
KIELER: A Text-First Framework
for Automatic Diagramming of Complex Systems

Maximilian Kasperowski[0000−0002−7509−1678],
Niklas Rentz[0000−0001−6351−5413], Sören Domrös[0000−0002−8011−8484], and

Reinhard von Hanxleden[0000−0001−5691−1215]

Department of Computer Science, Kiel University, Kiel, Germany
{mka,nre,sdo,rvh}@informatik.uni-kiel.de

Abstract. In Model-Driven Engineering, editing models is typically not
merely a purely textual endeavor, but rather a mix between textual and
graphical editors and views. Both have their advantages and use cases
where either textual or diagrammatic representations are better suited to
edit and understand models. Therefore, a modeling framework offering
the best of both worlds can be advantageous.
We define the text-first approach to combine the textual and diagram-
matic representations by automatically synthesizing the textual model
into a diagram. We present the KIELER text-first diagramming framework
and its take on current challenges for model visualization and compare
it to the diagram-first approach, as exemplified by the GLSP framework.

Keywords: Diagramming Framework · Modeling Tools · Automatic Vi-
sualization · Diagram Synthesis.

1 Introduction

Visualization is a useful tool in Model-Driven Engineering (MDE), especially for
communication and documentation purposes during system development. In the
context of developing complex, real-world systems, handmade visualizations are
often tedious to create and maintain. In the case of ongoing developments and
changes they can quickly become a burden [16,10].

We here consider three paradigms for modeling and implementation of com-
plex systems: text-only, diagram-first and text-first. Text-only is the classic pro-
cess where a system is developed entirely as a collection of textual sources.
Diagram-first describes a workflow where a diagram is edited directly and text-
first describes a workflow where both a textual source and an automatically
generated diagram are available side-by-side. Text-only tools are arguably very
established and therefore serve as a good baseline for the requirements that
system development tools must provide.

In this paper we introduce the KIELER text-first diagramming framework.
We argue that there are significant benefits of a text-first approach, and we com-
pare our approach to the diagram-first approach, as exemplified by the Graphical
Language Server Platform (GLSP).

2 M. Kasperowski et al.

We aim to answer the research question: “How do text-only, diagram-first,
and text-first approaches compare in the context of MDE? ” In this paper, we lay
a stronger focus on the diagrammatic aspects because we argue that text-first
solutions to browse and understand complex models, via e. g. finding definitions
or showing documentation on hover, are already widely implemented and used.
Our contributions are

– a comparison of the concepts, technology, and motivation behind the text-
first KIELER framework and the diagram-first approach, as exemplified by
GLSP in the context of our assumptions about the MDE requirements of
developing complex systems in Sec. 3,

– an overview of the generic APIs offered by the KIELER framework in Sec. 4.1
including the diagram synthesis, options sidebar, and semantic filtering,

– a summary of modern browsing techniques for large, hierarchical diagrams
in KIELER such as off-screen element visualization, semantic zooming, and
the novel top-down layout approach in Sec. 4.2, and

– our vision of the future of diagram technologies in Sec. 5.

2 Related Work

We will first discuss diagramming frameworks other than KIELER and GLSP for
a broader overview, as well as some users of such diagramming frameworks.

In addition to KIELER and GLSP there are multiple frameworks and tool-
boxes for MDE with support for diagrams. Sirius [25] and Sprotty1 are examples
of low-level diagramming frameworks. Sirius supports customization of elements
through palettes and configuration views within Eclipse, which automatically
generate diagrams for different models. However, these diagrams do not sup-
port advanced browsing techniques for large hierarchical models that we discuss
in this paper but only zooming and panning. Sprotty is a fully customizable
framework for building diagramming tools on the basis of SVG that KIELER
and GLSP use as their foundation and provide generic solutions for common
diagram-related tool improvements.

Ptolemy II [5] is an older tool that uses a window-based diagram-first so-
lution to browse complex diagrams of hierarchical models. In contrast to other
diagram-first solutions presented here, nested subgraphs are visualized in sepa-
rate windows and not via compound graphs, which offloads parts of the layout
to the user and the operating system’s window management. KIELER and GLSP
support the integration of hierarchical layout through interactions such as ex-
pand/collapse and with top-down layout (see Sec. 4.2).

