
Dependencies and Compilation
Building and Running the Pinball Autopilot on the Raspberry Pi
The source code lies and building happens inside the folder called . For a fresh build, you need a not too old version of , a C++ pinballProject make
compiler (we only tested), an internet connection (for downloading the Kieler Compiler), the libraries and as well as the command-g++ wiringPi opencv
line tools and . The tool for mega.nz (and also) can be omitted (see below on how to compile without them), everything else mega-cmd python2 python2
except for comes pre-installed with Raspbian. For you need a 4.x version, 4.2.0 ought to work for example. Make sure to enable the opencv opencv
option that the entries for get configured. It can be built from source on the Raspberry Pi in a few hours, make sure not to use too many pkg-config
threads for compilation because of limited RAM, also perhaps increase the swap.

With all the prerequisites met, you can use the to build everything.Makefile

Command Functionality (All the builds are incremental, i.e. only happen once when the source code is unchanged.)

make same as make build_all

make build_all Build the main executable as well as the tools and .video_capture calibrate

make build Build the main executable “ ”.main

make run Build and execute the main executable.

make ...xyz Make file called “ ”, if a recipe exists. Most notably for = ...xyz ...xyz calibrate

make capture Build and execute it. This tool can only be executed on the Pi and can record a videovideo_capture
during manual gameplay which is then uploaded to mega.nz with a new numerical file-name.

make get Executes a python script that can (interactively) get a recorded video from the mega.nz folder.
Intended for getting video input files transferred to a different machine (not the Pi) for testing the image detection.

make clean Removes all generated files except for , downloaded videos and the downloaded Kieler Compiler._pi_logged_in

make clean_all Like , but without the exceptions. This will delete everything in the folder !make clean video

For instructions on how to use the , see ../calibrate World Coordinate System

Working without mega.nz (and python): On the pi, you need to create a file called (e.g. with) before calling _pi_logged_in touch _pi_logged_in make
 for the first time. On a different machine, you don’t need to do this. You cannot use or without these command-line tools.make capture make get

If future updates of or the command-line Kieler Compiler include relevant breaking changes, you might need to resolve those mega-cmd kico.jar
problems (work without or acquire a from around March 2020).mega-cmd kico.jar

Setting up the Pi for Better Real Time Performance
The program will stick its latency-sensitive threads for controlling the IO pins and for image processing to the cores 3 and 4 of the 4-core Raspberry Pi. To
ensure best real-time performance, please configure the kernel parameter (they count starting from 0) to the file anisolcpus=2,3 /boot/cmdline.txt
d reboot. This will make sure that the operating system doesn’t schedule any other tasks on those cores.

Building and Running on Any Other Linux Machine
The program can be built and partially run on other machines. There you potentially need to install all the requirements yourself. However, is wiringPi
not needed. Also don’t use a machine where the current user is called , since that would confuse the compilation flags. We’ve observed problems with a pi
too old version for , without knowing the exact lower bound, 4.2.1 is definitely new enough. Possibly needs to be installed on your machine. make python2
Compared to a Raspberry Pi, compilation of on your machine is going to be a lot more fun (way faster and no issues with too little RAM). opencv
Regarding versions, see the relevant section above; note that is needed, too, in case you don’t have that installed already.pkg-config

Running the commands works like on the Pi. Just is not available. The main program will behave differently. It will prompt you for make make capture
the name (without extension) of a video file in the folder. Make sure to get some file in there; at the time of writing this, there is a file called in the video 1
mega.nz-folder that you can get via , as well as a few more named video files that were created before we had the command.make get make capture

After choosing a video file, the program starts using the video input in “real time”; however, since things are not really real-time, the logic controller part
does not work too well. (Simulating the flow of time properly is not fundamentally a problem but something we didn’t finish implementing.) This means you
should mostly ignore the debug-printouts about ticks happening. What you can really test is the image processing / ball detection. This works better than
on the Pi, because we are providing controls for pausing or changing the playback speed. Press a key while any of the windows opened by the main
program is in focus.

Key Playback effect

<space> play/pause

https://mega.nz/cmd
https://rtsys.informatik.uni-kiel.de/confluence/display/PP18/World+Coordinate+System

+ increase playback speed ×2

- decrease playback speed ×0.5

. while paused, advance by one frame

If you recalibrate the coordinate system on the Pi, you might want to transfer the config file for the coordinate system (however there is nothing really
depending on the coordinate transformation being correct inside the image detection anyways).

The ability to compiler the whole project off the Pi allows for catching type errors etc. more quickly, since compilation on the Pi tends to be a lot slower and
also there‘s not the option to use the Kieler IDE on it (so you’d maybe also need to transfer the code). The folder contains an Eclipse pinballProject
project that can be used with Kieler. Building from the Kieler IDE still happens by invoking the Makefile. There should be a build configuration using make
included in the project. (I’m only specifying “should” since we didn’t really test the experience of importing the project into a workspace too often.)

	Dependencies and Compilation

