Developing for KEITH or LS

® Starting the Language Server (LS)

® Register start hook (Eclipse)
® Language Registration
® Bindings
® Starting and connecting
Connection via socket
Connection via stdin/stdout

® Developing a LS extension

Register LanguageServerExtensions (ServiceLoader Example)
Register an extension (on server side)
Server Client communication interface
Register and calling an extension (on client side)
How to make a new package for KEITH
® What is in the src directory?
How to write a widget
How to make a new module for sprotty (see actionModule, ...)

®* How to use (Kieler)ServiceLoader

One the server side xtext is used to provide a language server. On the client side the Theia framework is used to communicate with it. This guide is for
KIELER developers who want to build functionality in form of language server extensions for KEITH and frontend developers for KEITH that want to
know how to communicate with the LS.

Starting the Language Server (LS)

This part of the guide covers the server side development for KEITH, the language server (LS). It is advised to have a look at the existing

implementation in the language.server plugin.

Register start hook (Eclipse)

Currently the LS is an eclipse application and it has to be started as one. To do this the Manifest.mf in the META-INF folder of your language server
plugin has to be changed. In the extensions tab a new extension point for org.eclipse.core.runtime.applications has to be created. This extension

points maps to your start class of your language server, which has to be an IApplication that implements a start method.

“ Extensions

All Extensions

Define extensions for this plug-in in the following section.

13,58 Extension Element Details

(type Filter text

class*: [de.cau.cs.kieler.language.server.LanguageServer

= s=org.eclipse.core.runtime.applications Add...

¥ |x] (application)

Remove

B LanguageServer (run)

This start class should somehow distinguish between connecting via socket and connecting via stdin/out.

Language Registration

Language that are registered here are always xtext languages.

Register languages that are defined in the semantic

Since we are in the semantics repository we can use java ServiceLoader to add new ILSSetups, which register a language.

Set the properties of 'run’ Required fields are denoted by '*'.

OH%®

| | Browse...

interface |LSSetup {
def Injector doLSSetup()
}

cl ass SCTXLSSetup inplenents |LSSetup {
override doLSSetup() {
return SCTXI deSet up. doSet up()

}

A language that wants to be included in the LS can implement this interface. Registering SCTXLSSetup via ServiceLoader allows to register all
available languages like this:

for (contribution: KielerServiceLoader.|oad(lLSSetupContribution)) {
contribution. LSSet up. doLSSet up()
}

Register that are defined outside of the semantic

Have a look at one of the LSSetups defined in the semantic.

Bindings
Bindings for the injector created by createLSModules and why they are needed:

the KeithServerModule bind all standard stuff

if we start via stdin/out, the ServerLauncher has to be bound to the LanguageServerLauncher

we have to bind a ResourceRegistry and our own WorkspaceConfigFactory that allows to open a folder without xtext getting involved
all bindings for the KGraphDiagramModule and KGraphDiagramServerModule are done to have a working diagram server

Starting and connecting
The following things are done via the LanguageServer class on startup of the LS:
® port and host argument are read. This decides whether the LS starts via socket or stdin/out
® socket
® call bindAndRegisterLanguages (this loads all languages, languages defined in the pragmatic have to be added manually, all other
ones are added via the KielerServiceLoader (see ILSSetup))
® injector is created via createLSModules
® anew socket is opened, buildAndStartLS is called (gets all ILanguageServerContribution via KielerServiceLoader and starts LS)
® stdin/out
® main of LanguageServerLauncher is called
¢ this calls bindAndRegisterLanguages

® Jaunch of ServerLauncher is called with injector created by createLSModules
® this calls the start method which calls buildAndStartLS

Connection via socket

You have to specify a port and an optional host as VM arguments to start the LS via socket.

Currently the LS is an eclipse application, therefore you create a new Eclipse Application run configuration in eclipse.

In the Mai n tab, section product to run select Run an application and select de. cau. cs. ki el er. | anguage. server. LanguageSer ver.