The bigER [9] tool is an implementation of a modeling tool for Entity Re-
lationship (ER) diagrams, which offers both text-first editing and diagram-first
editing using Sprotty similar to the KIELER approach but without the advanced
browsing techniques for large hierarchical models presented here. The bigUML

1 https://sprotty.org/

https://sprotty.org/

KIELER: A Text-First Framework for Automatic Diagramming 3

tool [14] developed later by the same group employs the diagram-first approach
for UML diagrams, based on GLSP.

Petzold et al. [18] developed a tool (PASTA) to aid with System-Theoretic
Process Analysis (STPA). The tool uses automatic visualization with a text-first
approach, which sets PASTA apart from other STPA tools that are either purely
textual or purely graphical. In particular, the purely graphical modeling is noted
to be particularly tedious, mainly due to the size of the graphs and the non-linear
workflow. Petzold et al. build on Sprotty and heavily utilize filtering, showing
multiple different views of the underlying model to deal with large graphs.

The coordination language Lingua Franca (LF) also comes with an automatic
visualization using the text-first approach [13]. LF programs are developed as
textual code in one or more source files, and the diagram serves mainly as an
abstract high-level overview over the program. Code snippets in different target
languages, so-called detailed reaction code, is usually filtered out of the diagram
as it would only distract from the high-level view. Therefore, LF diagrams are
always highly filtered. LF uses KIELER for its diagram synthesis and it is possible
to utilize the advanced browsing techniques presented here out of the box.

The variety of frameworks and tools that use KIELER and GLSP highlights
the need for diagrammatic representations. However, we also want to highlight
the importance of an editable textual source in addition to a diagram.

3 Modeling Paradigms for Model-Driven Engineering

Before discussing editing paradigms for diagrams we must first discuss the con-
text in which we consider the application of diagrams. We are specifically inter-
ested in diagram tools that can support diagrams of large, complex models that
may include some form hierarchy. We propose the requirement that diagrams
should always provide a degree of readability, both in overview and detail, that
is similar to the readability of small diagrams.

We define two diagram editing approaches by the way users interact with the
model behind the diagram.

The text-first diagram approach revolves around editing the source model
textually, while a diagram is automatically synthesized in real time. A textual
editor and diagram can be used side-by-side, as seen in Fig. 1. Moreover, the
editor and diagram can interact with each other. E. g., clicking on a node or an
edge in the diagram navigates the textual editor to its definition or vise versa.
The addition of a textual editor lets this text-first approach inherit all advantages
of the text-only approach, since the editor can support any text-based IDE and
editing features. In the KIELER framework, the text remains the ground truth
of each diagram, and any modifications of the model change the textual source.
Changing this textual source will automatically generate a new diagram.

Compared to KIELER’s text-first approach, the popular GLSP framework
[21,2] practices the diagram-first approach. In the diagram-first approach, a
user mainly edits via diagram interaction, which modifies the typically invisi-
ble, underlying source model. This is a fundamentally different approach that

4 M. Kasperowski et al.

Figure 1: The KIELER SCCharts VS Code extension shows the textual model
and the graphical view of the wagon model side-by-side with opened synthesis
option sidebar in the diagram view.

compromises many of the text editing advantages of modeling pragmatics [10],
as elaborated on in the following.

3.1 Text-First and Diagram-First Editing Paradigms

When developing new tools to support the development of large, complex sys-
tems, it is important to keep the strengths of existing technologies and estab-
lished workflows. Text-only tools are well established and have long been used to
model complex systems. Text-first tools employ modeling pragmatics to get the
best of a textual and graphical view on the model. E. g., text is easily supported
by version management, and it is easy to build tool support in form of content
assist, finding references, error and warning markers, and similar standard IDE
features. KIELER utilizes all of these features together with a diagram view. The
text-first approach utilizes the textual source as a detailed view that can be ac-
curately edited while the diagram can be adjusted to the current needs. GLSP is
often configured to have one or more textual models as ground truth. Usually a
graphical editor view on the model is built, instead of using a textual editor and
a diagram side-by-side, which only allows diagram-first editing. This requires to
do all editing operations by interacting with the diagram using palettes, context
menus, or input fields.

The text-first framework KIELER was created to relieve the user of the burden
of palettes and the need to place everything themselves, by using automatic
layout, in the case of KIELER provided by the Eclipse Layout Kernel (ELK) [4].
KIELER is built to use the diagram and text together and is able to map diagram

KIELER: A Text-First Framework for Automatic Diagramming 5

elements to elements in the textual model and vice versa. This enables users to
use the view—textual or diagram—most suitable for the given task. Although
GLSP integrates elkjs2 (ELK for JavaScript) for automatic layout, the standard
approach involves the user creating and placing everything manually, via diagram
interaction either using structure-based editing or palettes.

