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Abstract. Graphical actor-based models provide an abstract overview
of the flow of data in a system. They are well-established for the model-
driven engineering (MDE) of complex software systems and are sup-
ported by numerous commercial and academic tools, such as Simulink,
LabVIEW or Ptolemy. In MDE, engineers concentrate on constructing
and simulating such models, before application code (or at least a large
fraction thereof) is synthesized automatically. However, a significant frac-
tion of today’s legacy system has been coded directly, often using the C
language. High-level models that give a quick, accurate overview of how
components interact are often out of date or do not exist. This makes it
challenging to maintain or extend legacy software, in particular for new
team members.
To address this problem, we here propose to reverse the classic synthesis
path of MDE and to synthesize actor-based dataflow models automati-
cally from source code. Here functions in the code get synthesized into
nodes that represent actors manipulating data. Second, we propose to
harness the modeling-pragmatic approach, which considers visual mod-
els not as static artefacts, but allows interactive, flexible views that also
link back to textual descriptions. Thus we propose to synthesize actor
models that can vary in level of detail and that allow navigation in the
source code. To validate and evaluate our proposals, we implemented
these concepts for C analysis in the open source, Eclipse-based KIELER
project and conducted a small survey.

Keywords: Actor-Based Dataflow · Program Comprehension · Inter-
active Documentation.

1 Introduction

Precise and up to date documentation is a key aspect of quality maintenance of
software systems [4, 19]. Good documentation does not only help the developer
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Fig. 1: An example actor model, illustrating the data flow in a signal processing
component named sonoNccfPrepare.

to keep a better overview about the project, but also enables users to gain a
perception about the usage, functionality, and connections inside the project.

Regardless of the advantages of a well-documented project, the documen-
tation for many projects is outdated, as stated by different surveys, e.g., by
Lethbridge et al. [14] and Singer [24]. Singer states that even if most developers
appreciate good documentation, the time needed for its creation or maintenance
leads to inconsistency, which further leads to a lack of trust from the developers.

We here propose to enhance the documentation of existing codebases by the
usage of diagrammatic actor-based dataflow models, or actor models for short.
Actor models are already commonly used in model-driven engineering and are
supported by numerous commercial and academic tools, such as Simulink, Lab-
VIEW or Ptolemy. Lee et al. [13] describe actors as components that can execute
and communicate with other actors in a model. Their ports represent an inter-
face for communication with other actors and their environment. For example,
Figure 1 shows an actor named sonoNccfPrepare, with input ports sonoNccfEn-
ergy, acfSizeInSamples, etc., and output ports energyBuffer, meanBuffer, etc. That
actor includes other actors; For 1, for example, receives the inputs bufferSize, i,
and frameshift from the environment, and provides output buffer to actor For 2.

Unlike the MDE setting, where developers create visual (actor) models and
textual code is synthesized from the models, we here propose to reverse the
synthesis path and to automatically create models from existing code. We thus
propose to extract documentation directly and automatically from the source,
which has been shown to be helpful and wanted by developers [6]. Rugaber [21]
states that program comprehension is the biggest bottleneck in development
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time-wise and is mainly done manually, so automation and simplifications in the
comprehension can cut down on that bottleneck. A key benefit of visual code
comprehension tools is that users are not burdened anymore with the manual
creation and maintenance of such visualizations, and that such visualizations are
more up to date. This is not meant to completely replace manual documenta-
tion, as documentation extracted from code can only be a description and not
define a specification or the thoughts that went into design decisions, as dis-
cussed by Parnas [19]. The generated visualizations proposed here are meant to
complement and structure other documentation.

Contributions & Outline

– We propose an approach to automatically generate actor models from C
programs, where the actors match the program structure and their intercon-
nections reflect the data flow (Section 2).

– We have prototyped and integrated this model extraction and visualization
in an open source, Eclipse-based modeling environment, which allows flexible
diagram views that link back to the source code (Section 3).

