
Object Orientation
NEW IN 1.1

Inheritance
Classes

Class Modeling
Methods

Code Effects
Generics
Host Classes
Enums

Inheritance
SCCharts support inheritance, similar to the
concept of referenced SCCharts (macro
expansion).

Each root state can extend multiple base
states (since the name super states is already
used) by listing them after the extends
keyword.

Such a state will inherit all declarations, action
and regions of the base states. If conflicts
arise or a state has a cyclic inheritance
hierarchy, a warning will be displayed. If a
state is contained multiple times in the
inheritance hierarchy its content will inherited
only once.

Declarations can have the keyword to private
prevent extending SCCharts from accessing
these variables.

Root-level regions of base states can be
overridden with the keyword and override
consequently replace the behavior by the new
definition. Anonymous regions (defined
without an ID) cannot be overridden.

Regions can also be references similar to
states by using the keyword. If the is
reference should refer to the implementation
in the base state, the keyword must be super
used.

Related Publications

Towards Object-Oriented Modeling in SCCharts. Alexander Schulz-Rosengarten and Steven Smyth and Michael Mendler. In Proc. Foru
 , Southampton, UK, 2019.m on Specification and Design Languages (FDL ’19)

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/fdl19.pdf

scchart MotorWithButton
 extends ButtonBehavior,
MotorBehavior {

 override region HandleMotor {
 suspend if !buttonPressed

 region is super.HandleMotor
 }
}

scchart MotorBehavior {
 output int motorRotation

 const int motorRotationMax =
16
 entry do motorRotation = 0

 region HandleMotor {
 initial state Increment {
 during do motorRotation++
 } if motorRotation ==
motorRotationMax
 do motorRotation = 0
 abort to Increment
 }
}

scchart ButtonBehavior {
 input float buttonPosition

 bool buttonPressed = false
 private const float threshold
= 0.5

 region HandleButton {
 initial state Released
 if buttonPosition <
threshold
 do buttonPressed = true
 go to Pressed

 state Pressed
 if buttonPosition >=
threshold
 do buttonPressed = false
 go to Released
 }
}

Classes
Class declarations allow to define hierarchical
data structures. They may contain variable
and method declarations as members. This
includes inner class declarations.

In SCCharts, variables of a class type are
statically instantiated. Hence, read/write
access is only permitted on members.

Note there are also declarations that struct
are a subset of class declarations since they
prohibit the optional declaration of methods.

scchart CounterApplication {

 output int O

 class Counter {
 private int counter

 void increment() {
 counter++
 }
 void decrement() {
 counter--
 }
 int getValue() {
 return counter
 }
 } counter

 immediate during do O =
counter.getValue()

 initial state A {
 during do counter.
increment()
 }
 if counter.getValue() >= 5
 go to B

 final state B

}

Class Modeling

As an alternative to class declarations,
classes can also be modeled using SCCharts.
Every SCChart, that has no input or output
variables can be used as a class definition.
The most important advantage is that you can
use inheritance in your class design. It is also
possible to declare variables with a protected
visibility. Furthermore, SCCharts now can
define methods in addition to variables and
regions, that might be helpful even if the
SCChart is not used as an class definition.

Use declarations, as in SCCharts' ref
Dataflow, to declare SCCharts-based classes.
Same as class declarations these classes are
statically instantiated for each variable. All
regions in the SCCharts class instances will
immediately start when the scope of the
variable is entered.

import controlled-counting-
counter

scchart TwoCounterApplication {
 input bool toggle
 output int O1 = 0, O2 = 0

 ref ControlledCountingCounter
counter1, counter2

 immediate during do O1 =
counter1.getValue()
 immediate during do O2 =
counter2.getValue()

 region {
 initial state First {
 entry do counter1.start()
 exit do counter1.stop()
 } if toggle
 go to Second

 state Second {
 entry do counter2.start()
 exit do counter2.stop()
 } if toggle
 go to First
 }
}

scchart
ControlledCountingCounter
extends CountingCounter {
 private bool counting = false

 public method start() {
 counting = true
 }
 public method stop() {
 counting = false
 }

 override region Counting {
 initial state Waiting
 immediate if counting go
to Counting

 state Counting {
 region Counting is super.
Counting
 } if !counting abort to
Waiting
 }
}

scchart CountingCounter extends
Counter {
 region Counting {
 initial final state Counting
 do increment()
 go to Counting
 }
}

scchart Counter {
 private int counter

 method increment() {
counter++ }
 method decrement() {
counter-- }
 method int getValue() {
return counter }
}

Methods

Methods can be declared in classes, states
and regions. They can be invoked in
expressions, effects on transitions, and entry
/exit/during actions w.r.t. scoping and visibility.
Methods can take parameters and return a
value. They can also access any variable in
their scope (enclosing states/classes).

