
KIML Layout Options

KIML defines a whole set of standard layout options that many layout algorithms support. When an option is supported by an algorithm, that algorithm may
override the option's default value. Algorithms may also provide more specialized documentation for layout options.

Contents

Overview
User Options
Programmatic Options

Detailed Documentation
The Most Important Options
Other Options

Overview
Beside a user-friendly name, layout options are defined by the following properties:

An ID to identify them.
A type. One of Boolean, String, Int, Float, Enum, EnumSet (a s over a given enumeration), or Object (a non-primitive Java object). The types et
Enum and EnumSet have to be further defined by an enumeration class. The Object type can be constricted to a certain Java class.
The kinds of graph objects the option applies to. At least one of Nodes, Edges, Ports, Labels, or Parents (nodes that have children, including the
diagram root node). Parents-applicable options affect whole graphs or subgraphs, while options with other application targets affect only single
graph elements.
An optional default value. A default value may also be provided by the layout algorithm using the option, or by the modeling application you are
using. In these cases the value given here is overridden.

Layout options can be assigned to two main categories: user options and programmatic options.

User Options

User options are those that you can see in the " " available in Eclipse if the KIML user interface is installed. That view is restricted to layout Layout View
options that are supported by the currently active layout algorithm. Furthermore, some options are visible only when the button Show Advanced Properties
is active in the view.

Option ID Type Applies to Default

Alignment de.cau.cs.kieler.alignment Enum Nodes AUTOMATIC

Aspect Ratio de.cau.cs.kieler.aspectRatio Float Parents 0.0

Bend Points de.cau.cs.kieler.bendPoints Object Edges

Border Spacing de.cau.cs.kieler.borderSpacing Float Parents

Debug Mode de.cau.cs.kieler.debugMode Boolean Parents false

Direction de.cau.cs.kieler.direction Enum Parents

Edge Routing de.cau.cs.kieler.edgeRouting Enum Parents

Expand Nodes de.cau.cs.kieler.expandNodes Boolean Parents false

Interactive de.cau.cs.kieler.interactive Boolean Parents false

Label Spacing de.cau.cs.kieler.labelSpacing Float Edges
Nodes

Layout Hierarchy de.cau.cs.kieler.layoutHierarchy Boolean Parents false

Layout Algorithm de.cau.cs.kieler.algorithm String Parents

Node Label Placement de.cau.cs.kieler.nodeLabelPlacement EnumSet Nodes
Labels

Port Constraints de.cau.cs.kieler.portConstraints Enum Nodes

Port Label Placement de.cau.cs.kieler.portLabelPlacement Enum Nodes OUTSIDE

Port Spacing de.cau.cs.kieler.portSpacing Float Nodes

Port Alignment de.cau.cs.kieler.portAlignment Enum Nodes
Parents

JUSTIFIED

Port Alignment for Northern Ports de.cau.cs.kieler.portAlignment.north Enum Nodes
Parents

UNDEFINED

Port Alignment for Souther Ports de.cau.cs.kieler.portAlignment.south Enum Nodes
Parents

UNDEFINED

Port Alignment for Eastern Ports de.cau.cs.kieler.portAlignment.east Enum Nodes
Parents

UNDEFINED

Port Alignment for Western Ports de.cau.cs.kieler.portAlignment.west Enum Nodes
Parents

UNDEFINED

Position de.cau.cs.kieler.position Object Labels
Nodes
Ports

Priority de.cau.cs.kieler.priority Int Edges
Nodes

Randomization Seed de.cau.cs.kieler.randomSeed Int Parents

Separate Connected Components de.cau.cs.kieler.separateConnComp Boolean Parents

Size Constraint de.cau.cs.kieler.sizeConstraint EnumSet Nodes

Size Options de.cau.cs.kieler.sizeOptions EnumSet Nodes DEFAULT_MINIMUM_SIZE

Spacing de.cau.cs.kieler.spacing Float Parents

Programmatic Options

Programmatic options are such that are meant to be configured exclusively through the KIML API. They should not be visible in the user interface.