– We have conducted a small user experiment that, for a given set of tasks,
compares the effectiveness of source code analysis vs. the inspection of visual
models (Section 4).

Section 5 discusses related work, we conclude in Section 6.

2 Actor-Based Dataflow Visualization

Most developers define the behavior of a program with imperative program-
ming languages [15]. In programs split up into many different functions it may
be unclear where data in functions come from and where they are used. Most
commonly used IDEs provide some support for tracing the data, through high-
lighting or function usage trees, but in general they do not give an overview of
the intraprocedural dataflow. We propose an actor-based dataflow view, akin to
Ptolemy [5] and SCCharts dataflow [29]. This section describes how to visualize
such a dataflow model for imperative programming languages. We illustrate this
with the example of C code.

2.1 Actor-Based Dataflow

The example actor model shown in Figure 2b, which represents the code
shown in Figure 2a, shows a possible mapping from elements of an imperative
language to dataflow elements. We show this for the C language, the principles,
however, are applicable to other higher-level imperative and functional languages
as well. As they might use more complex constructs such as classes, generics,
etc., these points have to be addressed in future work. The actor surrounding
the dataflow model may have some declarations to define variables used as in-
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int f(int i) {
return 42 * i + 23;

}

int dfc(int x, int y) {
x = x + y;
int multSum = x * y;
int out = f(multSum);
return out;

}

(a) Source code (b) Actor model with collapsed actor f

(c) Actor model with expanded actor f (d) Actor model with inlined actor f

Fig. 2: Automatically generated dataflow views.

or outputs for the main dataflow region. These declarations show the interface
of the actor regarding the data it reads from and gives back to the environment.
This is also visible in the dataflow region, as the in- and outputs of the actor are
visualized as named flags on the left or the right of the dataflow, respectively.

The dataflow region itself visualizes a collection of assignments. All assign-
ments connect their inputs to their outputs through simple actors, which are the
basic operations available for numbers, such as +, −, ∗, etc., or complex actors
with inner behavior, such as the actor f. We also make use of configurable views,
to show the dataflow only at top-level, more detailed by expanding any complex
actor, or completely inlined with connected interface, see Figures 2b, 2c and 2d.

2.2 Constructing Actor Models

For the translation of the source code into an actor model, the Abstract Syntax
Tree (AST) is analyzed and a view is presented based on its constructs. The
following explains how we propose to visualize the different language constructs.

Assignment Statements To start with the basics, each assignment of an
expression is represented by the connection of its simple or complex actors via
an edge or wire in the view. These wires can connect to further assignments or
other uses in complex actors.

Compound Statements The translation of a compound statement is the core
of the dataflow extraction. It represents the body of a function, but it is also
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int main(int x) {
while (x < 15) {

x = x * x;
}
return x;

}

(a) Code

(b) While actor with textual rep-
resentation of control expression,
with expanded body and with
context

(c) While actor with
dataflow representation
of control expression,
with collapsed body and
without context

Fig. 3: Alternative actor views of a while statement.

used to represent the body of control statements such as the if statement. To
translate this into dataflow, all statements within are distinguished as detailed
in this section and visually added to a dataflow region.

Function Definitions Figure 2a shows the definitions of the functions f and
dfc. The representation of the function dfc in actor-based dataflow is shown in
Figure 2b. It shows the function as an actor which can be referenced by other
actors to represent function calls. The parameters are represented by variable
declarations. Furthermore, the actor declares an output variable matching the
return type of the function, shown with the name res. The compound statement
of the function is then represented by the dataflow region of the actor.

Function Calls In Figure 2a, out = f(multSum) is an assignment statement
that makes a function call. A complex actor is created that references the actor
for the called function. The parameters of the function and its return value are
linked to the corresponding variables in the dataflow region. This results in the
diagrams shown in Figures 2b to 2d. If the called function is also defined in the
given source code—and is not for example a library function—the referenced
actor is expandable to show the behavior of the called function. This way, the
resulting diagram can be navigated without showing every detail from the be-
ginning, so that the users can choose by themselves which details they want to
see.

