
Evolutionary Meta Layout of Graphs

Miro Spönemann, Björn Duderstadt, and Reinhard von Hanxleden

Department of Computer Science, Christian-Albrechts-Universität zu Kiel
{msp,bdu,rvh}@informatik.uni-kiel.de

Abstract. A graph drawing library is like a toolbox, allowing experts
to select and configure a specialized algorithm in order to meet the re-
quirements of their diagram visualization application. However, without
expert knowledge of the algorithms the potential of such a toolbox cannot
be fully exploited. This gives rise to the question whether the process of
selecting and configuring layout algorithms can be automated such that
good layouts are produced. In this paper we call this kind of automation
“meta layout.” We propose a genetic representation that can be used
in meta heuristics for meta layout and contribute new metrics for the
evaluation of graph drawings. Furthermore, we examine the use of an
evolutionary algorithm to search for optimal solutions and evaluate this
approach both with automatic experiments and a user study.

Keywords: graph drawing · layout algorithms · evolutionary algorithms · meta
layout · readability metrics · user study

1 Introduction

There are many different approaches for drawing graphs, and all have their spe-
cific strengths and weaknesses. Therefore successful graph drawing libraries in-
clude multiple algorithms, and usually they offer numerous configuration options
to allow users to tailor the generated layouts to their needs. However, the proper
choice of a layout algorithm as well as its configuration often require detailed
knowledge of the background of these algorithms. Acquiring such knowledge or
simply testing all available configuration options is not feasible for users who
require quick results.

An inspiring idea was communicated by Biedl et al. [1]: by displaying multiple
layouts of the same graph, the user may select those that best match her or his
expectations. In this paper we build on that idea and apply meta heuristics for
generating a variation of layouts using existing layout libraries.

We introduce the notion of abstract layout, that is the annotation of graphs
with directives for layout algorithm selection and configuration. Concrete layout
is a synonym for the drawing of a graph and is represented by the annotation of
graph elements with position and size data. When a layout algorithm is executed
on a graph, it transforms its abstract layout into a concrete layout. By meta
layout we denote an automatic process of generating abstract layouts.

Our contributions are a genetic representation of abstract layouts, metrics
for convenient evaluation of aesthetic criteria [2], and operations for applying
an evolutionary algorithm for meta layout. Furthermore, we propose a simple
method for adapting the weights of aesthetic criteria according to the user-
selected layouts, supporting the approach of Biedl et al. mentioned above. We
performed automated as well as user-based experiments in order to evaluate
our proposed method. The results show that the method is well accepted by
users and produces at least equally readable drawings compared to a manual
configuration approach.

The remainder of this paper is organized as follows. In Sect. 2 we discuss
related work on evolutionary graph layout and layout configuration. Sect. 3 in-
troduces the necessary data structures and fitness function that enable the evo-
lutionary process, which is described in Sect. 4. In Sect. 5 we report experimental
results on the effectiveness and applicability of these methods. We conclude and
outline prospective work in Sect. 6.

2 Related Work

Several authors have proposed evolutionary algorithms where the individuals
are represented by lists of coordinates for the positions of the nodes of a graph
[3,4,5,6,7,8,9]. Here, in contrast, we do not include any specific graph in our
encoding of individuals, hence we can apply the result of our evolutionary algo-
rithm to any graphs, even if they were not considered during the evolutionary
process. Furthermore, we benefit from all features that are already supported by
the existing algorithms, while previous approaches for evolutionary layout were
usually restricted to draw edges as straight lines and did not consider additional
features such as edge labels.

Other works have focused on integrating meta heuristics in existing layout
methods. De Mendonça Neto and Eades proposed a system for automatic learn-
ing of parameters of a simulated annealing algorithm [10]. Utech et al. introduced
a genetic representation that combines the layer assignment and node ordering
steps of the layer-based drawing approach with an evolutionary algorithm [11].
Such a combination of multiple NP-hard steps is also applied by Neta et al. for
the topology-shape-metrics approach [12]. They use an evolutionary algorithm
to find planar embeddings (topology step) for which the other steps (shape and
metrics) are able to create good layouts.

Bertolazzi et al. proposed a system for automatic selection of layout algo-
rithms that best match the user’s requirements [13]. The system is initialized
by evaluating the available algorithms with respect to a set of aesthetic criteria
using randomly generated graphs of different sizes. The user has to provide a
ranking of the criteria according to her or his preference. When a layout request
is made, the system determines the difference between the user’s ranking and
the evaluation results of each algorithm for graphs of similar size as the current
input graph. The algorithms with the lowest difference are offered to the user.

