
The Use of Complex Stateflow-Charts with KIEL—
An Automotive Case Study

Steffen Prochnow and Reinhard von Hanxleden
Real-Time and Embedded Systems Group, Dept. of Computer Science

Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
{spr, rvh}@informatik.uni-kiel.de

Abstract: Modeling systems with Statecharts has become standard practice in the de-
sign of reactive embedded devices. However, the modeling of realistic applications with
the paradigms established so far often results in models that are difficult to comprehend
and maintain, which severely compromises their practical use. The Kiel Integrated Envi-
ronment for Layout (KIEL) is a modeling environment for the exploration of alternative
editing and representation paradigms. We here report on an adaptation of KIEL to MAT-
LAB Simulink/Stateflow, and on an automotive case study.

1 Introduction

A commonly touted advantage of graphical formalisms such as Statecharts is their intuitive
use and the good level of overview they provide. Graphical models may be convenient to
browse; however, compared to textual entry, they are rather cumbersome to construct and
maintain, as designers spend a significant fraction of their time with tedious drawing and
layout chores.

The Kiel Integrated Environment for Layout (KIEL) environment has been designed as a
generic framework for the efficient model-based design of complex systems. In this paper
we report on the experiences gained from adapting KIEL to MATLAB Simulink/Stateflow1,
and present a case study using an application from the automotive sector.

The rest of the paper is organized as follows. The remainder of the introduction presents
related work, including further details on KIEL. Section 2 compares KIEL and the Stateflow
environment and describes how the two are interfaced. The automotive application that is
the basis of the case study has originally been developed with MATLAB Simulink/Stateflow;
Section 3 discusses the experiences with importing and simulating this application in KIEL.
The paper concludes in Section 4.

1.1 Related Work

Castelló et al. [CMT02] have developed a framework for the automatic generation of layouts
of Statecharts based on floor planning. Harel and Yashchin [HY02] have investigated the

1http://www.mathworks.com/products/stateflow/



optimal layout of blobs, which are edge-less hierarchical structures that correspond to State-
charts without transitions. Rational Rose2 supports the modeler by re-arranging the manually
constructed Statechart. The underlying layout algorithm uses horizontal layers to place states
of upper hierarchy level (inner states will not be touched) and performs a middle affine
placement of polygon or spline curve transitions. KIEL offers several layout mechanisms,
some employ the GraphViz [GN00] layout framework, others are developed from scratch.

Köth and Minas [KM01] have applied “semantic focus-and-context” representations to visu-
alize complex class diagrams with DIAGEN. Our approach of dynamic Statecharts [PvH06]
is an extension of this concept, which provides dynamically changing views on a System
under Development (SUD) according to the simulation state.

In addition to the model import capabilities, as the Stateflow import mechanism used in our
case study, KIEL provides a built-in, structure-based editor, and can also synthesize graphical
models from textual descriptions [PTvH06, PvH07]. A customizable checking framework
checks for compliance to robustness rules [PSBvH06]. Apart from the interface to Stateflow
described here, KIEL currently supports the Statechart dialects of Esterel Studio and the
UML via the XMI format, as, e. g., generated by ArgoUML3.

2 Interfacing KIEL and Stateflow

Stateflow is a commercial modeling environment that is routinely used by control engineers
to design and simulate discrete controllers. It provides the ability to model hierarchical
parallel Statecharts. The Stateflow model can be simulated within the MATLAB framework
for a desired time period, which in effect steps through the state machine for a specific input
trace. The responses from the state machine can be plotted graphically and the trajectory of
the state machine can be observed visually, as well as recorded for postanalysis.

We have implemented an interface that (1) translates the KIEL representation of Statecharts
into a Stateflow model, (2) translates the Stateflow model into KIEL representation of State-
charts, and (3) controls the non-interactive simulation of Stateflow models using KIEL. Our
interface is built on the MATLAB API, using the MATLAB scripting language (M-file) for
procedurally creating and manipulating Stateflow models. In doing so KIEL works as a
wrapper for the simulation with Stateflow, which works in the background.

3 An Automotive Case Study

The application that served as our case study is a window wiper controller. It was kindly
provided by Daimler Chrysler AG, Research REI/SM, and is an example without any ref-
erence to a production design. The model describes a complete wiping system and allows
sensor-triggered wiping, interval wiping, wiping interruption due to engine starter activity,
etc. It consists of 36 States and pseudo states (nine of them are hierarchical OR states, and
one is an AND state) and 82 transition. The chart is distributed to eleven sub-charts. Figure 1

2http://www-306.ibm.com/software/de/rational/design.html
3http://argouml.tigris.org/



Figure 1: Change of hierarchy level using Stateflow. The upper view provides the
top level view of a Statechart. It shows two simple states, and the hierarchical state
Wischer betriebsbereit (“wiper operational”). To show its inner states, the modeler has to
double-click with the mouse on the state’s border, and the view on the inner states (lower
window) replaces the top-level view.

presents exemplary views of the original model, using the Stateflow modeling environment.
For comparison, Figure 2 shows a screen shot of the model imported in KIEL.

