Compiling SyncCharts to Synchronous C

Claus Traulsen and Torsten Amende and Reinhard von Hanxleden
Department of Computer Science
Christian-Albrechts-Universitit zu Kiel
{ctr, tam, rvh} @informatik.uni-kiel.de

Abstract—SyncCharts are a synchronous Statechart variant
to model reactive systems with a precise and deterministic
semantics. The simulation and software synthesis for SyncCharts
usually involve the compilation into Esterel, which is then further
compiled into C code. This can produce efficient code, but has two
principal drawbacks: 1) the arbitrary control flow that can be
expressed with SyncChart transitions cannot be mapped directly
to Esterel, and 2) it is very difficult to map the resulting C code
back to the original SyncChart, which hampers traceability.

This paper presents an alternative software synthesis ap-
proach for SyncCharts that compiles SyncCharts directly into
Synchronous C (SC). The compilation preserves the structure
of the original SyncChart, which is advantageous for validation
and possibly certification. We present a static thread-scheduling
scheme that reflects data dependencies and optimizes both the
number of used threads as well as the maximal used priorities.
This results in SC code with competitive speed and little memory
requirements.

I. INTRODUCTION

Reactive systems are systems that continuously interact
with their environment. The execution of these systems is
determined by their internal state and external stimuli. As a
reaction, new stimuli and/or a new internal state are generated.
The modeling of these systems requires both concurrency and
preemption in a deterministic fashion. In particular for safety-
critical systems, it is also important that the behavior cannot
only be understood by the programmer, but also by application
experts. This motivated the development of graphical notations
such as Statecharts.

We are here particularly interested in the SyncCharts [2]
dialect of Statecharts, also known as Safe State Machines
(SSMs), which has a formal semantics grounded in the syn-
chronous model of computation and is hence particularly
suited for safety-critical applications [3]]. A commercial tool
that uses SyncCharts as design entry language is Synopsis’
Esterel Studio (E-Studio), which encompasses a range of syn-
thesis options for generating Verilog, VHDL, or C/SystemC.
E-Studio’s synthesis paths involve Esterel as intermediate
language, for which there is a range of compilation approaches
available [6l]. However, the translation from SyncCharts to
Esterel is rather intricate, as the arbitrary control flow that
can be expressed with state transitions (SyncCharts) must be
mapped to the structured control flow operations typical for
imperative programs, such as loops and conditionals (Esterel).
Likewise, the translation from Esterel to C must perform a
non-trivial mapping, in this case from concurrent, preemptive

978-3-9810801-7-9/DATE11/(©2011 EDAA

code (Esterel) to sequential code (C). Ultimately, the C code
resulting from a SyncChart is very difficult to map back to
the original SyncChart, which makes it hard to validate and
to possibly certify the design.

Synchronous C (SC) [9], also known as SyncCharts in C,
has been recently proposed as a means to embed synchronous
reactive control flow directly in C. SC provides a set of control
and communication operators, which provide priority-based,
deterministic multi-threading and a signal-based broadcasting
mechanism. These SC operators can themselves be expressed
in C, the freely available SC reference implementatiorﬂ im-
plements all operators as C macros.

Contributions, challenges and benefits. We present a com-
pilation scheme to synthesize SyncCharts into SC code. The
challenge, as in any compilation from reactive programs into
a sequential language (such as C), is to make sure that the
synthesized code reflects the reactive control flow according
to the SyncChart semantics. The specific issues are concur-
rency, preemptions (weak and strong), and the surface/depth
distinction. This demands a judicious ordering of transitions,
the synthesis of thread priorities, and possibly dynamic priority
changes (PRIO statements). Unlike the traditional compilation
from SyncCharts to C via Esterel, our compilation preserves
the connection between the generated instructions and the
original states and transitions. This makes the code more
readable, facilitates validation, and allows a direct back an-
notation. As the experimental results indicate, the size and
execution speed of the resulting executables are competitive
with existing efficient synthesis approaches based on Esterel.
Compared to manually writing C code, using SyncCharts
as design entry point for SC has the advantage that the
SC generator presented here automatically determines thread
priorities and, if necessary, context switches that respect all
data dependencies.