Similarly, Niggemann and Stein proposed to build a database that maps
vectors of structural graph features, e. g. the number of nodes and the number
of connected components, to the most suitable layout algorithm with respect to
some predefined combination of aesthetic criteria [14]. These data are gathered
by applying the algorithms to a set of “typical” graphs. A suitable algorithm for
a given input graph is chosen by measuring its structural features and comparing
them with the entries present in the database. Both the approaches of Bertolazzi
et al. and Niggemann and Stein are restricted to selecting layout algorithms.
Here, in contrast, we seek to configure arbitrary parameters of algorithms in
addition to their selection.

Archambault et al. combined graph clustering with layout algorithm selection
in a multi-level approach [15]. The clustering process is tightly connected with
the algorithm selection, since both aspects are based on topological features of
the input graph. When a specific feature is found, e. g. a tree or a clique, it is
extracted as a subgraph and processed with a layout algorithm that is especially
suited for that feature. This kind of layout configuration depends on detailed
knowledge of the behavior of the algorithms, which has to be encoded explicitly
in the system, while the solution presented here can be applied to any algorithm
independently of their behavior.

3 Genotypes and Phenotypes

The genotype of an individual is its genetic code, while the phenotype is the
total of its observable characteristics. In biology a phenotype is formed from
its genotype by growing in a suitable environment. We propose to use abstract
layouts (configurations) as genotypes, and concrete layouts (drawings) as phe-
notypes. The “environment” for this kind of phenotypes is a graph. We generate
the concrete layout L(λ) that belongs to a given abstract layout λ by applying
all parameters encoded in λ to the chosen layout algorithm A, which is also
encoded in λ, and executing A on the graph given by the environment. This en-
coding of parameters and algorithm selection is done with a set of genes, which
together form a genome. A gene consists of a gene type with an assigned value.
The gene type has an identifier, a data type (integer, floating point, Boolean,
or enumeration), optional lower and upper bounds, and an optional parameter
controlling the standard deviation of Gaussian distributions.

We assign each layout algorithm to a layout type depending on the underlying
approach implemented in the algorithm. The main layout types are layer-based,
force-based, circular, orthogonal, tree, and planar. Each algorithm A has a set PA
of parameters that control the behavior of A. We consider the union P =

⋃
PA

of all parameters, which we call the set of layout options. Each genome contains a
gene gT for selecting the layout type, a gene gA for selecting the layout algorithm,
and one for each layout option in P. It is also possible to use only a subset of
these genes, as long as all generated genomes contain the same subset. Such a
restriction can serve to focus on the selected layout options in the optimization
process, while other options are kept constant.

type:
force

algorithm:
Neato

routing:
splines

iterations:
200

spacing:
16inactive

(a) Genotype (b) Phenotype

Fig. 1. (a) A genome with six genes. The layout type gene is set to force-based al-
gorithms, the layout algorithm gene is set to a specific algorithm named “Neato”,
and three parameters of that algorithm are set with the remaining genes. One
gene is inactive because the corresponding layout option is not supported by
Neato. (b) A phenotype of the genome, represented by a layout generated by
Neato for an arbitrary graph.

Some genes of a genome are dependent of each other. The gene gA, for in-
stance, is constrained to a layout algorithm that belongs to the layout type
selected in gT. Furthermore, the layout algorithm A selected in gA does not
support all layout options in P, therefore the options in P \ PA, i. e. those not
supported by A, are marked as inactive. A genome with six genes and a possible
phenotype are shown in Fig. 1.

Inactive genes of a genome X do not contribute to the characteristics of the
phenotype of X, i. e. of its drawing, hence two genomes that differ only in their
inactive genes may produce the same drawing. On the other hand, some layout
algorithms are randomized and produce different drawings when executed twice
with the same configuration. However, we assume that drawings that result from
the same configuration tend to be similar with respect to our fitness function,
hence this ambiguity is probably not noticeable in practice.

3.1 Fitness Function

Our genotypes have a completely different representation compared to previ-
ous evolutionary layout algorithms. The phenotypes, in contrast, are commonly
represented by graph layouts, hence we can apply the same approach to fitness
evaluation as previous solutions, that is the evaluation of aesthetic criteria [2].

Some authors used a linear combination of specific criteria as fitness function
[16,4,5]. For instance, given a graph layout L, the number of edge crossings κ(L),
and the standard deviation of edge lengths δ(L), the optimization goal could be
to minimize the cost function f(L) = wcκ(L) + wdδ(L), where suitable scaling
factors wc and wd are usually determined experimentally. The problem of this
approach is that the values resulting from f(L) have no inherent meaning apart
from the general assumption “the smaller f(L), the better the layout L.” As a
consequence, the cost function can be used only as a relative measure, but not
to determine the absolute quality of layouts.

