
Timed Automata

Clocks

Clocks can be defined to gain access to real
time and specify timed transitions.

This feature requires a dynamic tick
environment to work. Then the time in all
clocks will be automatically updated and the
SCChart will request a sleep time such that it
will wake up when a timed transition will be
enabled.

scchart SimpleTimes {
 clock c

 initial state A
 if c >= 5 do c = 0 go to B

 /** Will be reached at time
T+5 */
 state B
 if c >= 10 go to C

 /** Will be reached at time
T+15 */
 final state C
}

Various annotations (for the root SCChart) can be used to modify the generated behavior.

Annotation Effect

@NoSleep Prevents declaration and calculation of sleepT.

@DefaultSleep Sets the default sleep time, requested if there is no timed transition for the active state.

@SimulateSleep Generates code that simulates the dynamic tick environment by assuming that between ticks always the requested sleep time
passes.

@IntegerClockType Switches from type float to int for the and variables and related calculations.sleepT deltaT

@ClocksUseSD Enables support for and usage of the clock variable. (experimental)concurrent hierarchical

Greedy Bounds

With timed SCCharts there might occur
situations where timing events can fall very
closely to each other. Usually a system can
not handle such events precisely. For example
one timed transition triggers a reaction that
takes some milliseconds to compute, but there
is another transition that is enable one
millisecond after the first one. The handling of
the second event will be delayed by the
computation time of the reaction. If such delay
should not happen but it is acceptable to
handle the second event a bit earlier (at time
of the first event), greedy bounds can be used.

If a disjunction of multiple timing constraints
with the same clock is specified, the dynamic
tick environment will only trigger timing events
for the latest of these bounds but will also
handle the transition if earlier bounds are
satisfied.

scchart FastAndSlowGreedy {
 region Fast {
 clock x = 0

 initial state S
 if x >= 333 do x = 0 go to S

 }
 region Slow {
 clock x = 0

 initial state S
 if x >= 999 || x >= 1000 do
x = 0 go to S
 }
}

Periodic Regions

With the keyword a region can be period x
guarded such that it will only be active every x
seconds.

Related Publications

Time in SCCharts. Alexander Schulz-Rosengarten and Reinhard von Hanxleden and Frédéric Mallet and Robert de Simone and Julien
Deantoni. In , Munich, Germany, September 2018.Proc. Forum on Specification and Design Languages (FDL ’18)

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/fdl18.pdf

Annotation Effect

@SoftReset Prevents accumulation of
clock deviations (if the
tick function is not
invoked at the exact time
w.r.t. the sleep time) by
leaving the additional
time on the clock.
Effectively, the clock is
not reset to 0 but to x -
sleepT.

@HardReset ()default

Resets the periods timer
to 0 when triggered.

@DefaultSleep 1000
scchart Motor {
 output bool motorL = false,
motorR = false

 region Left {
 @SoftReset
 period 4.2

 initial state Off
 do motorL = true go to On

 state On
 do motorL = false go to
Off
 }

 region Right {
 @SoftReset
 period 1.0

 initial state Off
 do motorR = true go to On

 state On
 do motorR = false go to
Off
 }
}

Dynamic Ticks

Dynamic Ticks are based on an extended tick environment that provides and receives deltaT sleepT.

The simulation in KIELER supports a dynamic ticks mode to test models using this feature.
In the simulation view switch mode to , see screenshot below.Dynamic

	Timed Automata