Method bodies contain imperative immediate
code sections consisting of a restricted set of
SCL (assignments, method calls, labels,
gotos, return statements, if/else statements,
and for or while loops).

scchart ForLoop {
 output int O = 0

 method int sumTo(int limit) {
 int sum = 0
 for (int i = 0; i < limit;
i++) {
 sum += i
 }
 return sum
 }

 region {
 initial state A
 do O = sumTo(10)
 go to B

 final state B
 }
}

To handle method calls the compiler usually
inlines the body. Hence, each method call acts
as a macro expansion. However, since the
netlist-based approach does not support loops
it uses a different strategy. If the method body
contains loops or is rather long it will not be
inlined but kept as a function even in the
generated code. As a consequence, this
approach cannot handle method calls in a
concurrent context that require interleaving
because without inlining the method calla are
considered atomic. Hence, some programs
might be rejected by the compiler. You can
annotate method declarations with to @inline
advice the compiler to inline this method.
The priority-based approach will always inline
all method calls.
You can influence the default handling of
methods in a compilation system by setting
the respective compiler properties (see Method

)Processor

Code Effects

Code effects are a shortcut notation for
anonymous parameter-less method calls in
effects of transitions and entry/exit/during
actions.

Code effects follow the same rules as method
bodies.

scchart CodeEffects {
 output int O[3]

 entry do {
 O[0] = 1;
 O[1] = 2;
 O[2] = 3;
 }

 initial state A {
 int i = 1
 during do {
 O[0]++;
 O[1] += 2;
 O[2] *= i;
 }
 }
 if O[0] > 5
 do {
 O[0]++;
 if (O[2] > 10) {
 O[2] *= 10;
 }
 } go to B

 final state B
}

Generics

COMING SOON

Host Classes

Class declarations also allow more advanced
object oriented host code integration. Using
the keyword, the class will be treated as host
a host code type. The declaration allows to
mimic the objects API with fields and methods
by defining members. These members do not
affect the code generation since the host class
will be used directly from the host languages.
However, in the SCChart itself this allows
proper oo access to the host object.

Host classes can be augmented by
Scheduling Directives that will affect the
ordering of method calls in the SCChart.

#resource includes external files in
the compilation and simulation of
SCCharts.

#hostcode allows to insert host
code above the generated code.

https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/semantics/browse/plugins/de.cau.cs.kieler.scg/src/de/cau/cs/kieler/scg/processors/MethodProcessor.xtend
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/semantics/browse/plugins/de.cau.cs.kieler.scg/src/de/cau/cs/kieler/scg/processors/MethodProcessor.xtend

Note that the this host class integration is not
limited to Java, since host structs can be used
for C. Additionally, the generated C code is
usually c++ compatible. A struct in C used as
a host variable is expected to be defined as
typedef not a named struct.

counter.c
counter.h
counter-application-c.sctx

#resource "Counter.java"

scchart HostCounterApplication {

 input bool CountUp
 output int O

 host class Counter {
 void increment()
 void decrement()
 int getValue()
 } counter

 region {
 initial state A ""
 if CountUp do counter.
increment();
 O = counter.
getValue() go to A
 if !CountUp do counter.
decrement();
 O = counter.
getValue() go to A
 }
}

class Counter {
 private int value = 0;

 public void increment() {
 value++;
 }
 public void decrement() {
 value--;
 }
 public int getValue() {
 return value;
 }
}

#hostcode "import java.util.
List;"
#hostcode "import java.util.
LinkedList;"

scchart UsingJavaList {

 output string info = "[]"
 int size = 99

 host class "List<Integer>" {
 private schedule
{commuting, commuting} order
 bool add(int v) schedule
order 0
 int size() schedule order 1
 string toString() schedule
order 1
 } list = `new LinkedList()`

 during do list.add(size);
list.add(size + 1)
 during do size = list.size()
 during do info = list.
toString()
}

Enums

UPCOMING 1.3 (NIGHTLY)

Even if enumerations are not a part of object
orientation, they are added to SCCharts using
the same object principle and notation.

Syntax and usage is inspired by Java rather
than C, especially w.r.t. scoping.

An declaration declares the enum
enumeration itself not a variable of this type (c.
f. static instantiation of classes). A ref
declaration then creates a variables that can
hold enum values.

To access an enum type declared in a
different SCChart the accessor can scchart
be used to access the declaration (see
example HostEnum)

scchart SimpleEnum {

 enum Bit { ZERO, ONE }

 ref Bit b = Bit.ZERO

 initial state A
 do b = Bit.ONE go to B

 state B
 if b != Bit.ZERO go to C

 final state C
}

https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/65667658/counter.c?version=1&modificationDate=1623141639000&api=v2
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/65667658/counter.h?version=1&modificationDate=1623141642000&api=v2
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/65667658/counter-application-c.sctx?version=1&modificationDate=1623141657000&api=v2

The transformation will completely remove
enumerations and will replace them by integer
values. Hence, enumeration can be
considered and alternative to named
constants.

An enumeration can be declared as host enum
requiring it to be present in the host language.

scchart SimpleEnum {

 ref EnumDecl.Bit b = scchart
(EnumDecl).Bit.ZERO

 initial state A
 do b = scchart(EnumDecl).Bit.
ONE go to B

 state B
 if b != scchart(EnumDecl).
Bit.ZERO go to C

 final state C
}

scchart EnumDecl {
 enum Bit { ZERO, ONE }
}

#hostcode-java-inner "enum Bit
{ZERO,ONE}"
#hostcode-c-header "enum Bit
{ZERO,ONE};"

scchart HostEnum {
 host enum Bit { ZERO, ONE }

 ref Bit b = Bit.ZERO

 initial state A
 do b = Bit.ONE go to B

 state B
 if b != Bit.ZERO go to C

 final state C

}

	Object Orientation