An improved variant, proposed by several authors, is to normalize the criteria
to the range between 0 and 1 [17,2,7,8,9]. However, this is still not sufficient to
effectively measure absolute layout quality. For instance, Tettamanzi normalizes
the edge crossings κ(L) with the formula µc(L) = 1

κ(L)+1 [8]. For the complete

graph K5, which is not planar, even the best layouts yield a result of µc(L) =
50%, suggesting that the layout is only half as good as it could be. Purchase
proposed to scale the number of crossings against an upper bound κmax defined
as the number that results when all pairs of edges that are not incident to the

same node cross each other [2]. Her formula is µc(L) = 1 − κ(L)
κmax

if κmax > 0
and µc(L) = 1 otherwise. Purchase herself notes that this definition “is biased
towards high values.” For instance, the graph N14 used in her evaluations has
24 nodes, 36 edges, and κmax = 558. All layouts with up to 56 crossings would
result in µc(L) > 90%. When tested with a selection of 28 layout algorithms,
all of them resulted in layouts with less that 56 crossings (the best had only 11
crossings), hence the formula of Purchase would assign a very high fitness to all
these generated layouts.

We propose new normalization functions that aim at well-balanced distribu-
tions of values among typical results of layout algorithms. A layout metric is
a function µ that maps graph layouts L to values µ(L) ∈ [0, 1]. Given layout
metrics µ1, . . . , µk with weights w1, . . . , wk ∈ [0, 1], we compute the fitness of a
graph layout L by

f(L) =
1∑k

i=1 wk

k∑
i=1

wkµk(L) . (1)

In the following we describe some of the metrics we have used in conjunction with
our proposed genotype representation and evolutionary algorithm. The goal of
these metrics is to allow an intuitive assessment of the respective criteria, which
means that the worst layouts shall have metric values near 0%, the best ones
shall have values near 100%, and moderate ones shall score around 50%. The
metrics should be parameterized such that this spectrum of values is exhausted
for layouts that are generated by typical layout algorithms, allowing to clearly
distinguish them from one another. We evaluated to which extent our proposed
metrics satisfy these properties based on an experimental analysis. The results
confirm that our formulae are very suited to the stated goals. However, we omit
the details of these experiments due to space limitations; they are available in a
technical report [18], which also contains formulae for more aesthetic criteria.

The basic idea behind each of our formulae is to define a certain input split
value xs such that if the value of the respective criterion equals xs, the metric is
set to a defined output split value µ∗. Values that differ from xs are scaled towards
0 or 1, depending on the specific criterion. The advantage of this approach is
that different formulae can be applied to the ranges below and above the split
value, simplifying the design of metrics that meet the goals stated above. The
approach involves several constants, which we determined experimentally.

Let G = (V,E) be a directed graph with a layout L. Let n = |V | and m = |E|.

Number of crossings. Similarly to Purchase we define a virtual upper bound
κmax = m(m− 1)/2 on the number of crossings [2]. We call that bound virtual
because it is valid only for straight-line layouts, while layouts where edges have
bend points can have arbitrarily many crossings. Based on the observation that
crossings tend to be more likely when there are many edges and few nodes, we
further define an input split value

κs = min

{
m3

n2
, (1− µ∗c)κmax

}
. (2)

µ∗c is the corresponding output split value, for which we chose µ∗c = 10%. The
exponents of m and n are chosen such that the split value becomes larger when
the m/n ratio is high. We denote the number of crossings as κ(L). Layouts with
κ(L) < κs yield metric values above µ∗c , while layouts with κ(L) > κs yield
values below µ∗c . This is realized with the formula

µc(L) =


1 if κmax = 0,
0 if κ(L) ≥ κmax > 0,

1− κ(L)
κs

(1− µ∗c) if κ(L) ≤ κs,(
1− κ(L)−κs

κmax−κs

)
µ∗c otherwise.