Outline. In the next section we consider related work,
followed by a closer look at SyncCharts and Synchronous C
in Sec. In Sec.|IV|we describe the compilation process and
give experimental results in Sec. [V] We conclude in Sec.
For a more detailed description of the compilation process
than space permits here, we refer the reader to a technical
report [8].

II. RELATED WORK

While Statecharts are an appealing language to describe
reactive behaviors, the generation of efficient code is not triv-

Iwww.informatik.uni-kiel.de/rtsys/sc


www.informatik.uni-kiel.de/rtsys/sc

-

abswo | TICKSTART(5);
Interface:A, B, S, W, O, 2| L_abo: FORK(L_abo_ab, 2);
3 FORKE(L_abo_main);
4| L_abo_ab: FORK(L_abo_ab__wA, 4);
W 5 FORK(L_abo_ab__wB, 3);
S 6 FORKE(L_abo_ab_main);
/‘(__\\ 7| L_abo_ab__wA: AWAIT(sig_A);
( abo h 8 EMIT(sig_B);
9 TERM;
( ab ) 10 | L_abo_ab_ wB: AWAIT(sig_B);
1 8 11 TERM;
[o) 12 | L_abo_ab_main: JOIN;
i __ ___ _r 13 EMIT(sig_O);
A/B 14 HALT;
a 15 | L_abo_main: PAUSE;
) 16 it (PRESENT(sig_S)) {
J 17 ABORT;
18 PRIO(5);
(a) SyncChart 19 GOTO(L_abo); }
2 PRIO (1);
21 it (PRESENT(sig_W)) {
22 ABORT;
A, A, 23 PRIO(5);
A S B AWWS (c) The priority graph. Subscripts S and W indicate 54 GOTO(L_abo); }
> strong and weak transitions. The solid (green) line 25 PRIO(5);
B, B, B, from aboy, to abog is a dependency due to GOTO(L_abo_main);
0 0 0 transition numbers. The other solid (black) lines 27 TICKEND;

represent hierarchical orderings, dashed (blue) lines
are control flow orderings, dotted (red) lines are

(b) Sample execution trace, with inputs above and

outputs below logical tick time line signal dependencies.

Figure 1.
W, which trigger a strong and weak abort of abo, respectively.

ial. Three different methods of compiling Statecharts can be
distinguished: 1) compilation into an object oriented language
using the state pattern [[1], 2) dynamic simulation [10]], and
3) flattening into finite state machines. Executing SyncCharts
with SC, proposed here, can be classified as a simulation-based
approach, where SC defines a simulator.

A translation from SyncCharts to Esterel was proposed by
André [2] together with the initial definition of SyncCharts
and their semantics. This transformation, with additional un-
published optimizations, is implemented in E-Studio.

Our work is related to the extension of Esterel with GOTO
by Tardieu and Edwards [[7]. Since they extend the language,
they have to consider all possible usages of GOTO, e.g.,
jumping from one thread into another.

Considering a non-synchronous language like plain C as
alternative synthesis target, the direct generation of C code
from SyncCharts might also be more efficient than the path
via Esterel. This approach is taken by the SCC compilelﬂ
However, this compiler generates circuit code in the spirit of
Esterel and does not directly reflect the structure of the source
SyncChart.

III. SYNCCHARTS AND SYNCHRONOUS C

SyncCharts: SyncCharts are a Statechart dialect with a
semantics that adheres to the synchrony hypothesis [4]. This
implies that the execution is divided into discrete ticks, and
computations within a tick do not take time. Fig. [Ta] shows
the ABSWO SyncChart, which demonstrates deterministic

Zjulien.boucaron.free.fr/wordpress/?page_id=6

(d) Synthesized SC tick function

The ABSWO example: wait concurrently for the inputs A and B, if both have occurred, emit output O. The behavior is reset by the inputs S and

concurrency, preemption, and signal-based communication. A
possible execution trace is given in Fig. [Th]

SyncCharts inherit the concept of signals and valued signals
from Esterel. Signals are by default absent, a signal is present
if it is either an input signal that is set to present by the
environment or if it is emitted in the current tick. The
synchrony hypothesis implies that each signal has a unique
status within a tick.

When a state has more than one outgoing transition, a
unique transition number is assigned to each of them, where
lower numbers indicate higher priority. (It would be natural to
refer to these numbers as “transition priorities,” but this could
be confused with the priorities used by SC.)

