the new folder in the Binary Build section. Otherwise your systems properties

will not be part of your jar when you deploy your plugin.

Now create a new file in the folder and open it.de.cau.cs.kieler.tutorials.uppercase.kico systems

Compilation systems are written in their own DSL. If you want to have full editor support for .kico files,
you can install the feature into your development eclipse. For this tutorial KIELER Semantics Framework
just copy the code below into the file.

de.cau.cs.kieler.tutorials.uppercase.kico

public system de.cau.cs.kieler.tutorials.uppercase
 label "Upper Case"

de.cau.cs.kieler.tutorials.uppercase

Register the Compilation System

Same as processors, systems are also registered via a provider class.

Create a new class that implements TutorialSystems de.cau.cs.kieler.kicool.
. Implement and return the ID of your plugin, as registration.ISystemProvider getBundleId()

well as () where you return a list of plugin relative paths to your kico files. In this case: getSystems syste
ms/de.cau.cs.kieler.tutorials.uppercase.kico

Then create a file named in thede.cau.cs.kieler.kicool.registration.ISystemProvider
 directory and add the qualified name of the provider class (META-INF/services de.cau.cs.kieler.

)tutorials.kico.provider.TutorialSystems

TutorialSystems.xtend

package de.cau.cs.kieler.
tutorials.kico.provider

import de.cau.cs.kieler.
kicool.registration.
ISystemProvider

/**
 * Registers all tutorial
systems.
 * @author Alexander
Schulz-Rosengarten
<als@informatik.uni-kiel.
de>
 */
class TutorialSystems
implements ISystemProvider
{

 override getBundleId()
{
 return "de.cau.cs.
kieler.tutorials.kico"
 }

 override getSystems() {
 return #[
 "systems/de.
cau.cs.kieler.tutorials.
uppercase.kico"
]
 }
}

Test your Transformation

Now that we have created and registered our new compilation system with a processor, we can start
transforming file content into upper case.

Start your runtime Eclipse and make sure your new plugin and all its dependencies are included in the
run configuration. Create a new text file with some content. Open the and vieDiagrams KIELER Compiler
w via Window Show View Other...

By default the compiler view shows the system, hence, select your system in the identity Upper Case
combo box in the toolbar of the view and click the compile button left of it. The result of the compilation
will be shown in the view.Diagram

	KiCo - Compilation Processors & System