(3)

Area. Let w(L) be the width and h(L) be the height of the drawing L. The
area required to draw a graph depends on the number of nodes and edges, hence
we define a relative area

α(L) =
w(L)h(L)

(n+m)2
(4)

that takes into account the number of elements in the graph. We square that
number because we observed that many drawings of larger graphs require a
disproportionately high area. We split the output values at two points µ∗a = 10%
and µ∗∗a = 95%, with corresponding input split values αs1 and αs2. Values below
µ∗a are met when α(L) > αs1, values above µ∗∗a are met when α(L) < αs2, and
values in-between are scaled proportionally. The constants αs1 and αs2 have
been determined experimentally as 1000 and 50, respectively. We define the area
metric as

µa(L) =


αs1

α(L)µ
∗
a if α(L) > αs1,

1− α(L)
αs2

(1− µ∗∗a) if α(L) < αs2,(
1− α(L)−αs2

αs1−αs2

)
(µ∗∗a − µ∗a) + µ∗a otherwise.

(5)

Edge length uniformity. We measure this criterion with the standard devia-
tion σλ(L) of edge lengths and compare it against the average edge length λ̄(L),
which we use as input split value. We define

µu(L) =

{
λ̄(L)
σλ(L)µ

∗
u if σλ(L) ≥ λ̄(L),

1− σλ(L)

λ̄(L)
(1− µ∗u) otherwise,

(6)

Evolution Cycle

recombination mutation evaluation survival

type:
layered

algorithm:
KLayered

direction:
right

routing:
polyline

spacing:
12 inactive

direction:
down

routing:
orthog.

spacing:
18

type:
layered

algorithm:
KLayered inactive

Population

spacing:
42

iterations:
790

type:
force

algorithm:
KForce inactive inactive

iterations:
270

spacing:
25

algorithm:
Circo

type:
circular

type:
layered

algorithm:
KLayered

spacing:
14

routing:
splines inactivedirection:

right

algorithm:
KForce

spacing:
68

iterations:
1380

type:
force inactive inactive

type:
force

algorithm:
Neato

routing:
splines

iterations:
200

spacing:
16inactive

Fig. 2. Evolutionary layout example: starting with a population of four genomes,
two new genomes are created through recombination, two genomes are mutated,
and four of the resulting genomes survive after their evaluation.

where the output split value µ∗u = 20% corresponds to the metric value that
results when the standard deviation equals the average.

4 Evolutionary Process

The genetic encoding presented in Sect. 3 can serve as basis for numerous meta
heuristics. In this section we discuss one possible heuristic with the goal of creat-
ing a starting point of further research, without claiming that this is the ultimate
solution. We use an evolutionary algorithm, a popular method for searching large
solution spaces.

A population is a set of genomes. An evolution cycle is a function that mod-
ifies a population with four steps, which are explained below. The evolutionary
algorithm executes the evolution cycle repeatedly, checking some termination
condition after each execution. Simple conditions for fully automatic optimiza-
tion are to limit the number of iterations and to check whether the fitness of
the best individual exceeds a certain threshold. Alternatively, the user can be
involved by manually controlling when to execute the next evolution cycle and
when to stop the process. The four steps of the evolution cycle are discussed in
the following and exemplified in Fig. 2.

1. Recombination. New genomes are created by crossing random pairs of
existing genomes. A crossing of two genomes is created by crossing all their
genes. Two integer or floating point typed genes are crossed by computing their

average value, while for other data types one of the two values is chosen randomly.
Only a selection of the fittest individuals is considered for mating.

When the parent genomes have different values for the layout algorithm gene,
the child is randomly assigned one of these algorithms. As a consequence, the
active / inactive statuses of the other genes of the child must be adapted such
that they match the chosen algorithm A: each gene g is made active if and only
if A supports the layout option associated to g.

2. Mutation. Genomes have a certain probability of mutating. A mutation
is done by randomly modifying its genes, where each gene g has an individual
mutation probability pg depending on its type. We assign the highest pg values to
genes with integer or floating point values, medium values to genes with Boolean
or enumeration values, and the lowest values to the layout algorithm and layout
type genes. Let g be a gene with value x. If the data type of g is integer or floating
point, the new value x′ is determined using a Gaussian distribution using x as its
average and the standard deviation assigned to the gene type of g. If x′ exceeds
the upper or lower bound assigned to the gene type of g, it is corrected to a
value between x and the respective bound. For genes with other types, which
have no specific order, a new value is chosen based on a uniform distribution over
the finite set of values, excluding the previous value. When the layout algorithm
gene mutates, the active / inactive statuses of other genes must be updated as
described for the recombination step.

3. Evaluation. A fitness value is assigned to each genome that does not have
one yet (see Sect. 3.1), which involves executing the encoded layout algorithm
in order to obtain a corresponding phenotype. The population is sorted using
these fitness values.