In the ar gunent s tab, section VM ar gunent s add - Dhost =l ocal host - Dport =5007 to the arguments. You might want to specify Xnx here too,
if you plan to use bigger models (such as the railway controller).

Running this eclipse application requires a Theia client that tries to connect via socket to an LS running on port 5007.
Connection via stdin/stdout

Is only relevant for the product. Requeires to start to LS without an host or port Vm argument. Cannot be debugged.

Developing a LS extension

We use java ServiceLoader to register stuff. Here is a small example how a LanguageServerExtension is registered via a ServiceLoader and how it is
used:

Register LanguageServerExtensions (ServiceLoader Example)

This is a LanguageServerExtension. It has to be used in the de.cau.cs.kieler.language.server plugin. Since the language-server-plugin should not
have dependencies to all plugins that define a language server extension dependency inversion is used to prevent that. A ServiceLoader via
dependency inversion does exactly that.

Here is such an example extension, the KiCoolLanguageServerExtension:

package de. cau. cs. ki el er. ki cool . i de. | anguage. server

/**

* @uthor really fancy name

*

*/

@i ngl et on
cl ass Ki Cool LanguageSer ver Ext ensi on i npl enents | LanguageSer ver Ext ensi on, CommandExt ensi on,
| Languaged i ent Provi der {

/1 fancy extension stuff

Kei t hLanguaged i ent client
/'l A language server extension nust inplement the initialize nethod,
/1 it is however only called if the extension is registered via a | anguage.
/1 This should never be the case, so this is never called.
override initialize(lLanguageServerAccess access) {
t hi s. | anguageServer Access = access

}

/1 inplenment |Languaged ientProvider
override setlLanguageC ient(LanguageCient client) {
this.client = client as KeithLanguaged i ent

}

/1 inplement |Languaged ientProvider
override getlLanguageCient() {
return this.client

}

The CommandExtension defines all commands (requests or notifications) that are send from client to server. An example how this looks like can be
seen in the code snippet Example CommandExtension is an example how to define a server side extension interface.

The ILanguageClientProvider should be implemented by an extension that plans to send messages from the server to the client.

This language server extension is provided by a corresponding contribution, which is later used to access it:

package de. cau. cs. ki el er. ki cool . i de. | anguage. server

i nport com googl e.inject.|njector
import de. cau. cs. ki el er. | anguage. server. | LanguageSer ver Contri buti on

/-k*
* @ut hor really fancy name
*
*/
cl ass Ki Cool LanguageServer Contri buti on inplenments |LanguageServerContribution {

override getlLanguageServer Ext ensi on(Injector injector) {
return injector.getlnstance(Ki Cool LanguageSer ver Ext ensi on)

}

Create a file called de.cau.cs.kieler.language.server.ILanguageServerContribution in <plugin>/META-INF/services/ (in this example this is de.cau.cs.
kieler.kicool.ide). The name of the file refers to the contribution interface that should be used to provide the contribution. The content of the file is the
following:

de. cau. cs. ki el er. ki cool . i de. | anguage. server. Ki Cool LanguageSer ver Contri buti on

This is the fully qualified name of the contribution written earlier.

The language server uses all LanguageServerExtensions like this:

var ilLanguageServer Ext ensi ons = <Cbj ect >newAr r ayLi st (1 anguageServer) // list of all |anguage server
ext ensi ons
for (Ise : KielerServicelLoader.!| oad(lLanguageServerContribution)) { // dynamically load all contributions to
add LS extensions
i LanguageSer ver Ext ensi ons. add(| se. get LanguageSer ver Ext ensi on(i nj ector))

The resulting list of implementions is used to add the extensions to the language server.

@ The interfaces used for dynamic registration are in the semantics repository. If you define a pragmatics LS extension you have to statically
add these extensions to your list.

Register an extension (on server side)

See example above for ServiceLoader and initial stuff.