Option ID Type Applies to Default

Additional Port Space de.cau.cs.kieler.additionalPortSpace Margins Nodes 0, 0, 0, 0

Animate de.cau.cs.kieler.animate Boolean Parents true

Animation Time Factor de.cau.cs.kieler.animTimeFactor Int Parents 100

Comment Box de.cau.cs.kieler.commentBox Boolean Nodes false

Diagram Type de.cau.cs.kieler.diagramType String Parents

Edge Label Placement de.cau.cs.kieler.edgeLabelPlacement Enum Labels

Edge Type de.cau.cs.kieler.edgeType Enum Edges NONE

Font Name de.cau.cs.kieler.fontName String Labels

Font Size de.cau.cs.kieler.fontSize Int Labels

Hypernode de.cau.cs.kieler.hypernode Boolean Nodes false

Layout Ancestors de.cau.cs.kieler.layoutAncestors Boolean Parents false

Maximal Animation Time de.cau.cs.kieler.maxAnimTim Int Parents 4000

Minimal Animation Time de.cau.cs.kieler.minAnimTim Int Parents 400

Minimal Height de.cau.cs.kieler.minHeight Float Nodes
Parents

0.0

Minimal Width de.cau.cs.kieler.minWidth Float Nodes
Parents

0.0

No Layout de.cau.cs.kieler.noLayout Boolean false

Port Anchor Offset de.cau.cs.kieler.klay.layered.portAnchor Object Ports

Port Index de.cau.cs.kieler.portIndex Int Ports

Port Offset de.cau.cs.kieler.offset Float Ports

Port Side de.cau.cs.kieler.portSide Enum Ports

Progress Bar de.cau.cs.kieler.progressBar Boolean Parents false

Scale Factor de.cau.cs.kieler.scaleFactor Float Nodes 1.0

Thickness de.cau.cs.kieler.thickness Float Edges 1.0

Zoom to Fit de.cau.cs.kieler.zoomToFit Boolean Parents false

Layout Output Properties

A few properties are used as additional information in the output of a layout algorithm. This information should be considered when the layout is applied to
the original diagram

Property ID Type Applies to

Edge Routing de.cau.cs.kieler.edgeRouting Enum Edges

Junction Points de.cau.cs.kieler.junctionPoints Object Edges

Detailed Documentation
This section explains every layout option in more detail.

The Most Important Options

While most layout options are used to affect how the active layout algorithm computes concrete coordinates for the graph elements, there are some layout
options that have a special role in KIML.

Layout Algorithm

The option with identifier specifies which layout algorithm to use for a graph or subgraph. The value can be either the de.cau.cs.kieler.algorithm
identifier of a layout algorithm or the identifier of a layout type. In the latter case the algorithm with highest priority of that type is applied. It is possible to set
different values for this option on subgraphs of a hierarchical graph, where a subgraph is identified by a parent node. A layout algorithm is responsible to
process only the direct content of a given parent node. An exception from this rule is made when the option is active.Layout Hierarchy

The following layout has been created by setting a force-based layout algorithm on the inner hierarchy level and a layer-based layout algorithm on the top
level.

Available Algorithms and Libraries

The KLay Project - Java implementations of standard layout approaches, augmented with special processing of graph features such as ports
and labels.
Randomizer - Distributes the nodes randomly; not very useful, but it can show how important a good layout is for understanding a graph.
Box Layout - Ignores edges, places all nodes in rows. Can be used to layout collections of unconnected boxes, such as Statechart regions.
Fixed Layout - Does not compute a new layout, but leaves all nodes and edges where they are. If the Position and Bend Points options are set
for the elements of the graph, the pre-defined layout is applied.
OGDF () - A self-contained C++ class library for the automatic layout of diagrams. The version that is shipped with KIELER is www.ogdf.net
compiled as an executable that reads files in OGML format and outputs the computed concrete layout.
Graphviz () - An open source graph visualization tool with several graph layout programs, web and interactive graphical www.graphviz.org
interfaces, auxiliary tools, libraries, and language bindings. Graphviz needs to be installed separately in order to be used within KIELER, since it
is called in a separate process using the DOT language for communication.