4. Survival. Only the fittest individuals survive. Checking all genomes in order
of descending fitness, we include each genome X in the set of survivors if and only
if it meets the following requirements: (i) its fitness exceeds a certain minimum,
(ii) the maximal number of survivors is not reached yet, and (iii) the distance
of X to other individuals is sufficient. The latter requirement serves to support
the diversity of the population. Comparing all pairs of individuals would require
a quadratic number of distance evaluations, therefore we determine the distance
only to some random samples X ′ from the current set of survivors. We determine
the distance d(X,X ′) of two individuals X,X ′ by computing the sum of the
differences of the gene values. In order to meet the third requirement, d(X,X ′) ≥
dmin must hold for a fixed minimal distance dmin.

4.1 Choosing Metric Weights

The fitness function discussed in Sect. 3.1 uses layout metrics µ1, . . . , µk and
weights w1, . . . , wk ∈ [0, 1], where each wi controls the influence of µi on the
computed fitness. The question is how to choose suitable weights. Masui pro-
posed to apply genetic programming to find a fitness function that best reflects
the user’s intention [19]. The computed functions are evolved as Lisp programs

and are evaluated with layout examples, which have to rated as “good” or “bad”
by the user. A similar approach is used by Barbosa and Barreto [3], with the
main difference that the fitness function is evolved indirectly by modifying a set
of weights with an evolutionary algorithm. Additionally, they apply another evo-
lutionary algorithm to create concrete layouts of a given graph. Both algorithms
are combined in a process called co-evolution: the results of the weights evolution
are used for the fitness function of the layout evolution, while the fitness of the
weights is determined based on user ratings of sample layouts.

We have experimented with two much simpler methods, both of which in-
volve the user: (a) the user directly manipulates the metric weights with sliders
allowing values between 0 and 1, and (b) the user selects good layouts from the
current population and the metric weights are automatically adjusted according
to the selection. This second method builds on the assumption that the consid-
ered layout metrics are able to compute meaningful estimates of the absolute
quality of any given layout (see Sect. 3.1). The higher the result of a metric,
the higher its weight shall be. Let µ̄1, . . . , µ̄k be the average values of the layout
metrics µ1, . . . , µk for the selected layouts. Furthermore, let w1, . . . , wk be the
current metric weights. For each i ∈ {1, . . . , k} we determine a target weight

w∗i =


1− 1

2

(
1−µ̄i
1−µ∗

w

)2

if µ̄i ≥ µ∗w,

1
2

(
µ̄i
µ∗
w

)2

otherwise,

(7)

where µ∗w is a constant that determines which metric result is required to reach a
target weight of 50%. We chose µ∗w = 70%, meaning that mediocre metric results
are mapped to rather low target weights. The square functions in Equation 7
are used to push extreme results even more towards 0 or 1. The new weight of
the layout metric µi is w′i = 1

2 (wi +w∗i), i. e. the mean of the old weight and the
target weight.

4.2 User Interface

We have experimented with a user interface that includes both variants for mod-
ifying metric weights, shown in Fig. 3. The window visualizes populations by
presenting up to 16 small drawings of the evaluation graph, which represent the
fittest individuals of the current population. 13 metrics are shown on the side of
the window. The user may use the controls in the window to

– view the computed values of the layout metrics for an individual,
– directly set the metric weights,
– select one or more favored individuals for indirect adjustment of weights,
– change the population by executing an evolution cycle (“Evolve” button),
– restart the evolution with a new initial population (“Restart” button), and
– finish the process and select the abstract layout encoded in a selected indi-

vidual (“Apply” button).

Fig. 3. User interface for evolutionary meta layout, showing drawings for 16 in-
dividuals of the current population. The check box below each proposed graph
drawing is used to select favored layouts for automatic adaption of metric
weights. The sliders on the right offer direct manipulation of the weights.

The indirect method for choosing weights, which adapts them according to
the user’s selection of favored layouts, is in line with the multidrawing approach
introduced by Biedl et al. [1]. The main concept of that approach is that the
user can select one of multiple offered drawings without the need of defining her
or his goals and preferences in the first place. The multidrawing system reacts
on the user’s selection and generates new layouts that are similar to the selected
ones. In our proposed method, this similarity is achieved by adjusting the fitness
function such that the selected layouts are assigned a higher fitness, granting
them better prospects in the competition against other layouts.

5 Evaluation

The methods presented in this paper have been implemented and evaluated
in KIELER, an Eclipse-based open source project.1 Our experiments included
four layout algorithms provided by KIELER as well as five algorithms from the
Graphviz library [20] and 22 algorithms from the OGDF library [21]. The total
number of genes in each genome was 79.