While and Do-While Statements Control statements, such as loops, have no
direct representation in classical dataflow views. However, they are an important
part of the program structure that we want to preserve in our visualization. We
therefore propose to represent each control flow statement as a complex actor
referenced in the dataflow region, as it was shown for function calls. That com-
plex actor shows control flow in an abstract way or in a state machine fashion to
keep the main focus on the dataflow while giving the control flow a natural coun-
terpart. We explain the loop representations in detail for the while statement
only, as do-while and for statements are similar.

A while loop contains a conditional expression that controls how often the
loop is repeated, and the loop body that represents its behavior. An example
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while loop in C code is presented in Figure 3a. Figure 3b shows a corresponding
actor, as currently implemented in our tooling. The loop body is translated
with the rules for compound statements. Additionally, this region has a label to
represent the control expression in plain text.

Alternatively, as illustrated in Figure 3c, one might choose to not show the
control expression textually but to also synthesize it including any computation
and side effects into actors, with the result connected to a port of the while
actor. We have not implemented this option yet since it might lead to many
additional elements in the resulting graphic. However, for future extensions it
might be worth considering to offer this alternative visualization as an option.

The definition of the in- and outputs of the while actor is done by searching
for any variable defined outside of the while loop that is read or modified inside
the loop. In the resulting dataflow region, each read variable is connected with
the inputs, and each written variable is connected with the outputs of the actor,
as in Figure 3b.

For Statements The translation of the for statement is very similar to the
other loop statements. The difference is that it does not only contain one ex-
pression for the condition. The for statement contains two more expressions for
an initialization and an update of the loop, also shown as text.

If and Switch Statements These control flow statements are again visualized
as complex actors with the analysis of read and written variables. The control
flow can be modeled and displayed as simple state machines. This is different
to other approaches, as discussed in Section 5, since we use state chart visuals
to represent the branching control flow that is not directly translatable into tra-
ditional dataflow views. Keeping this as a dataflow-only view with combination
actors similar to multiplexers would be another viable approach allowing for
non-trivial control expressions that we have not implemented yet.

The if statement shown in Figure 4a can be translated as shown in Figure 4b,
with a branching initial state that hands the control either to the then or the
else branch, depending on whether the condition expression results as true
or false. The compound statements of both branches are then put into the
dataflow regions of their respective states as described above. The numbers next
to the transitions to the branches indicate their priority, where the lower number
stands for a higher execution priority. So the then transition with the higher
priority 1 will only be taken if the condition is true, otherwise the always-true
transition with the lower priority 2 is taken, matching the semantics of the if
statement. The connection of this actor to the outside is, as for all complex
actors, via the ports for all in- and outputs as shown before and omitted here.

The switch statement follows a very similar strategy, as it corresponds to
multiple chained up if statements. The code and resulting visualization are
shown in Figure 5. Each case statement is equivalent to an equality check of the
variable in the switch with the value in the case statement. The translation
to the state chart visualization therefore is as for the if translation, where now
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int main(int x) {
int a;
if (x > 42) {

a = 1337 * x;
} else {

a = 420 / x;
}
return a;

}

(a) Code (b) View

Fig. 4: The actor representation of an if statement.

int main(int x) {
int a = 0;
switch (x) {

case 1:
a = 42;
break;

case 2:
a = 14;

case 3:
a = a + x;

case 4:
a = a * x;
break;

case 5:
a = x - a;

default:
a = x;

}
return a;

}

(a) Code (b) View

Fig. 5: The actor representation of a switch statement.

instead of a single then branch a conditional transition to a case state is added
for each case statement with decreasing priority. The else branch is equal to
the default case, as it will be the transition with the lowest priority and no
condition attached to it. Additionally, every case gets an outgoing transition
into the case state with the next lower priority if it is missing the final break
statement, as the control flow will continue into the next case block in that case.