Predefined Layout Types

Layered - The layer-based method emphasizes the direction of edges by pointing as many edges as possible into the same direction. The nodes
are arranged in layers and then reordered such that the number of edge crossings is minimized. Afterwards, concrete coordinates are computed
for the nodes and edge bend points.
Orthogonal - Orthogonal methods follow the "topology-shape-metrics" approach, which first applies a planarization technique, resulting in a
planar representation of the graph, then compute an orthogonal shape, and finally determine concrete coordinates for nodes and edge bend
points by applying a compaction method.
Force - Layout algorithms that follow physical analogies by simulating a system of attractive and repulsive forces.

https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=328080
http://www.ogdf.net/
http://www.graphviz.org/

Circular - Circular layout algorithms emphasize biconnected components of a graph by arranging them in circles. This is useful if a drawing is
desired where such components are clearly grouped, or where cycles are shown as prominent properties of the graph.
Tree - Specialized layout methods for trees, i.e. acyclic graphs. The regular structure of graphs that have no undirected cycles can be
emphasized using an algorithm of this type.

Diagram Type

Diagram types are used to classify graphical diagrams for setting default layout option values for a set of similar diagrams. The diagram type of an element
is specified with the layout option . Layout algorithms can declare which diagram types they support well, and give a de.cau.cs.kieler.diagramType
priority value for each supported type. KIML decides at runtime which layout algorithm has the highest priority for a given diagram, so that the most
suitable algorithm is always used. Usual values for such priorities are between 1 and 10, where the highest value should only be assigned if the algorithm
is especially designed for diagrams of the respective type, or if it has proven to be very adequate for them. Lower values should be given if the algorithm is
able to draw the diagrams correctly, but with lower quality of the resulting layout.

The following diagram types are predefined:

General - This type is automatically assigned to all diagrams for which no specific type is declared. A layout algorithm that has the highest priority
on the diagram type is taken as the default algorithm when no further information on a diagram is available to KIML.General
State Machine - All kinds of state machines, automata, and activity diagrams. Examples: , UML Activity diagrams.SyncCharts
Data Flow Diagram - Actor-oriented diagrams, where connections are mostly done between of nodes. These diagrams can only be handled ports
properly by very special layout algorithms, such as those developed in the .KLay project
Class Diagram - Class diagrams such as Ecore diagrams for the or UML Class diagrams.EMF
Use Case Diagram - Use case diagrams as defined by the UML.
Unconnected Boxes - Sets of nodes that have no connections and are treated as resizable boxes. This is related to mathematical packing

. Example: Regions in .problems SyncCharts

Edge Routing

This option influences the way in which edges are routed between the nodes they connect. The following settings are available:

POLYLINE
Edges consist of one or more segments defined by a list of bend points.
ORTHOGONAL
Edges are routed orthogonally, meaning that each segment of an edge runs either horizontally or vertically.
SPLINES
Edges are routed as splines (smooth curves).
UNDEFINED
No particular edge routing style is selected. Usually this value points to the default setting of the selected layout algorithm.

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/SyncCharts
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=328080
http://www.eclipse.org/modeling/emf/
http://en.wikipedia.org/wiki/Packing_problem
http://en.wikipedia.org/wiki/Packing_problem
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/SyncCharts

1.
2.

a.
b.
c.

3.
a.
b.
c.

When used as layout option, the edge routing is set for a whole graph or subgraph, i.e. on a parent node. However, the property is additionally used for the
output of the layout algorithm in order to mark individual edges. If the edge routing assigned to an edge is anything other than SPLINES, the bend points of
that edge are interpreted with their normal meaning, i.e. straight lines are drawn between consecutive bend points. If, on the other hand, a layout algorithm
marks an edge with the value SPLINES, the bend points have to be interpreted as control points for a series of cubic splines following this procedure:

Start at the source point of the edge.
As long as there are at least three bend points left:

Draw a cubic spline segment to the third bend point with the other two bend points as control points.
Use the third bend point as start point for the next segment.
Consume the three bend points and proceed to the next segment.