1 http://www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
t [s]

n

(a) Execution time

0 1 2 3 4 5 6
0%
10%
20%
30%
40%
50%
60%
70%

80%
90%

74% 76% 79% 81% 82% 83% 84%

(b) Effectiveness

Fig. 4. (a) Execution time t plotted by number of nodes n with single core
execution (solid line) and multicore execution (dashed line). (b) Result of the
edge uniformity experiment. The line on top shows the fitness values of the best
genomes for iterations 0 to 6 (horizontal axis), while the bars show the fractions
of genomes that are set to force-type algorithms.

5.1 Execution Time

We tested the performance of evolutionary meta layout on a set of 100 generated
graphs with varying number of nodes 2 ≤ n ≤ 100 and e = 1.5n edges. The
tests have been executed with an Intel Xeon 2.5 GHz CPU. The population
contained 16 genomes, the recombination operation bred 13 new genomes, and
the mutation operation affected 60% of the whole population, thus 22.6 new
genomes were created on average. This means that about 23 layout algorithm
executions had to be performed for the evaluation operation of each evolution
cycle, and each layout metric has been evaluated just as often. We measured
the average execution time of one evolution cycle (i. e. a single iteration), which
led to the results shown in Fig. 4a. The vast majority of time is spent in the
evaluation step: on average 74% is taken by layout algorithm execution, and 20%
is taken by metrics evaluation. The rather high execution time limits the number
of evolution cycles that can be performed in an interactive environment. The
consequence is that the evolutionary algorithm has to converge to an acceptable
solution within few iterations. However, the evaluation step is very suitable for
parallelization, since the evaluations are all independent. As seen in Fig. 4a, the
total execution time can be reduced by half when run with multiple threads on
a multicore machine (eight cores in this example).

5.2 Programmatic Experiments

We carried out three experiments in order to verify the effectiveness of the evo-
lutionary approach. The experiments had different optimization goals: minimal

number of edge crossings, maximal number of edges pointing left, and optimal
uniformity of edge lengths. In each experiment the corresponding layout metric
was given a weight of 100%, while most other metrics were deactivated (except
some basic metrics avoiding graph elements overlapping each other). The opti-
mization goals were chosen such that they can be mapped to certain kinds of
layout algorithms, allowing to validate the results according to prior knowledge
of their behavior. 30 randomly generated graphs were used as evaluation graphs.
In the crossing minimization experiment, for 60% of the graphs a planarization-
based algorithm was selected as the genome with highest fitness after three or less
iterations. This confirms the intuitive expectation, since planarization methods
are most effective in minimizing edge crossings. In the experiment that aimed at
edges pointing left, for 90% of the graphs a layer-based algorithm was selected
as the genome with highest fitness after three or less iterations. Additionally,
the layout option that determines the main direction of edges had to be set to
left, which was accomplished in 83% of the cases. In the edge uniformity exper-
iment, a force-based algorithm was selected for 63% of the graphs after three
iterations, and for 73% of the graphs after six iterations (see Fig. 4b). This re-
sult matches the expectation, too, because force-based methods aim at drawing
all edges with uniform length. In all experiments it could be observed that the
average rating of genomes was consistently increasing after each iteration, but
this increase became smaller with each iteration. We conclude that our proposed
evolutionary meta layout approach can effectively optimize given aesthetic crite-
ria, and in most cases the kind of layout algorithm that is automatically selected
is consistent with the intuition. A very relevant observation is that the process
tends to converge very quickly, often yielding good solutions after few iterations,
e. g. as illustrated in Fig. 4b. On the other hand, in some cases the computation
is trapped in local optima, which could possibly be avoided by improving the
parameters of the evolutionary computation.

5.3 User Study

We have conducted a user study to determine the practical usefulness of our ap-
proach. The study is based on a set of 8 graphs, inspired by real-world examples
that were found on the web, with between 15 and 43 nodes and 18 to 90 edges.
25 persons participated in the study: four members of our research group, 17
computer science students, and four persons who were not involved in computer
science. The research group members are experts in graph layout technology and
are likely to have predetermined opinions about which layout configurations to
use in certain contexts, while the other participants can be regarded as novices
for that matter. We expected that novice users would benefit more strongly from
the evolutionary meta layout approach compared to the experts.

For each graph, the participants were presented three tasks regarding connec-
tivity, e. g. finding the shortest path between two given nodes. The participants
then had to find a layout configuration which they regarded as useful for working
on the tasks. The test instructions encouraged the participants to improve the
layout configuration until they were sure they had found a well readable layout.

