
Practical Causality Handling
for Synchronous Languages

Steven Smyth, Alexander Schulz-Rosengarten, Reinhard von Hanxleden
Department of Computer Science, Kiel University, Kiel, Germany, {ssm, als, rvh}@informatik.uni-kiel.de

Abstract—A key to the synchronous principle of rec-
onciling concurrency with determinism is to establish
at compile time that a program is causal, which means
that there exists a schedule that obeys the rules put
down by the language. In practice it can be rather cum-
bersome for the developer to cure causality problems.
To facilitate causality handling, we propose, first, to
enrich the scheduling regime of the language to also
consider explicit scheduling directives that can be used
by either the modeler or model-to-model transforma-
tions. Secondly, we propose to enhance programming
environments with dedicated causality views to guide
the developer in finding causality issues. Our proposals
should be applicable for synchronous languages; we
here illustrate them for the SCCharts language and its
open source development platform KIELER.

Index Terms—model-based design, scheduling, syn-
chronous languages, modeling pragmatics, SCCharts

I. Introduction
To reconcile concurrency and determinism for pro-

gramming reactive systems, synchronous languages follow
strictly defined models of computation (MoCs). The
write-before-read principle, employed in languages such as
Esterel [3], clearly guarantees determinism, but like other
scheduling rules comes at the price that a compiler may
reject a program because it cannot find a viable schedule
for it, e. g., because of cyclic write-read dependencies. We
then say that the program is not causal, and it is the pro-
grammers job to fix the program. This, in practice, is often
easier said than done, due to different reasons. 1) Some
synchronous MoCs are restrictive in ways that the average
programmer may not expect; 2) the compiler’s analysis
and scheduling abilities may be limited and conservatively
reject programs that would indeed be schedulable; and
3), the feedback provided by the compiler may be too
limited to be helpful to the programmer. Issues 1) and 2)
not only matter for the human developer, but also when
transforming a program as part of a compilation.

Contributions & Outline: To make causality handling
more practical we present two proposals. First, we propose
to add Scheduling Directives (SDs) that form Flexible
Schedules (FSs) to synchronous languages (Sec. II). These
should not replace existing scheduling regimes, but rather
augment them, either to change the default scheduling or
to make program schedulable (causal) in the first place.
We also illustrate how model-to-model (M2M) transforma-
tions can benefit, without the modeler having to interact
(Sec. III) using the synchronous language SCCharts as a

(a) Write–Read dependency (b) Write–Write conflict

(c) Read–Write SD dependency (d) Write–Write SD dep.

Figure 1: Dependencies induced by either a MoC or an SD

demonstrator. Second, we present three different ways to
guide the user to causality problems using transient view
technologies, namely data dependency views, the causality
dataflow view, and annotated compilation models (Sec. IV).
We discuss related work in Sec. V and conclude in Sec. VI.
Please consult the associated technical report [8] for more
details.

II. Scheduling Directives and
Flexible Schedules

Accesses to variables are usually categorized into writers
and readers. A possible control flow graph representation,
as depicted in Fig. 1, shows assignment statements (rect-
angle nodes) and conditional statements (diamond nodes).
A schedule is a static order of all nodes in a control
flow graph, meaning the order is determined at compile
time and fixed during run time. The particular ordering
is governed by the used MoC. Usually, it is determined
by the control and/or (concurrent) data dependencies. In
Fig. 1a a write-before-read dependency is depicted as green
dashed arrow. The control flow is also visible as black
solid edges. An exemplary relation for these statements
is s0 →moc s1, with →moc being an order relation that
implements the rules of the underlying MoC (s0 before s1).
Fig. 1b shows two conflicting write accesses. In the ex-
ample, the dependency conflict is depicted as red dashed
double arrow.
A scheduling directive (SD) associates a scheduling unit

with a named schedule and an index. The scheduling unit
may be for example a single statement, or a coarser unit
of execution such as a thread. For a named schedule s,
the scheduling units associated with s must be scheduled
according to their index, lowest index first. For example,
considering Fig. 1c, we may add an SD to each of the



1 scchart CounterReset {
2 output int counter = 0
3
4 region Increment:
5 initial state Wait
6 do counter++
7 go to Increment
8
9 state Increment