Diagram-first editing is often argued to be novice-friendly and intuitive. How-
ever, this can also be the case for well designed textual languages, as Eumann
and Wechselberg reported for railway domain experts than can and do write
textual models of SCCharts, a Statecharts dialect, using the KIELER frame-
work without any prior knowledge in programming or SCCharts [6]. Moreover,
in real-world models that use diagram-first editing a lot of developer time is
spent moving nodes and edges around to manually control the layout [16]. GLSP
focuses on such manual control, which is often missing in automatically synthe-
sized diagrams. Automatic layout is rarely able to capture secondary notation
[16]. Hence, users are happy with a layout they created themselves and that they
can control. However, Domrös et al. [3] show that control over the automatic
layout can also be achieved using the order of the textual model. Nevertheless,
KIELER partly employs the diagram-first editing paradigm using structure-based
editing [11]. Structure-based editing [19] enables users to create a structurally
correct model based on diagram interaction using a context menu. In contrast
to the WYSIWYG approach employed by GLSP, structure-based editing always
employs automatic layout.

Additionally, filtering does not integrate well into diagram-first editing while
it is a first-class citizen in the KIELER framework to handle complex models using
transient views [22]. E. g., SCCharts provides an induced data-flow view that
shows a different graph structure than the regular state-and-transition view [26].
GLSP can also filter a diagram. However, if the diagram view is filtered to create
a smaller model, the usual approach is to use automatic layout to place the
remaining elements to close gaps that would appear between elements and to
make the filtered view more readable. Additionally, graphical programming has
the disadvantage that coordinates for filtered elements cannot easily be inferred
from the unfiltered view, for which they would be necessary. This issue is not
inherent to the diagram-first approach if an editing approach that continuously
employ automatic layout is used. The issue occurs since manual coordinates and
coordinates determined by automatic layout cannot trivially be merged.

Generally, GLSP implements many interesting concepts and both KIELER
and GLSP use a very similar technology stack, which might make the two ap-
proaches compatible, as detailed in Sec. 5.

3.2 Infrastructure of KIELER and GLSP

KIELER is intended to be a framework mainly for Domain Specific Languages
(DSLs) and provides a set of configurable standard features. Fig. 2 shows several
diagrams from projects that utilize KIELER. They demonstrate the versatility
2 https://github.com/kieler/elkjs

https://github.com/kieler/elkjs

6 M. Kasperowski et al.

(a) A diagram generated from a Lingua Franca program taken from the Lingua Franca
playground repository3.

(b) A diagram generated using the Software Project Visualization (SPViz) tool pre-
sented by Rentz [20].

(c) An excerpt from a Sequentially Constructive Graph (SCG) created during the SC-
Charts compilation process [24].

Figure 2: Different diagram applications that use the KIELER framework.

of visualizations that KIELER can create as they have very different underlying
models and come from very different domains. In comparison, GLSP is more of a
sandbox than a framework by extending Sprotty’s functionality without offering
default implementations as provided by KIELER. Instead, GLSP provides a set
of tools that enables adopters to build the features they require.

Both KIELER and GLSP utilize Sprotty and its extension to the Language
Server Protocol (LSP) to create interactive diagrams. GLSP additionally pro-
vides a standard set of diagram interaction mechanisms by extending the LSP.
Petzold et al. extended the LSP for their diagram interaction constraint frame-

3 https://github.com/lf-lang/playground-lingua-franca/blob/2ea55cc6a35/examples/
Python/src/YOLOv5/YOLOv5_Webcam.lf

https://github.com/lf-lang/playground-lingua-franca/blob/2ea55cc6a35/examples/Python/src/YOLOv5/YOLOv5_Webcam.lf
https://github.com/lf-lang/playground-lingua-franca/blob/2ea55cc6a35/examples/Python/src/YOLOv5/YOLOv5_Webcam.lf

KIELER: A Text-First Framework for Automatic Diagramming 7

VS Code
Extension

KLighD ELK

Sprotty
Server

register
Language Server

LSP LSP (Sprotty Actions)

Top-Down
Layout L

Macro
Layout

L

Diagram
Synthesis Micro

Layout
L

Abstract Synthesis
Proxy
API

P Semantic
Tagging API

T

Diagram
Options API O

Language-
Specific
Server

KIELER

Framework

Language

Server

Diagram

Application

Client
klighd-vscode

Z

P L T O Z

P L T Sprotty

Figure 3: The general architecture of an application built with the KIELER frame-
work. The icons indicate where features discussed in this paper are implemented
and configured: proxies, layout, i. e. positioning of shapes and graph ele-
ments, semantic tagging, O diagram options, smart zoom.

work [17], and we built structure-based editing for KIELER [11] in the same
way. Similarly, both utilize and extend the Sprotty server component to create a
one-way interaction between diagram and model, i. e. changes are applied to the
model and the diagram is updated based on these changes. The technical details
were explained by De Carlo et al. [2]. In the following, we discuss the differences
between KIELER and GLSP and how they affect diagram interaction.

