
Layer Sweep Crossing Minimization
Crossing minimization is hard to get right and hard to understand once written. Case in point is our layer sweep crossing minimizer, that implements layer
sweep crossing minimization in a monolithic bunch of some 1,200 lines of gloriously hard-to-understand code. (at the time of writing) A new structure is
required!

The new structure factors out much of what can possibly be factored out:

LayerSweepCrossingMinimizer is still the main class and implements the layer-sweep approach to crossing minimization. However, it does
not know anymore how to do the actual crossing minimization step for a given pair of layers. However, it implements the cross counting
algorithms, since these are not affected by the actual crossing minimization algorithm used.
An ICrossingMinimizationHeuristic is used to determine the ordering of a given set of nodes. The result is expected to adhere to any

constraints, such as node successor constraints and layout unit constraints. The usual heuristic would be the BarycenterHeuristic.
The is used by the to calculate port ranks needed to determine node barycenters, and IPortDistributor LayerSweepCrossingMinimizer
to handle the final port distribution. The standard implementation is the . We're planning to add a NodeRelativePortDistributor SimplePor

 as well that calculates port ranks as KLoDD did back in the day.tDistributer
If a heuristic doesn't know how to handle constraints, it can make use of an to resolve any constraints after it has IConstraintResolver
determined an initial node ordering. The standard implementation is the , which implements a constraint ForsterConstraintResolver
resolving heuristic proposed by Michael Forster.
NodeGroups are used by the to encapsulate sets of nodes contained in a single compound node, CompoundGraphLayerCrossingMinimizer
to treat them as an atomic group with fixed ordering.

	Layer Sweep Crossing Minimization