2.3 Data Types

Many use cases are already covered when using primitive data types such as
int, float, and so on. These represent single values and are shown to be held
by wires in the view. Other data types, however, are also widely used in C and
other imperative languages. Their representations are presented here.

Arrays Arrays are used in most languages, and we propose two visual counter-
parts. A code example swapping two array indices with their possible views are
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void swap(int array[],
int i1, int i2) {
int temp = array[i1];
array[i1] = array[i2];
array[i2] = temp;

}

(a) Source code

(b) Dataflow view divid-
ing the array

(c) Dataflow view with actors for modification

Fig. 6: Possible representations for arrays, which could also be used for structs.

shown in Figure 6a. In the first proposed view in Figure 6b, which we have opted
for in our prototype, the thicker wire representing the array is divided and split
into further wires for each read operation, labeled with the read index, and then
combined back into the thicker array wire for each write operation, labeled with
the written index. This view is compact and shows all array accesses in a fashion
where only the data is relevant. Another possible view, not implemented yet but
illustrated in Figure 6c, has a continuous thicker array wire and visualizes every
array access as an own actor. This representation may be less tidy, due to addi-
tional edge crossings, and has a strict dependency on the order of operations on
the array, even if they may be interchangeable in the dataflow sense.

Structured Data Structured data such as in structs in C or classes in other
languages can be visualized similar to arrays, where the thick wire represents
said structured data and its field accesses map to the index accesses in Figure 6.

Pointers Pointers to structured data and pointers in general can be visualized
as wires as described above, where the wires carry the data that is pointed to.
However, this only applies to pointers which are not modified. Pointer arithmetic
can be used in C, though that disconnects the pointer variable from the data it
points to and cannot be visualized easily with the concepts shown here anymore,
as it is may depend on actual runtime data and cannot be analyzed statically as
described.

Structs A common practice to pass data around among functions is to collect
these as structured data such as a struct in C and to pass a pointer to that
data to the functions. We propose an alternative way to show each field of a
central struct like individual variables together with the usual variables to flow
through the algorithm. An example of a dataflow graphic using this struct flow
abstraction, based on signal processing code provided by an industrial partner,
can be seen in Figure 9.
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Fig. 7: The workflow for visualizations in KIELER.

3 Implementation and Validation

For the extraction and visualization of dataflow from source code we make use of
pre-existing technologies for model-based design from the Kiel Integrated Envi-
ronment for Layout Eclipse Rich Client (KIELER) project. The typical workflow
and user interaction in the Eclipse-based tool explained in this section is pre-
sented in Figure 7 and described below. A key aspect is the separation of model
and customizable views, which serve as abstract documentation and navigation
aid, as advocated in modeling pragmatics [7].

KIELER uses the model-based framework KIELER Compiler (KiCo) [26] to
create compiler chains to and from modeling languages, executable code, visual
models, or intermediate models in multiple configurable steps, so-called proces-
sors. We use this compiler framework to build a new compiler chain compiling
from source code, in this case C code, to the visual modeling language SCCharts.
Our synthesis chain can also parse C++ code, and can, e.g., synthesize state
machines from a state pattern based on C++ templates, as discussed further in
Andersen’s thesis [2]. We use the C/C++ Development Tooling (CDT) for pars-
ing the source code and a novel extraction to generate SCCharts models from the
parsed code.3

The Sequentially Constructive StateCharts (SCCharts) language presented
by von Hanxleden et al. [9] provides determinate concurrency using a graphical
statechart notation and also supports the use of dataflow. We use it as a modeling
language for its support of modeling dataflow combined with its possibility to
create configurable and interactive visuals using KLighD.