Four of the graphs were treated with the user interface presented in Sect. 4.2,
named Evol in the following, which evolves a population of layout configura-
tions and lets users pick configurations by their previews. They were free to
use both the direct and the indirect method for modifying weights (Sect. 4.1).
For the other four graphs, the participants were required to find layout con-
figurations manually by choosing from a list of available layout algorithms and
modifying parameters of the chosen algorithms. For each participant we deter-
mined randomly which graphs to treat with Evol and which to configure with
the manual method, called Manual in the following. After the participants had
accepted a layout configuration for a graph, they worked on the respective tasks
by inspecting the drawing that resulted from the configuration.

After all graphs were done, the participants were asked 6 questions about
their subjective impression of the evolutionary approach. The overall response
to these questions was very positive: on a scale from −2 (worst rating) to 2 (best
rating), the average ratings were 1.0 for the quality of generated layouts, 0.8
for their variety, 1.2 for the time required for finding suitable layouts, 0.6 for
the effectiveness of manually setting metric weights, and 1.5 for the effectiveness
of adjusting metric weights by favoring individuals. Most notably, the indirect
adjustment of metric weights was rated much higher than their direct manipula-
tion. This indicates that most users prefer an intuitive interface based on layout
proposals instead of manually setting parameters of the fitness function, since
the latter requires to understand the meaning of all layout metrics.

The average rate of correct answers of non-expert users to the tasks was 77.4%
for Manual and 79.8% for Evol. The average time used to work on each task
was lower by 7.5% with Evol (131 seconds) compared to Manual (142 seconds).
These differences are not statistically significant: the p-values resulting from a
t-test on the difference of mean values are 29% for the correctness of answers and
23% for the working time. A more significant result (p = 8.3%) is obtained when
comparing the differences of Evol and Manual working times between expert
users and non-expert users. In contrast to the non-experts, expert users took
more time to work on the tasks with Evol (126 seconds) compared to Manual
(107 seconds). Furthermore, the average rate of correct answers of expert users
was equal for both methods. This confirms the assumption that the method
proposed in this paper is more suitable in applications used by persons without
expert knowledge on graph drawing.

Many participants commented that they clearly preferred Evol over Man-
ual. It could be observed that novice users were overwhelmed by the number
of configuration parameters shown for the manual method. In many cases, they
stopped trying to understand the effects of the parameters after some unsuc-
cessful attempts to fine-tune the layout. Therefore the average time taken for
finding a layout was lower for Manual (129 seconds) compared to Evol (148
seconds). For the Evol interface, on the other hand, similarly frustrating expe-
riences were observed in few cases where the evolutionary algorithm apparently
ran into local optima that did not satisfy the users’ expectations. In these cases
users were forced to restart the process with a new population.

The average number of applied evolution cycles was 3.1, which means that
in most cases the participants found good solutions after very few iterations of
the evolutionary algorithm. Furthermore, we measured the index of the layout
chosen for working on the tasks on a scale from 0 to 15. The layout with index 0
has the highest fitness in the current population, while the layout with index 15
is the one with lowest fitness from the 16 fittest individuals. The average selected
index was 2.3, a quite low value, suggesting that the computed fitness has a high
correlation with the perceived quality of the layouts.

6 Conclusion

We introduced the notion of meta layout, which means creating an abstract lay-
out by choosing and parameterizing a layout algorithm, which in turn generates
a concrete layout of a graph. We presented a genetic representation of abstract
layouts, layout metrics for building a fitness function, and an evolutionary algo-
rithm for developing a population of abstract layouts. Furthermore, we proposed
a simple method for the indirect adjustment of weights of layout metrics. Since
the result of the evolutionary computation is not a concrete layout, but a layout
configuration, it can be applied to any graph without repeating the process.

Our experiments partially confirmed the usefulness of the presented methods.
Participants of the user study clearly preferred the evolutionary approach over
the manual setting of parameters for layout algorithms, and they also liked to
modify the fitness function indirectly rather than to adjust weights directly. The
objective results about the effectivity working on tasks about graph connectivity
were not statistically significant with respect to comparing our proposed method
with the manual method. However, non-expert users clearly profited from the
evolutionary method more than the experts did.

The evolutionary algorithm presented here is not the only heuristic for opti-
mizing abstract layouts. Further work could evaluate other optimization heuris-
tics that build on our genetic representation and compare them to the results
of this paper. For instance, using a divide-and-conquer approach one could sep-
arately optimize each parameter of the layout algorithms, one after another.