For further explanations of the language features of Sync-
Charts, the reader may refer to the overview given by André,
which also contains numerous illustrative examples [2].

Synchronous C (SC): SC is an extension of C to allow
concurrency and preemption in a deterministic way. It was
designed to express the behavior described by a SyncChart
directly in C in a concise and readable fashion. Fig. [2 provides
a short overview of the SC instructions that are generated by
our compiler.

SC extends C by a light-weight, priority-based thread
model. Each thread has a program counter and an id, which
also serves as its priority. The scheduler/dispatcher will always
choose the active thread with the highest priority. A thread can
either be enabled, i.e., it should be executed in the current
tick, or disabled. Furthermore, an enabled thread can be either


julien.boucaron.free.fr/wordpress/?page_id=6

Operands Notes

TICKSTART*(p) Start (initial) tick, assign priority p to the Main thread.

TICKEND Finalize tick, return 1 iff there is still an enabled thread.

PAUSE*+ Deactivate current thread for this tick.

HALT*+ Shorthand for I: PAUSE; GOTO(I).

TERM* Terminate current thread.

ABORT Abort descendant threads.

FORK(l, p) Create a thread with start address [ and priority p.

FORKE*(l) Finalize FORK, resume at .

JOIN*+ Proceed if descendant threads have terminated nor-

mally

PRIO** (p) Set current thread priority to p.

GOTO(I) Jump to label 1.

EMIT(S) Emit signal S.

PRESENT(S)  True iff S is present.

AWAIT*+(S) Shorthand for l.;s.: PAUSE; PRESENT(S, leise)-
Figure 2. Main SC operators. Operators marked with an asterisk* may call

the thread dispatcher, i.e., can result in a thread context switch. Operators
marked with a plust automatically generate continuation labels (visible in
the program after macro expansion and in execution traces).

inactive, i.e., it was already executed in the current tick, or
active if it still needs to be executed in the current tick.

As the priorities of the threads are also used as unique
identifier, the priority of a thread might never be set to the
same priority as an already active thread.

With SyncCharts as with Esterel, one might write self-
contradicting, i. e., non-constructive, programs, for which no
execution schedule can be found. In SC, this situation is
somewhat different. On the one hand, the execution schedule
is always implied by the sequential nature of C, hence we have
determinism. On the other hand it is easily possible to write
programs that violate the synchrony hypothesis with respect to
signal statuses, as discussed above. To help the programmer,
run-time-checks are activated per default to check that a signal
whose status has already been tested is not emitted later within
the same tick (no “write after read”). For our compilation from
SyncCharts to SC, the compiler requires that the SyncChart
can be statically scheduled, and hence rejects non-constructive
programs.

IV. SC SYNTHESIS

Since the instructions of SC were developed to express
SyncCharts naturally in C, the compilation of SyncCharts
into SC is more straightforward than the general compilation
of SyncCharts into plain C. Each state is transferred into
a PAUSE or HALT statement, according to its outgoing
transitions. A new thread is generated for each parallel region
in the original SyncChart, as well as for each macro-state,
where the outgoing transitions are checked conceptually in
parallel to the content of the state.

The translation of a transition consists of the following
sequence. 1) Check the transition’s trigger predicate; if this
evaluates to true: 2) execute the effects specified in the
transition label, such as a signal emission, followed by 3)
an ABORT if the source state is a macro-state and hence
has descendant threads that need to be terminated, 4) set the

priority to the priority of the target state and 5) a GOTO to
jump to the target state.

The remaining difficulty is to schedule the different threads
such that the execution conforms to the SyncChart semantics,
which is done by computing a priority for each transition
There are different types of ordering constraints, alternatively
also referred to as dependencies, that must be obeyed in
thread scheduling. According to these constraints, the compiler
creates a priority graph, from which scheduling priorities of
thread (segments) are computed by a topological sort. The
priority graph for ABSWO, which illustrates most of the
ordering constraints, is shown in Fig.