The KIELER Lightweight Diagrams (KLighD) framework, as presented by
Schneider et al. [22], generates interactive views from arbitrary models using an
abstract view model to describe node-link diagrams. As SCCharts was designed
as a visual language using KLighD to automatically visualize modeled instances,
the use of SCCharts as our basis creates a shortcut to generating views. This
provides filtering and configurability of the view out of the box that are useful
for our use case.
3 The code for the extraction is available at https://git.rtsys.informatik.uni-kiel.de/

projects/KIELER/repos/semantics/browse/plugins/de.cau.cs.kieler.c.sccharts?at=
refs%2Ftags%2Fdiagrams21

https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/semantics/browse/plugins/de.cau.cs.kieler.c.sccharts?at=refs%2Ftags%2Fdiagrams21
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/semantics/browse/plugins/de.cau.cs.kieler.c.sccharts?at=refs%2Ftags%2Fdiagrams21
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/semantics/browse/plugins/de.cau.cs.kieler.c.sccharts?at=refs%2Ftags%2Fdiagrams21
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Fig. 8: Automatic highlighting from a dataflow view to the source code and
interaction in the tool.

All figures shown of dataflow use the KIELER infrastructure with SCCharts.
Here we use the visual aspect of the language, ignoring the semantics of the
language itself. To provide more than static diagrams, this infrastructure allows
the user to browse the models freely and interactively. The user can expand
and collapse regions and actors, such as shown in Figures 2b and 2c. One may
also use diagram options to show or hide labels for the inputs and outputs of
referenced complex actors, as also shown in Figures 2b and 2c, and other visual
options. Fuhrmann and von Hanxleden [7] presented how view management is
conceptualized and implemented in KIELER and can be used for SCCharts.

Furthermore, when having the extracted diagram and the source code of an
algorithm next to each other, we allow the user to interactively trace the origin
of diagram elements. For example, clicking on a complex function call actor
leads the user directly to the function call expression in the source code for
investigating the diagram and the source code itself in parallel. An impression
on how this looks in the KIELER environment is shown in Figure 8.

Figure 7 visualizes how to combine these modes of interaction with the tool to
get from the source code to a visualization and other artifacts. KIELER employs
the Eclipse Layout Kernel (ELK) and KLighD to compute concrete views from
the view models. One aspect not to be underestimated when using visual models
is how the proper usage of secondary notation affects readability [20]. To that
end, we employ the layer-based layout computed by ELK [23], which facilitates
a natural left-to-right reading direction; for dataflow diagrams, this means that
information flows from inputs to outputs.
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Figure 8 also shows the user interface in KIELER. There are two open editors,
one with the base C source code and one with the extracted and serialized
SCChart model, together with the view of that SCChart model with tools for
interactivity, such as a side bar for the diagram options, and the possibility to
highlight and navigate to elements from the view back to the source code.

For practical validation, we implemented a prototype following the concepts
as described in the previous sections. The dataflow view does not fully support
the pointers as discussed in Section 2.3 yet, the basic functionality for passing
pointers and writing to them in function calls, however, is already implemented.
The struct flow abstraction is used as a proof of concept of the view for structs.
In it, we require the algorithm to be separated into different functions that all
may manipulate one central struct. If they manipulate the struct, it is expected
that each of these functions take it as the first parameter. Finally, as the struct
flow abstraction does not support arrays as the default dataflow view does, those
elements are not wired up in Figure 9 used for the survey, leaving the complex
actor named For 8 unconnected in the view. Having full support for structs as
described above in our main dataflow view and adding that to the visual model
will be part of future work. This will also allow us to present the tool with larger
programs than the examples used here and in part improve the scalability and
understandability. For example, Figure 9 relies heavily on the use of structs and
would get clearer.