What is still missing are the contents of the CommandExtension implemented by the KiCoolLanguageServerExtension. This is an interface defining all
additional commands. The CommandExtension looks like this.

Example CommandExtension

package de. cau. cs. ki el er. ki cool . i de. | anguage. server

inmport java.util.concurrent. Conpl etabl eFuture
inport org.eclipse.lsp4j.jsonrpc.services.JsonRequest
inmport org.eclipse.lsp4j.jsonrpc.services.JsonSegnent

| *x*

* Interface to the LSP extension conmands
*

* @uthor really fancy name
*
*/
@sonSegnent (' kei th/ ki cool ")
interface ConmmandExt ension {

/**
* Conpiles file given by uri with conpilationsystem given by comrand.
*/
@sonRequest (' conpile')
def Conpl et abl eFut ur e<Conpi | ati onResul ts> conpile(String uri, String clientld, String command, bool ean
i npl ace);

/**

* Build diagramfor snapshot with id index for file given by uri. Only works, if the file was already
conpi | ed.

*/

@sonRequest (' show)

def Conpl et abl eFuture<String> show(String uri, String clientld, int index)

[*x*

* Returns all conpilation systens which are applicable for the file at given uri.
*

* @aramuri URl as string to get conpilation systens for
* @aramfilter bool ean indicating whether conpilation systenms should be filtered
*/

@sonRequest (' get-systens')

def Conpl et abl eFut ur e<bj ect > get Systens(String uri, boolean filterSystens)

This defines three json-rpc commands: "keith/kicool/compile”, "keith/kicool/show", "keith/kicool/get-systems". These are implemented in
KiCoolLanguageServerExtension.

Server Client communication interface

Not only messages from client to server but rather messages from server client might be needed.

Messages that can be send from server to client are defined in the KeithLanguageClient:

Example KeithLanguageLCient

[*x*

* LanguageC ient that inplenents additional nethods necessary for server client communication in KEI TH
*

* @uthor really fancy name

*
*/
@sonSegnent ("kei th")
interface KeithLanguageC ient extends Languagedient {

@sonNot i fication("kicool/conpile")
def void conpile(Object results, String uri, boolean finished);

@sonNot i fication("kicool/cancel -conpilation")
def void cancel Conpi |l ati on(bool ean success);

/1 Not only notifications, but also server client requests should be possible, but currently there

is no use case for that.

}

These messages can be caught on the client side by defining the message that is caught like this:

Client side message definition

export const snapshot Descri pti onMessageType = new NotificationType<CodeCont ai ner, voi d>('keith/kicool
/compile');

This message type is bound to a method that should be called whenever the client receives such a message.

Client side message registration

const I dient: |LanguageCient = await this.client.|anguaged ient
I Cient.onNotification(snapshotDescripti onMessageType, this.handl eNewSnapshot Descri ptions. bi nd(this))

The method should receive all parameters specific in the KeithLanguageClient interface on the serevr side.

Such a notification from server to client is send like this:

Server side message sending

future.thenAccept ([

/1 client is the KeithLanguageCient registered in a LanguageServerExtension that inplenents a
| Languaged i ent Provi der

/1 conmpile is the conmand defined in the KeithLanguaged ientlnterface

client.conpil e(new Conpil ati onResul ts(this.snapshot Map.get(uri)), uri, finished)
D

Register and calling an extension (on client side)

Language server extension do not have to be registered on the client side. It is just called.

You can send a request or a notification to the language server like this:

Client side message sending

const Iclient = await this.client.|anguaged ient

const snapshotsDescri ptions: CodeContainer = await |client.sendRequest ("keith/kicool/conpile", [uri,

Kei t hDi agr amvanager . DI AGRAM TYPE + ' _sprotty', conmmand,

this. conpil erWdget.conpilelnplace]) as CodeContai ner
/1 or via a thenable
client.languageCient.then(lCient => {

| dient.sendRequest ("keith/Kkicool/conpile").then((snapshotsDescriptions: CodeContainer) => {

/1 very inportant stuff
}

/1l await is preferred, since it is shorter.