4 KIELER Features

Most of KIELER’s features are agnostic to the diagram type, meaning they work
out of the box for general diagrams. The KIELER API directly includes tooling
for a diagram synthesis, diagram options including a sidebar, diagram interaction
methods, and advanced browsing techniques as presented below. This enables
the designers of domain-specific diagrams to quickly configure the diagram in-
teraction, configuration, and visualization.

4.1 The KIELER Framework

Fig. 3 is divided into four different sections by two orthogonal areas and illus-
trates the typical architecture when working with the framework. The first area,
the area of responsibility, divides between the diagram application, i. e. the part
that the diagram designer implements themselves, and the KIELER framework,
i. e. the technology and its public API. The second area divides between the client
represented by the two top boxes, i. e. the parts directly executed in the web en-
vironment implemented in TypeScript, and the language server represented by
the bottom box, i. e. the parts implemented in Java or Xtend, connecting to the
client via the LSP. Fig. 3 outlines the individual features and highlights the API
to be used for individual diagram applications, further discussed below.

8 M. Kasperowski et al.

Diagram Synthesis The diagram synthesis is the point of entry for users of the
KIELER framework designing their own diagram application. It is located on the
server and connects the configuration of all other features. The main goal is to let
the users define how their model is translated to a diagram. Specifically, KIELER
Lightweight Diagrams (KLighD) [23] defines a graph and rendering model named
KGraph and KRendering, respectively. It also defines an API to synthesize a
model to this graph structure with attached rendering and styling information.
The diagram application uses this API to write a diagram synthesis that defines
the translation from their DSL model to a KGraph. The rendering and styling
information define the visual appearance of all graph elements. For example,
the simple states from multiple figures in this paper have a rounded rectangle
with a certain background color and a centered text inside, and some specific
transitions are dashed lines with arrow heads at the end.

Next to the visual appearance of, e. g., lines and boxes, styles can also modify
the size of graph elements. Therefore, the diagram generation needs to first
estimate the graph element sizes via their styles (called micro layout), then do
the automatic layout with ELK (macro layout), and finally render the diagram.
We currently execute both layout steps on the server.

While GLSP configures the micro layout on the server, the absolute element
sizes are calculated on the client4. This comes at the cost of a larger communi-
cation overhead during layouting, as it requires an additional roundtrip between
the client and the server because they execute the macro layout on the server.
KIELER utilizes KLighD for more advanced server-side positioning [23], while
GLSP only supports basic server-side micro layout configuration (padding, hor-
izontal/vertical gap, minimal width/height) [2].

Diagram Options O There can be multiple graphical representations of mod-
els with varying levels of detail and different focuses. Therefore, we want to give
the user options to configure the diagram, so that different views can be shown
for each model. As options should be easily accessible to the user, we provide
them via an options sidebar in KIELER. Our implementation can be seen in Fig. 1
for SCCharts. The sidebar consists of two parts, the synthesis options depicted
in Fig. 1 and the render options, both hosting language-specific options.

The server-side synthesis options filter the model, can configure the layout,
or even change what the graphical model representation is in its entirety. The
diagram synthesis allows modular configuration of the sidebar for the respective
language. E. g., the SCCharts language has buttons to collapse and expand all
hierarchical elements, different categories such as Layout, and a wide range of
check, choice, text, and select boxes to configure the diagram.

The client-side render options configure how the client-side view model in-
teraction works. E. g., whether selecting a diagram element selects the corre-
sponding text or vice versa, whether and how movements are animated, the
visualization of layout constraints [17], or what the size threshold of smart-zoom
(see Sec. 4.2) is configured to be.
4 https://eclipse.dev/glsp/documentation/clientlayouting/

https://eclipse.dev/glsp/documentation/clientlayouting/

KIELER: A Text-First Framework for Automatic Diagramming 9

The sidebar is implemented as a UI extension for Sprotty, so the concept is
not limited to text-first frameworks such as KIELER and could also be provided
directly in Sprotty so that any diagram-first framework can use it.