Hierarchy Order: For a macro-state, all outgoing strong
aborts need to be checked before the content of the state is
executed, and all weak abortions and normal terminations must
be checked after the execution. This is reflected in the priority
graph by duplicating state nodes. For a macro state M, the
priority graph contains nodes Mg and My that correspond to
the strong and weak abortions, respectively, that leave M. For
a region S within M, Mg must be scheduled before S, and
My, must be scheduled after S. In ABSWO, for example,
state done is ordered after abog and before aboy,. This is
achieved by reducing the thread priority from 5 to 1 in Line 20
in the generated SC code (Fig. and back to 5 in Line 23.

Transition Order: The outgoing transitions must be han-
dled according to the priorities indicated by their transition
numbers. In most cases, the transition order can be handled
by ordering the code that checks the triggers accordingly. In
ABSWO there is only one transition order dependency due to
the two outgoing transitions of abo.

Data Dependency Order: We also utilize thread priorities
to assure that all possible writers of a signal are executed
before its possible readers. Note that not only the directly
outgoing transitions of a state must be considered, but all
transitions that are immediately reachable, either through
immediate abortions or normal terminations. In ABSWO, state
wB depends, via signal B, on state WA.

Control Flow Order: A state must have a priority equal
to or lower than all states from which it can be reached via
immediate transitions.

V. EXPERIMENTAL RESULTS

The compiler from SyncCharts to SC has been implemented
as extension of the open-source KIELER (Kiel Integrated
Environment for Layout Eclipse Rich-Client) tooﬂ [5], which
also uses the compiler for simulation (see Fig. [3).

For the validation of the compiler we compare the behavior
synthesized code to the behavior of SyncCharts in E-Studio.
For the performance evaluation, we implemented the reactive
interface defined for Esterel [[6]. Hence we can use the same
wrapper to run the Esterel code and the synthesized SC code.
First we compare our synthesized code to the hand-written
SC examples that are part of the SC distribution. While we

3www.informatik.uni-kiel.de/rtsys/kieler


www.informatik.uni-kiel.de/rtsys/kieler

file Edit Diagem Navigate Search Project Run KIELSR Window Help
jvE e e |e o |5 ey © G = [KIELER M...
|[sans MR NS e Biv v fov | g N Bv B
[t5 Project Explorer % . = O[3l ReactorControl kids ( *grcbal3.kids 52 =0
2% = grebal3 .l,
v
b 2 grebal3kixs input A, B, C,D, E;
signal T_, haltTrap39_;
2 grebal3.loc
5 grebal3.strl U F{ Initial D
2 grebal3.time B 172 # haltTrap39 (:)
#B/C . #D/E
£ grebal3-bal @O2L ! @2 |
[ grebal3-bal.c >~ 7 | ~_
rebal3-estudio L #T
be ! 4cup #E/T_5(s1) — =
2 grebal3-estudio.c g .
2 arcbal3-manual [~ #A/8 >@ # * =
: L | @ s (5218
8= outlin [Epata %\ =8 -~ u
+ % [3)= a | >
P Key Value (ﬁ PmpeniesﬂL Pmnlems(a Console (Eg Layout (ﬁ *Execution Manager &5 . VM commﬂ @) Ermor Log} =g
A R
ole ‘ & [sclIN v | Matching schedules |v-| ¢ & [s00ms |5 04 Bov Bv 0
0o [ synchrounous Signal Resetter Observer/Produce
Oe b & Trace Reade Produce
O haltTrap39_ Data Table Producer
| state “y@innd| P [ SC simulation Observer/Produce
T b [ Viewmanagement SyncCharts V%), Observer
[ ; [ Data Table || Observer
J 0" JKIEM Execution ne

Figure 3. Simulation of the Grcbal3 example within KIELER, using the
synthesized SC code.

ABROD f=r==
FilteredSR [

Grebal3 ==
PrimeFactor b—
Reincarnation h.

