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Abstract

The Kiel Esterel Processor architecture provides direct
hardware support for reactive control flow, which keeps ex-
ecutables fast and compact and minimizes power consump-
tion.

1. Introduction

Embedded real-time systems must react continuously to
stimuli from their environment, which makes their control-
flow patterns differ from those of traditional systems that
transform a given input to an output at their own pace. Reac-
tive processors provide direct hardware support for reactive
control flow, which keeps executables fast and compact and
results in lower power consumption than with traditional ar-
chitectures [8]]. The Kiel Esterel Processor (KEP) [7] is a
reactive processor that has an instruction set derived from
the Esterel language [1]], which is a synchronous language
designed for reactive programming. In particular, the KEP
directly provides concurrency and preemption primitives,
with deterministic behavior and predictable Worst Case Re-
action Time (WCRT) [6].

This exhibit presents an FPGA-based implementation of
the KEP, which has proven very competitive to classical
processor designs. For a standard suite of Esterel bench-
marks, the code size is typically an order of magnitude
smaller than that of the MicroBlaze, a 32-bit COTS RISC
processor core. The worst case reaction time is typically im-
proved by 4 x, and energy consumption is also typically re-
duced to a quarter [4].

2. The KEP Architecture

The main challenge when designing a reactive architec-
ture is the handling of control. In the KEP, the Reactive
Multi-Threading Core (RMC) is responsible for managing
the control flow of all threads. Fig.[T|shows the architecture
of the RMC. It contains dedicated hardware units to han-
dle concurrency, preemption, exceptions, and delays.
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Figure 1: The architecture of the KEP Reactive Multi-
threaded Core (RMC).

Unicode Signal

ra

To implement concurrency, the KEP employs a multi-
threaded architecture, where each thread has an independent
program counter (PC) and threads are scheduled accord-
ing to their statuses and dynamically changing priorities.
The scheduler is very light-weight. In the KEP, scheduling
and context switching do not cost extra instruction cycles,
only changing a thread’s priority costs an instruction. The
priority-based execution scheme allows on the one hand
to enforce an ordering among threads that obeys the con-
straints given by Esterel’s semantics, but on the other hand
avoids unnecessary context switches. If a thread lowers its
priority during execution but still has the highest priority, it
simply keeps executing.

The RMC provides a configurable number of Watcher
units, which detect whether a signal triggering a preemp-
tion is present and whether the PC is in the correspond-
ing preemption body [5]. When preemptions are nested and
triggered simultaneously, the Watcher Priority Controller
decides which must take precedence. The KEP Watcher
are designed to permit arbitrary nesting of preemptions, and
also the combination with the concurrency operator. How-
ever, in practice this often turns out to be more general
than necessary, and hence wasteful of hardware resources.
Therefore, the KEP also includes trimmed-down versions
of the Watcher.
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Max. threads| 2 10 20 40 60 80 100 120
Slices {1295 1566 1871 2369 3235 4035 4569 5233
Gates (k) 295 299 311 328 346 373 389 406

Table 1: Extending a KEP to different threads.

The KEP is highly configurable, including the possi-
ble degree of concurrency. As Table [I] shows, the hardware
usage (on a Xilinx 3S1500-4fg676 FPGA)increases only
4x when the concurrency increases 60x when measured
in slices, and even just 1.4x when measured in equivalent
gates. The clock rate does not vary significantly, it is around
60 MHz; one instruction takes three clock cycles. For com-
parison, the MicroBlaze which with the same memory size
(BRAM) employs 309k gates.

3. The Compiler

We have implemented a compiler for the KEP based on
the CEC infrastructure [2]. A central problem for compil-
ing Esterel onto the KEP is the need to manage thread pri-
orities during their creation and their further execution. In
the KEP setting, this is not merely a question of efficiency,
but a question of correct execution. We have devised a prior-
ity algorithm to compute a priority assignment that respects
the Esterel semantics as well as the execution model of the
KEP. The complexity of the algorithm is in practice linear
in program size [4].

4. Validation

The exhibit also demonstrates the validation test bench
(see Fig. [J) that has been used in the development of the
KEP. The user interacts via a host work station with an
FPGA Board, which contains the KEP as well as some test-
ing infrastructure. First, an Esterel program is compiled into
an KEP object file (.ko) which is uploaded to the FPGA
board. Then, the host provides Input events to the KEP and
reads out the generated Output events. This also yields the
number of instructions per tick, from which we can deduce
the worst case reaction time for the given trace. The input
events can be either provided by the user interactively, or
they can be supplied via a .esi file. The host can also com-
pare the Output results to an execution trace (.eS0). We
use EsterelStudio V5.0 to compute trace files with state and
transition coverage. Our regression suite currently contains
some 500 benchmarks.

5. Summary and Outlook

The KEP demonstrates a custom processor design
for the efficient execution of concurrent reactive pro-
grams. However, the underlying model of computation,
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Figure 2: The structure of the KEP evaluation platform

with threads keeping their individual program coun-
ters and a priority based scheduling, could also be emulated
by classical processors. Furthermore, it would be interest-
ing to implement a virtual machine that has an instruction
set similar to the KEP. An ongoing project is to imple-
ment the KEP itself in Esterel, which should not only a
challenging benchmark, but could also be used to synthe-
size a virtual machine. We are also investigating to augment
the KEP with external hardware to speed up the computa-
tion of signal expressions [3]. Finally, we are also interested
in developing an advanced energy management methodol-
ogy, which is based on the WCRT information, to further
save power consumption.
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