Fig. 9: Top level struct flow view filtered to display the main struct. Hierarchies
are all collapsed to show a first overview.
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Table 1: Survey results for the tasks.
Task Code Diagram p-value

Used for statements 13.6 s 3 s 0.020
Read struct elements 23.7 s 5.6 s 0.039
Last write 22.4 s 7.6 s 0.054
Written elements 125.9 s 5.1 s < 0.001

4 Survey

As a first assessment of the benefit of the resulting dataflow diagrams, we con-
ducted a preliminary survey with six PhD students from the working group.
The participant group was split in half, with each group being asked to com-
plete the same tasks regarding the dataflow example in Figure 9, utilizing only
the core concepts. Half of the participants got to view the source code in an
Eclipse IDE with the installed CDT for the tasks for the dataflow example. The
other group had the same tasks, using the extracted diagram in the interactive
view in KIELER. All participants had previous knowledge of the C programming
language, the usage of the Eclipse IDE, and the diagram view with SCCharts,
thus mitigating any skill-based bias in the results. They were allowed to use all
features of the IDE and the interactive diagram freely to simulate real workflow.

The first task was to identify all for statements that were used by the main
function of the program. The second task asked for the number of elements of the
main struct that were used by the sonoNccfParabolicInterpolation function.
In the third task the participants were asked to identify the function that does
the last write to the buffer element of the central struct. Finally, the fourth
task was to identify all elements of the central struct that are written to during
the calculation of the main function. We note that the dataflow graphic used
the struct flow abstraction and thus was already filtered to only show the flow
of the struct elements alone, so other local variables were not shown.

To compare the efficiency of the tasks in both scenarios, the time the partic-
ipants needed for the completion was measured. Everything was already set up
for them, so the measured time only spans from their first look at the diagram
or code until they gave the answer. We then took the times between the partici-
pants and did a two-sample t-test assuming equal variances on the logarithm of
the measured times for testing the significance of better results using the dia-
gram. The logarithmic mean times and the p-value of equal means are presented
in Table 1. The results show a significant increase in the ability to quickly solve
these tasks. The p-values indicate to reject the hypothesis of equal means at con-
fidence intervals of over 90% each, meaning that completing these specific tasks
is most likely faster. In this sample all of these tasks were solvable on average
more than three times as fast when using the extracted diagram than without,
while almost all tasks were solved correctly. Only in the fourth task none of the
participants was able to give the correct answer given the code alone and one
participant even gave up and stated that there was no way to solve the task in



Extracting Interactive Actor-Based Dataflow Models from Legacy C Code 13

the two minutes that were suggested as a soft time limit. They said that they
needed at least a piece of paper to take notes and that the IDE’s functionality to
highlight the name of the central struct was essential to make it even possible.

This indicates that the generated diagrams will make these tasks quicker
and easier to solve than with the code and usual IDE tooling alone. Surely, these
tasks are constructed in such a way that they should be solvable faster with the
diagram, for example showing what was asked for in the questions on a single
screen in the first task compared to needing to scroll through the code, but that
confirms the assumption that a diagram like this can present information in a
more accessible way than typical IDE features alone, and that can be harnessed
by using the extraction and interactivity presented in this paper. Furthermore,
the small sample size, the current state of the tool, and the tailored questions
only allow for preliminary study results that cannot be generalized and need to
be validated with a more complete tool. But it is not the focus to replace the
code, but rather to provide a tool to help the developer comprehend the code
alongside it, so these results already show potential to improve specific tasks.

5 Related Work

Analyzing dataflow is common practice, often used for low level compiler opti-
mizations [10,17]. However, these are typically low-level analyses, and not meant
to help program comprehension. To quote Ishio et al. [11], while developers have
to investigate dataflow paths, existing source code viewers focus on method calls
as a main relationship. In this paper, however, we focus on a higher level analy-
sis for the comprehension of developers. Ishio et al. [11] have investigated in-
terprocedural dataflow for Java programs. They propose Variable Data-Flow
Graphs (VDFGs) that represent interprocedural dataflow, but abstract from in-
traprocedural control flow. Unlike our work, their analysis ignores sequential
control flow, thus in program fragments like x = y; y = z; it (falsely) assumes
that x depends on z. For method calls, they assume that these produce data only
via their return value. They provide an interactive viewer, but their interaction
consists of selecting specific nodes (e.g., a variable) in the VDFGs, for which then
the neighboring nodes are indicated. Our work instead aims for providing high-
level overviews of whole program (regions) that can be explored interactively.