In general the automatic Statechart layout and the dynamic simulation produced satisfying
results. Dynamic Statecharts reduce the size compared to a manual layout. The dynamic
Statecharts allow to view comparatively large models in full without losing the detail. Of



Figure 2: The KIEL view on the same system as in Figure 1 during simulation. The au-
tomatic Statechart layouter expands the hierarchy levels. During the simulation the inner
states of inactive hierarchical states are hidden. The KIEL tool provides three alternative
views on the system: a tree structure, the graphical Statechart browser, and an alternative
textual representation.

course, there comes a point when details become unreadable, and the automotive example
was complex enough to contain such configurations as well. However, the full-model dy-
namic Statechart view provided a very valuable overview of where the “hot spots” of a model
were during simulation, which is difficult with the traditional Statechart animation approach.

To assess the efficiency of KIEL’s automated layout mechanisms, we have instrumented it
to measure computation times. The size of the model did not pose any difficulties, the layout
computation was always well in the sub-second range. However, in contrast to academic
examples, the window wiper example exposed some weakness of the resulting layouts, in
particular when long labels were present. Due to transition labels that consist of more than
20 characters and often embrace more than three lines, the element placement was often
unsatisfying and the resulting chart was difficult to read. We therefore consider to make
the visibility of labels optional. We also observed that especially states that are arranged
around a central Statechart element produce long transitions. We suppose that another lay-
out method, e. g., a force directed layout approach like a spring embedder, would reduce
transition lengths.



4 Conclusions and Future Work

Overall, the generic concept and infrastructure of KIEL have proven to be very flexible, the
adaptation of the KIEL environment to Stateflow did not pose particular problems. Due to
the fairly complex semantics of Stateflow we have opted to not build an internal simulator,
as had been the case for Safe State Machines, but instead to build a gateway to the original
Stateflow simulator. To that end, the powerful and reasonably well documented Stateflow
API has been helpful.

The automotive case study has been very valuable for validating the KIEL/Stateflow adap-
tation, and for assessing the efficacy of KIEL as a platform for modeling complex reactive
systems. As the application has not been developed within KIEL, but rather imported from
another tool, we did not get to investigate the effectiveness of KIEL’s built-in editing capa-
bilities, but we gained insights on the layout and simulation capabilities. Overall, we did see
our original hypotheses on the value of automated layout and adaptive views during simula-
tion confirmed. However, we also identified several areas for further improvements, such as
making the view management more flexible.

References

[CMT02] Rodolfo Castelló, Rym Mili, and Ioannis G. Tollis. A Framework for the Static and
Interactive Visualization for Statecharts. Journal of Graph Algorithms and Applications,
6(3):313–351, 2002.

[GN00] Emden R. Gansner and Stephen C. North. An Open Graph Visualization System and its
Applications to Software Engineering. Software—Practice and Experience, 30(11):1203–
1234, 2000. http://www.research.att.com/sw/tools/graphviz/GN99.
pdf.

[HY02] D. Harel and G. Yashchin. An Algorithm for Blob Hierarchy Layout. The Visual Com-
puter, 18:164–185, 2002.

[KM01] Oliver Köth and Mark Minas. Structure, Abstraction and Direct Manipulation in Diagram
Editors. In M. Hegarty et. al., editor, LNAI 2317. Springer Verlag, 2001.

[PSBvH06] Steffen Prochnow, Gunnar Schaefer, Ken Bell, and Reinhard von Hanxleden. Analyzing
Robustness of UML State Machines. In Proceedings of the Workshop on Modeling and
Analysis of Real-Time and Embedded Systems (MARTES’06), held in conjunction with
the 9th International Conference on Model Driven Engineering Languages and Systems,
MoDELS/UML 2006, Genua, October 2006.

[PTvH06] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Synthesizing Safe State
Machines from Esterel. In Proceedings of ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa, Canada, June
2006.

[PvH06] Steffen Prochnow and Reinhard von Hanxleden. Comfortable Modeling of Complex Re-
active Systems. In Proceedings of Design, Automation and Test in Europe (DATE’06),
Munich, March 2006.

[PvH07] Steffen Prochnow and Reinhard von Hanxleden. Statechart Development Beyond WYSI-
WYG. In Proceedings of the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELS’07), Nashville, September 2007.