In this example client is an instance of a language client. It is usually injected like this:

Client side LanguageClientContribution injection

@ nj ect (Kei t hLanguageCl i ent Contri bution) public readonly client: KeithLanguaged ientContribution

constructor(
/1 other injected classes that are relevant for the constructor

) |

/1 constructor stuff

How to make a new package for KEITH

Clone the KEITH repository.

Open the keith folder in VSCode. You are know in the keith directory in VSCode (see picture an the right).

Create a new folder called keith-<your extension name>.
Copy a package.json, a tslint.json, a tsconfig.json, and a src folder into the folder.
Add keith-<your extension name> to workspaces in the top level package.json.

Add "keith-<your extension name>": "<your-version (e.g. 0.1.0)>" to the dependencies in the top level
package.json and the product package.json files (e.g. the package.json in keith-app).

What is in the src directory?
The source directory has three optional subfolders.
® node: Holds all backend related classes. This does currently only exist in the keith-language
package.
® common: Holds general helper methods, string constants and some data classes

® browser: Holds all widgets, contribution for commands, menus, and widgets, and the frontend-
extension.

The frontend-extension

This binds all necessary classes. Look at existing frontend extension in KEITH or Theia to see how this is
done.

More examples for stuff

See Theia examples.

How to write a widget

There are different kinds of widgets that are commonly used in KEITH or in existing Theia packages.

® BaseWidget: Very basic

4 keith
b .vscode

b dist

b keith-app-electron

b keith-diagram

b keith-diagram-options
b keith-kicool

b keith-language

b keith-move

b keith-simulation

b keith-sprotty

b lib

4 .gitignore

I' appveyoryml

B changelniForLs.sh

© electron-builder.env

I' electron-builder.yml
lerna-debug.log
lernajson
package.json

B theia-version.sh
tslink json

L]

ack.config.js

vin-changelniForLs.bat
arn-error.log

4 yarn.lock

® ReactWidget: A render method has to be implemented that redraws the widget on demand. Additionally several on* event methods can

beimplemented.
* TreeWidget: Extends the ReactWidget and draws the contents of the widget in a tree view.

If a widget has a state it should implement the StatefulWidget interface, which allows to imlement a store and restore method.

https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse/keith-language
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse/keith-language
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse
https://github.com/theia-ide/theia/tree/master/packages
https://www.theia-ide.org/doc/Commands_Keybindings.html
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse
https://github.com/theia-ide/theia/tree/master/packages

Look at examples in KEITH or Theia to see how this is done.
How to make a new module for sprotty (see actionModule, ...)

WIP

How to use (Kieler)ServiceLoader

Classes that are provided via a ServiceLoader have a contribution that provides them. This contributions share a common interface lets call it | St uf f C
ontri buti on. A specific StuffContribution (it provides stuff) is the ImportantStuffContribution.

/1 defined in some comon package
interface |IStuffContribution {

abstract def IStuff getStuff()
}
/1 defined in the package that holds InportantStuff
class InmportantStuffContribution inplenents |StuffContribution {
override getStuff() {
return new | nportant Stuff()

}

The ServiceLoader has to know that some plugin provides an implementation for IStuffContribution. Therefore, a folder named services is added next
to the corresponding MANIFEST.MF.

In the services folder a file named the same as the fully qualified name of the implemented interface is added. Here this one is called de. cau. cs.
ki el er. basi c. package. | St uf f Contri buti on.

The file holds the fully qualified names of all implementations of this interface:

de. cau. cs. ki el er. i nportatn. package. | nport ant St uf f Contri buti on

Now you can access implementation of IStuff as follows:

var stufflList = newArrayli st
for (stuffContribution : KielerServicelLoader.|oad(lStuffContribution)) { // dynanmically load all
contributions that provide stuff

/1 Add all stuff to a list of stuff

stuf fList.add(stuffContribution.getStuff())

	Developing for KEITH or LS