Shifter3 B=r=
Cabin P
ReactorContro| e
ReflexGame Ber———
Teint_debug3?2 ER=——————————

0 500 1000 1500 2000
Clock cycles

B E-Studio
B Esterel

O SC synth.
B SC manual

iy

0 5 10 15 20 25 30
KBytes

(a) Reaction time (b) Size of executable

Figure 4. Comparison between code generated by Esterel Studio (E-Studio),
code generated by KIELER via Esterel and the Esterel V5 compiler (Esterel),
SC code synthesized by KIELER using the approach presented here (SC
synth.), and manually written SC code (SC manual).

do not really expect an improvement, it shows how close the
synthesized code can get to the optimal code. We also applied
the compiler to medium size SyncCharts where manually
writing the SC code is not practical, in particular because the
data-dependencies are more complex and hence the priority
assignment is hard to get correct for a human programmer.
These were compiled to Esterel and further to C code using
the fast graph code [[6] approach. Further compilation of C
code is done with gcc and default optimizations (02). All
experiments were performed on an Intel Xeon running with
3 GHz and 6 MB cache. All programs are executed for 1
million ticks with random, but identical, input traces. Fig. Pf_ﬁl
shows the average execution time for each tick in clock cycles.
The executable sizes are shown in Fig. 4l

In general, the performance of the synthesized SC is al-
most as good as for the manually written SC. However, the
synthesized code is significantly larger. This is primarily due
to code duplications that could be avoided, i.e., by folding
surface and depth. Compared to the compilation via Esterel,

the compilation via SC is both faster and smaller than using the
Esterel V5 compiler. However, it must be noted that the Esterel
code generated by KIELER, which directly follows André [2],
is not as optimized as the Esterel Studio compiler. Still, the
size of the synthesized code is similar for most examples.

VI. CONCLUSION AND OUTLOOK

We presented a compilation from SyncCharts into Syn-
chronous C (SC). Since SC can directly express the control
flow of SyncCharts, the code generation allows easy traceabil-
ity between the source code and the synthesized code. The
compiler is implemented in the KIELER tool and also used
for simulation of SyncCharts within the tool.

The first results for small and medium-sized examples show
that the synthesized code has almost the same performance
as code generated via Esterel. This is encouraging and even
somewhat surprising, as the underlying execution approach
is basically a simulation, following directly the SyncChart
structure, rather than the extensive compile-time analysis and
optimization performed by the Esterel-based synthesis ap-
proach. Compared to the existing compilation approaches for
SyncCharts, we consider the synthesis path via SC as rather
straightforward and light-weight.

In principle this compilation approach should scale well to
larger applications, both in terms of performance and code
size, and thus be superior e. g. to the circuit-based or automata-
based compilation approaches; however, this yet has to be
validated.

REFERENCES

[1] J. Ali and J. Tanaka. Converting Statecharts into Java code. In
Proceedings of the Fourth World Conference on Integrated Design and
Process Technology (IDPT °99), Dallas, Texas, June 2000. Society for
Design and Process Science (SDPS).

[2] C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR—
2003-24-FR, I3S Laboratory, Sophia-Antipolis, France, April 2003.

[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone. The Synchronous Languages Twelve Years Later.
In Proceedings of the IEEE, Special Issue on Embedded Systems, vol-
ume 91, pages 64-83, Jan. 2003.

[4] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87-152, 1992.

[5] H. Fuhrmann and R. von Hanxleden. Taming graphical modeling. In
Proceedings of the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’10), LNCS,
Oslo, Norway, Oct. 2010. Springer.

[6] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel.
Springer, May 2007.

[7] O. Tardieu and S. A. Edwards. Instanteneous transitions in esterel.
In Proceedings of Model Driven High-Level Programming of Embedded
Systems (SLA++P’07), Braga, Portugal, Mar. 2007.

[8] C. Traulsen, T. Amende, and R. von Hanxleden. Compiling Sync-
Charts to Synchronous C. Technical Report 1006, Christian-Albrechts-
Universitidt zu Kiel, Department of Computer Science, Kiel, Germany,
July 2010.

[9] R. von Hanxleden. SyncCharts in C—A Proposal for Light-Weight, De-

terministic Concurrency. In Proceedings of the International Conference

on Embedded Software (EMSOFT’09), Grenoble, France, Oct. 2009.

A. Wasowski. On efficient program synthesis from Statecharts. In

Proceedings of the 2003 ACM SIGPLAN Conference on Language,

Compilers, and Tools for Embedded Systems (LCTES’03), volume 38,

issue 7, June 2003. ACM SIGPLAN Notices.

[10]



	Introduction
	Related Work
	SyncCharts and Synchronous C
	SC Synthesis
	Experimental Results
	Conclusion and Outlook
	References