10 immediate go to Wait

10 region Reset:
11 initial state Wait
12 if counter >= 10 go to Do
13
14 connector state Do
15 immediate do counter = 0
16 go to Reset
17
18 state Reset
19 immediate go to Wait
20 }

(a) Textual representation of Counter Reset

(b) Automatically generated graphical representation of
Counter Reset

Figure 2: Concurrent Counter Reset program in SCCharts

scheduling units (statements) s0 and s1 that associates
them with schedule a and indices 1 and 0, respectively.
This induces a scheduling order s1 →sd s0. The value of O
is now read from in s1, before written to in s0. Analogously,
the write–write conflict is resolved in Fig. 1d by giving
statement s3 a lower index than statement s2.
A flexible schedule (FS) is a schedule that takes all SDs

of the model into account. If there exists an SD for two
statements, the SD order (→sd) is used. Otherwise, the
MoC determines the order (→moc).
For a model that contains scheduling conflicts, we

propose to not consider it causally wrong per se, but
merely incomplete. When a conflict occurs that leads to
an incomplete model, the modeler can complete it with
SDs. They can be used directly on different levels of detail
as will be shown in this section, and indirectly via M2M
transformations as will be explained in Sec. III.

A. Causality in SCCharts
We exemplify modeling with SDs in the SCCharts [10]

language. Fig. 2b shows an diagram of an SCCharts model,
named Counter Reset. The textual source program is shown
in Fig. 2a. The model has one integer output counter,
which represents a counter value, and two concurrent
regions, Increment and Reset. In the region Increment, there
are two states, Wait and Increment, which are connected
via transitions. The initial state is depicted with a bold
border. A solid transition is delayed, meaning it will at
the earliest trigger one tick after the originating state was
entered, whereas a dashed transition is immediate, which
means that it can trigger as soon as the state is entered.
Hence, in every tick, counter gets incremented in Increment,
which in the SCCharts MoC is considered an update. In

1 scchart CounterReset {
2 output int counter = 0
3 schedule _auto
4
5 region Increment:
6 initial state Wait
7 do counter++
8 schedule _auto 0
9 go to Increment

10
11 state Increment
12 immediate go to Wait

13 region Reset:
14 initial state Wait
15 if counter >= 10 go to Do
16
17 connector state Do
18 immediate do counter = 0
19 schedule _auto 1
20 go to Reset
21
22 state Reset
23 immediate go to Wait
24 }

(a) Textual representation of Counter Reset with SDs

(b) Automatically generated graphical representation of Counter
Reset; the dependency edges are now influenced by the SDs.

Figure 3: Counter Reset example with SDs

the Reset region, the state Wait waits for the counter to
reach the value 10. Afterwards, it should be reset to 0.
However, this results in a conflict, because the scheduling
protocolstates that concurrent accesses within one tick
can only set, update, and read variables in this particular
order as indicated by the colored, dashed dependencies
in Fig. 2b. Thus we have a scheduling cycle counter =
0 →moc counter++ →moc counter >= 10 →moc counter =
0. Therefore, under the SCCharts MoC, similar to other
synchronous MoCs, this model would be considered not
causal and would not compile.

B. Scheduling Directives on Statement-Level
We extended SCCharts with the possibility to add

SDs to a model using named schedules. To illustrate,
consider Fig. 3a, which is the Counter Reset exam-
ple from Fig. 2 enriched with SDs. First, a named
schedule _auto is declared, in line 3. Named sched-
ules can be used in SDs, which are of the form
〈scheduling unit〉 schedule 〈schedule name〉 〈index〉. In
Fig. 3a, the SDs in lines 8 and 19 resolve the cycle by
incrementing the counter before the test and reset.
It may be difficult for a modeler to obtain an overview

over all conflicts and subsequent potential cures for these
conflicts. Thus, the modeler can interactive with the
diagram to add SDs as detailed further in Sec. IV-A.

C. Scheduling Directives on Coarser Granularities
It is often sufficient to define SDs on a coarser gran-

ularity than the statement level. If statement-level SDs
are available in the core language, coarse granularity SDs
can be implemented as extended features, which can be



Figure 5: Cured expanded Cyclic Count delay

transformed automatically to statement-level SDs via M2M
transformations. For example, using schedule on regions
sets the directive for all statements in that region.