Namballa et al. [18] use VHDL and create a control and dataflow graph
(CDFG) for the program, which is an integral part during the synthesis from
the behavioral specification of a program into an electronic circuit using logic
gates. This CDFG described by Amellal and Kaminska [1] focuses on a control
flow graph with hints for the variables used in the dataflow. These graphs are
not extracted to help programmers comprehend the code but are specific to the
hardware synthesis. Furthermore, the graphs focus on showing the concrete con-
trol flow, while we focus on displaying the concrete dataflow, while hinting at
the control flow for non-linear flow of data.

Beck et al. [3] and Gèvay et al. [8] present methods to execute imperative
control flow on dataflow machines and graphical representations for those trans-
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lations. The use of their visualizations as a program comprehension tool is re-
stricted as they mainly focus on the execution on parallel dataflow machines.
Moreover, they do not describe any interactive features for the diagrams.

There are further tools and frameworks to reverse engineer diagrams from
C code. CPP2XMI is such a framework as used by Korshunova et al. [12] for
extracting class, sequence, and activity diagrams, or MemBrain for analyzing
method bodies as presented by Mihancea [16]. UML class models are extracted
from C++ by Sutton and Maletic [27], and another framework for the analysis of
object oriented code is presented by Tonella and Potrich [28]. All these tools and
frameworks show the importance of reverse engineering and presenting views to
programmers, whereas these do not cover dataflow like in our approach.

Commercial tools such as the McCabe tool suite or SCITools’ Understand
also focus on visualizing code metrics for an easier comprehension, but they
do not include such specific means of visualizing intraprocedural dataflow. The
DMS Software Reengineering Toolkit is another tool supporting some dataflow
analysis framework, that, however, also concentrates on the control flow and the
statements themselves, with data dependencies between each statement added
to the view, similar to the graphs shown in Namballa et al. [18].

Smyth et al. [25] implemented a generic C code miner for SCCharts. The focus
was to create semantically valid models from legacy C code, which can then be
compiled to modern code for various platforms. The paper only considers a small
subset of C, which is translated into control flow constructs. The work also tried
to find appropriate means for visualizing common C patterns in control flow,
which still is a difficult question for larger models.

6 Conclusions and Outlook

As argued by others before, visual models may be a valuable documentation of
textual programs. Diagrams leverage the human perception capabilities in ways
that program text typically does not use, and visual models typically entail some
level of abstraction. Thus visual models are—at least here—not meant to replace
code, but rather to augment them. In terms of visual documentation of source
code, a main novelty presented here is the synthesis of actor-based dataflow dia-
grams. Not all C language features are fully supported yet our implementation,
but in our experience, the dataflow and struct flow visualizations appear to be
valuable for the user and to provide an easy way to analyze the flow of data
within functions. A first user experiment indicated the advantages of the visual
models over the original program text for answering certain questions.

The synthesis of diagrams for code documentation also shows the broad ap-
plicability of visual models such as SCCharts. They can be used for programming
in the SCCharts language directly, but also for the automatic generation of in-
formative graphics. A compiler framework such as KiCo in the IDE makes the
mapping to a visual model easy to complete.

As future work SCCharts and the dataflow extraction could be extended with
support for the remaining constructs of the C language to enlarge the set of
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programs that can be shown in dataflow in their entirety. With that, evaluating
the views and their scalability on production codebases is a next step in verifying
this approach. Also, further filtering could be applied to the elements shown in
the visualization, adding to the existing filtering possibilities in SCCharts. Finally,
formalizing the notation and a more representative survey would be worthwhile
future work.
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