References

1. Biedl, T., Marks, J., Ryall, K., Whitesides, S.: Graph multidrawing: Finding nice
drawings without defining nice. In: Whitesides, S. (ed.) Graph Drawing, Lecture
Notes in Computer Science, vol. 1547, pp. 347–355. Springer Berlin Heidelberg
(1998)

2. Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages
and Computing 13(5), 501–516 (2002)

3. Barbosa, H.J.C., Barreto, A.M.S.: An interactive genetic algorithm with co-
evolution of weights for multiobjective problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’01). pp. 203–210 (2001)

4. Branke, J., Bucher, F., Schmeck, H.: Using genetic algorithms for drawing undi-
rected graphs. In: Proceedings of the Third Nordic Workshop on Genetic Algo-
rithms and their Applications. pp. 193–206 (1996)

5. Eloranta, T., Mäkinen, E.: TimGA: A genetic algorithm for drawing undirected
graphs. Divulgaciones Matemáticas 9(2), 155–170 (2001)

6. Groves, L.J., Michalewicz, Z., Elia, P.V., Janikow, C.Z.: Genetic algorithms for
drawing directed graphs. In: Proceedings of the 5th International Symposium on
Methodologies for Intelligent Systems. pp. 268–276 (1990)

7. Rosete-Suarez, A., Ochoa-Rodriguez, A.: Genetic graph drawing. In: Nolan, P.,
Adey, R.A., Rzevski, G. (eds.) Applications of Artificial Intelligence in Engineering
XIII, Software Studies, vol. 1. WIT Press / Computational Mechanics (1998)

8. Tettamanzi, A.G.: Drawing graphs with evolutionary algorithms. In: Parmee, I.C.
(ed.) Adaptive Computing in Design and Manufacture, pp. 325–337. Springer Lon-
don (1998)

9. Vrajitoru, D.: Multiobjective genetic algorithm for a graph drawing problem. In:
Proceedings of the Midwest Artificial Intelligence and Cognitive Science Confer-
ence. pp. 28–43 (2009)

10. de Mendonça Neto, C.F.X., Eades, P.D.: Learning aesthetics for visualization. In:
Anais do XX Seminário Integrado de Software e Hardware. pp. 76–88 (1993)

11. Utech, J., Branke, J., Schmeck, H., Eades, P.: An evolutionary algorithm for draw-
ing directed graphs. In: Proceedings of the International Conference on Imaging
Science, Systems, and Technology (CISST’98). pp. 154–160. CSREA Press (1998)

12. Neta, B.M.d.M., Araujo, G.H.D., Guimarães, F.G., Mesquita, R.C., Ekel, P.Y.:
A fuzzy genetic algorithm for automatic orthogonal graph drawing. Applied Soft
Computing 12(4), 1379–1389 (2012)

13. Bertolazzi, P., Di Battista, G., Liotta, G.: Parametric graph drawing. IEEE Trans-
actions on Software Engineering 21(8), 662–673 (Aug 1995)

14. Niggemann, O., Stein, B.: A meta heuristic for graph drawing: learning the optimal
graph-drawing method for clustered graphs. In: Proceedings of the Working Con-
ference on Advanced Visual Interfaces (AVI’00). pp. 286–289. ACM, New York,
NY, USA (2000)

15. Archambault, D., Munzner, T., Auber, D.: Topolayout: Multilevel graph layout by
topological features. IEEE Transactions on Visualization and Computer Graphics
13(2), 305–317 (2007)

16. Barreto, A.M.S., Barbosa, H.J.C.: Graph layout using a genetic algorithm. In:
Proc. of the 6th Brazilian Symposium on Neural Networks. pp. 179–184 (2000)

17. Dunne, C., Shneiderman, B.: Improving graph drawing readability by incorporating
readability metrics: A software tool for network analysts. Tech. Rep. HCIL-2009-13,
University of Maryland (2009)

18. Spönemann, M., Duderstadt, B., von Hanxleden, R.: Evolutionary meta layout of
graphs. Technical Report 1401, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science (Jan 2014), ISSN 2192-6247

19. Masui, T.: Evolutionary learning of graph layout constraints from examples. In:
Proceedings of the 7th Annual ACM Symposium on User Interface Software and
Technology (UIST’94). pp. 103–108. ACM (1994)

20. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software—Practice and Experience 30(11), 1203–
1234 (2000)

21. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
Open Graph Drawing Framework (OGDF). In: Tamassia, R. (ed.) Handbook of
Graph Drawing and Visualization, pp. 543–569. CRC Press (2013)

	Evolutionary Meta Layout of Graphs