III. Scheduling Directives in Transformations
Consecutively executed M2M transformations are the

core of a model-based compiler [7]. Even if the modeler
does not use SDs directly, they can improve these trans-
formations w.r.t. complexity and efficiency.

Figure 4: Cyclic count delay

One M2M transformation
in the SCCharts compiler
transforms the count delay
feature into simpler con-
structs. In a graphical syn-
tax, count delay is depicted
as an integer n in front of
a transition trigger. Such a transition is only taken if it
would have been eligible to run n times without the count
delay. An example of two alternating count delays can be
seen in Fig. 4.

A straightforward transformation which simply counts
the occurrences as implemented by Motika [6] adds a
counter per count delay and waits until n is reached.
This works for simple count delays. However, if two count
delays are called in a cyclic manner as in Fig. 4, this
simple approach fails, because of cyclic dependencies that
are introduced by the M2M transformation similar to the
pattern shown in Sec. II-A.

The current version of the SCCharts compiler solves
this problem by using a more sophisticated transformation
that uses pre operators to look at values of from the
previous ticks, which is a common way for solving causality
problems in synchronous languages. However, since the
increments should always be performed before the test and
reset, this transformation can be done more efficiently with
SDs similar to the counter example presented in Sec. II-B.
It is sufficient to set the scheduling index of the counting
regions to a lower value than the index of the main region.
As a result, the SDs make sure that the increments are
happening before the checks and potential resets of the
counters, see Fig. 5. Additionally, an arguably unintuitive

Simple with Pre with SDs
Schedulable No Yes Yes
Schizophrenia – Yes No
Variables 2 8 2
States 22 44 18
Regions 5 10 5
Binary Size (b) – 2702 1337

TABLE I: Results of the different count delay approaches
in SCCharts

Figure 6: Counter Reset model shown with causality
dataflow and annotations

reset to -1, which was necessary previously to handle the
case of a reset and a subsequent increment in the same
tick, can be omitted.
Tab. I compares the three different implementations

of SCCharts’ count delay transformation when compiling
the Cyclic Count Delay model in Fig. 4. While the simple
approach is not able to handle two cyclic count delays, the
pre variant needs more variables, states, and regions than
the SDs approach. Furthermore, the pre transformation
also creates schizophrenic models, that is, models where
statements are executed more than once within one tick.
Handling schizophrenia does not come trivially [9]. The SD
solution avoids schizophrenia.
More practical examples can be found in the associated

technical report [8].

IV. Guidance to Causality Conflicts

The modeler should not be burdened with maintaining
an overview over all potential conflicts, but should be
assisted with finding solutions to these.

A. Data Dependency Visualization
The data dependency visualization is used to identify

individual conflicting data dependencies. This view is used
to display the dependencies in the counter reset example in
Fig. 2b and others. The view augments the diagram with
data dependencies that originate from variables accesses
in the model. Furthermore, the modeler directly interacts
with the diagram to add SDs in a user-friendly way.



For example, in the counter reset model (Fig. 2b), the
dependency from counter = 0 to counter++ can be reversed
with an appropriate SD. When the user clicks on the
dependency edge, the model diagram (Fig. 3b) is modified.
A new schedule, named _auto, is declared as shown in
Fig. 3a. Two directives assign this schedule and the indices
0 and 1 to the appropriate statements in the underlying
model to reverse the dependency direction. The textual
and graphical views adapt to the new model: Lines 3, 8,
and 19 are added automatically.

B. Causality Dataflow View
Fig. 6 shows the same model as Fig. 2b in a causality

dataflow view, which shows a dependency cycle in red.
The view shows the general dataflow even in state-based
languages and hence is similar to the data dependency
visualization view, but differs in granularity and arrange-
ment of elements in the diagram.

C. Annotated Compilation Models
The SCCharts compiler framework allows to create

annotated models during compilation to hint at potential
problems. The compilation error of the Counter Reset
example will be detected during the scheduling phase.
However, the issue is propagated back automatically and
the causality loop warning is also displayed in the diagram
as also depicted in Fig. 6.

V. Related Work
Many of the established synchronous languages, such

as Esterel [3] and Lustre [4], use strict write-before-read
MoCs. In this paradigm, even if not in a concurrent
context, it is forbidden to change a value after it has been
read from.