Check the number of remaining bend points:
Two bend points – draw a cubic spline segment to the target point of the edge.
One bend point – draw a quadratic spline segment to the target point of the edge.
No bend point – draw a straight line to the target point of the edge.

Other Options

Additional Port Space

This option controls the usable space for ports on each side:

If the option is not set, the value of is used instead for all four components.Port Spacing

This option is only relevant if port constraints are , , or . If size constraints include , the additional port space, FREE FIXED_SIDE FIXED_ORDER PORTS
together with the port spacing and the size of ports, determines a lower bound on the node size.

Alignment

Determines the alignment of a node in relation to other nodes of the same row or column. For layer-based algorithms, for instance, this option controls how
a node is positioned inside its assigned layer.

Aspect Ratio

The aspect ratio of a drawing is the ratio of its total width to its total height. This option gives some control over that ratio, although in most cases it is only
interpreted as a hint on how to arrange multiple connected components, hence the actual aspect ratio will probably be different from what has been
specified with the option.

Comment Box

A node that is marked as comment box is treated as a label that needs to be placed somewhere. In contrast to normal node labels (modeled with a KLabel
instance), comment boxes may have connections to other nodes, as in the following example.

Hypernode

A node that is marked as hypernode has a special role in the graph structure, since all its incident edges are treated as parts of the same . hyperedge
Example: relation vertices in models.Ptolemy

Layout Hierarchy

If this option is supported and active, the layout algorithm is requested to process the full hierarchy contained in the input node. This means that instead of
executing another algorithm on each hierarchy level, all levels are arranged in a single algorithm execution.

No Layout

http://en.wikipedia.org/wiki/Hypergraph
http://ptolemy.eecs.berkeley.edu/

Elements that are marked with this option are excluded from layout. This is used to identify diagram objects that should not be regarded as graph elements.

Port Alignment

The port alignment controls how ports are distributed over their respective edge.

This option is only relevant if port constraints are , , or .FREE FIXED_SIDE FIXED_ORDER

The following settings are possible:

UNDEFINED
Defaults to .JUSTIFIED
JUSTIFIED
Distributes the ports evenly over the whole usable space (for usable space, see).additional port space
BEGIN
Places the ports at top-/leftmost position with between them.port spacing
CENTER
Places the ports centered in the usable space with port spacing between them.
END
Places the ports at bottom-/rightmost position with port spacing between them.

Port alignment can also be set as specialized options }. These options overwrite the general policy for the portAlignment.{north|south|east|west
respective side. Setting one of these to defaults it to the general port alignment.UNDEFINED

Port Anchor Offset

Since ports have a size, we need a concrete point inside the port that edges should start or end in. In KLay Layered, this is referred to as the . port anchor
By default, the center of each port is used as its port anchor, but this behavior can be overridden by setting an explicit port anchor.

In the following example, the port anchor of the left port was moved upwards, while the port anchor of the second port was moved downwards:

Port Offset

The port offset is used to specify how much space a layout algorithm should leave between a port and the border of its node. This is usually zero, but
doesn't have to be. If the offset is not defined for a given port, a layout algorithm can try to infer the offset from the port's coordinates and its node's size in
the input graph. This of course requires both properties to be set to sensible values.

Set this property if one of the following cases applies:

The port constraints on a node are set to FREE, FIXED_SIDES or FIXED_ORDER.
The port constraints on a node are set to FIXED_RATIO or FIXED_POS, and the size of the node is not fixed. (Note that this is especially true for
ports of compound nodes.)

Port Spacing

The port spacing determines how much space KLay Layered should leave between the ports of each side. This option is only relevant if the node size
depends on the ports, that is, if the size constraints include .SizeConstraint.PORTS

	KIML Layout Options