A generalization of dependency-based scheduling
regimes are policy interfaces, proposed by Aguado et
al. [1]. These also provide very flexible scheduling regimes,
but are based on types, rather than scheduling units.

Another form of synchronous concurrency forbids di-
rect communication within the same tick, as deployed in
languages such as ForeC [11]. These languages can only
access concurrent data from previous ticks, which cannot
be modified any more.

Simulink/Stateflow [5] define the scheduling order de-
pending on the graphical ordering of elements. In PRET-
C [2] the textual order defines the scheduling. This re-
flects a semantics where all scheduling decision are made
explicit, even if this is not necessary.

If a program is rejected by the compiler, it is important
to guide the user towards the problem. Graphical lan-
guages have the advantage of intuitive visual problem re-
porting. However, regarding synchronous languages, such
as SyncCharts and SCADE, this potential is often only
used for simulation. To our knowledge there are no specific
views or dedicated model augmentation for detecting and
solving scheduling problems, such as we present them in
this paper.

VI. Conclusion
We showed how to add Scheduling Directives (SDs),

which form Flexible Schedules (FSs), to synchronous lan-
guages. A modeler can use these SDs to explicitly alter
the scheduling of the underlying MoC on modeling level to
solve causality issues. It also enables M2M transformation
developers to write simpler and more efficient transforma-
tions, as demonstrated in Sec. III.
To guide the user to potential conflicts, we proposed

different views to spot causality issues. We argue that
the data needed for these views often already exist in
most compilation approaches, but must be presented to
the modeler in a useful way. These enriched views make
the aforementioned SD approach practical.

References
[1] J. Aguado, M. Mendler, M. Pouzet, P. S. Roop, and R. von

Hanxleden. Deterministic concurrency: A clock-synchronised
shared memory approach. In 27th European Symposium on
Programming, ESOP’18, pages 86–113, Thessaloniki, Greece,
Apr. 2018.

[2] S. Andalam, P. S. Roop, and A. Girault. Deterministic, pre-
dictable and light-weight multithreading using PRET-C. In
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE’10), pages 1653–1656, Dresden, Germany,
2010.

[3] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language, and Interaction: Essays
in Honour of Robin Milner, pages 425–454, Cambridge, MA,
USA, 2000. MIT Press.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming language LUSTRE. Pro-
ceedings of the IEEE, 79(9):1305–1320, Sept. 1991.

[5] G. Hamon. A denotational semantics for Stateflow. In EM-
SOFT’05: Proceedings of the 5th ACM International Conference
on Embedded Software, pages 164–172, New York, NY, USA,
2005. ACM Press.

[6] C. Motika. SCCharts—Language and Interactive Incremental
Implementation. Number 2017/2 in Kiel Computer Science
Series. Department of Computer Science, 2017. Dissertation,
Faculty of Engineering, Christian-Albrechts-Universität zu Kiel.

[7] C. Motika, S. Smyth, and R. von Hanxleden. Compiling
SCCharts—A case-study on interactive model-based compila-
tion. In Proceedings of the 6th International Symposium on
Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2014), volume 8802 of LNCS, pages 443–462,
Corfu, Greece, Oct. 2014.

[8] S. Smyth, A. Schulz-Rosengarten, and R. von Hanxleden. Prac-
tical causality handling for synchronous languages. Technical
Report 1808, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, Dec. 2018. ISSN 2192-6247.

[9] O. Tardieu and R. de Simone. Curing schizophrenia by program
rewriting in Esterel. In Proceedings of the Second ACM-IEEE
International Conference on Formal Methods and Models for
Codesign (MEMOCODE’04), San Diego, CA, USA, 2004.

[10] R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth,
M. Mendler, J. Aguado, S. Mercer, and O. O’Brien. SCCharts:
Sequentially Constructive Statecharts for safety-critical appli-
cations. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14), pages 372–
383, Edinburgh, UK, June 2014. ACM.

[11] E. Yip, A. Girault, P. S. Roop, and M. Biglari-Abhari. The
forec synchronous deterministic parallel programming language
for multicores. In 10th IEEE International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip, MCSOC 2016,
Lyon, France, September 21-23, 2016, pages 297–304, 2016.