Semantic Tags and Filters The diagram should not only be a static
representation of the textual model, but offer the user and the system further
information about the model and the semantic elements represented by the dia-
gram. KIELER supports to add such information to the graph by using semantic
tags and filters. The KGraph elements that are produced during the diagram
synthesis can be tagged to retain semantic information about the original model
that would otherwise be lost in the graph and rendering structure. Additional
semantic filters can be created and attached to the graph, which may later be
used on the diagram client. This allows the KIELER rendering framework to
perform client-side diagram-type-specific interactions and overlays, e. g. popups
or filtered proxies (see Sec. 4.2). Sprotty and GLSP usually attach such semantic
information as properties on the graph elements to be able to work with that
information in similar ways.

Semantic tags are user-defined strings that may optionally contain a number
value. A tag itself is an atomic filter rule expression. Complex filter rules can be
constructed by combining other filter rules with numeric or logical operators.

When applying filters to a set of graph elements, an element is retained if the
applied filter rule evaluates to true for that element. The filter rule #someTag
returns true for an element if it contains the tag someTag. Using $someTag we
can get the number associated with the tag—if the tag does not exist, then 0 is
returned instead—and use it for further evaluation. E. g. #state && $children
> 4 evaluates to true for nodes tagged with state and children, where the
children tag has a value larger than 4.

4.2 Browsing Techniques for Large Diagrams

In the following, we present several browsing techniques that are particularly
useful for large, hierarchical diagrams available in KIELER, which are made
possible by the infrastructure illustrated in Fig. 3 and outlined in the previous
sections. Fig. 4 shows a view of a large, hierarchical model with disabled browsing
techniques that we use to compare our techniques to.

Proxies for Off-Screen Elements Proxies have been used in many set-
tings and different strategies exist to place, merge, and interact with them ef-
fectively [1,7]. They are a useful visual aid for diagrams that are too large to
be easily viewed in their entirety on a computer screen. Our implementation of
proxies works on generic KGraphs.

The proxies are realized as an overlay on top of the diagram rendering. By
default, a proxy is created automatically from the existing node rendering so that
proxies are always available independent of the diagram type. It is, however, also
possible to define a custom proxy rendering for each node. In Fig. 5 we see an

10 M. Kasperowski et al.

Figure 4: The wagon SCChart is a large model that was created as part of a
model railway project. The examples shown in this paper use this model.

Figure 5: The wagon model zoomed in with proxies enabled. The renderings on
the left and right side are proxies of off-screen nodes. They may be selected to
automatically pan the viewport to focus on their respective nodes.

example of synthesis-defined proxy renderings used for SCCharts. Instead of
showing the entire state with all information, just the typical state shape and
styling with a shortened text label is shown.

When there are many nodes in a diagram, decisions must be made about
which proxies to show, otherwise the view becomes cluttered and the benefit of
the proxies is diminished. We filter proxies based on their nodes’ adjacency and
hierarchical inclusion in relation to on-screen nodes.

Filtering based purely on the structure of the graph is often insufficient. If
a language defines different types of nodes then we may want to create proxies
for one type but not the other. Semantic information is necessary to make this
distinction and this is one occurrence of where the semantic filtering API, dis-
cussed in Sec. 4.1, is used. Filter rules defined by the synthesis are automatically
inserted as toggleable options into the sidebar. This gives a synthesis developer
control over client-side rendering behavior.

A common challenge with the introduction of proxies for off-screen elements
is visual clutter at the edge of the viewport due to many, potentially overlapping
proxies [7,2]. The primary information proxies provide is the direction in which

KIELER: A Text-First Framework for Automatic Diagramming 11

(a) Fully zoomed out model. (b) Partially zoomed in.

Figure 6: The wagon model at different zoom levels with smart zoom enabled.
Even when zoomed out, the titles remain readable and connections between
elements remain visible, while hiding inner behavior to reduce clutter. In Fig. 6a
the view is fully zoomed out and in Fig. 6b the view is partially zoomed in on
the state labeled handle_KH_ST_6.

their nodes lie or the target node of an edge leaving the viewport. Further useful
information is the distance to the nodes. When proxies overlap, we draw them
with closer nodes’ proxies placed on top. Additionally, we decrease the opacity
as the distance increases. This technique aims to reduce visual clutter and add
helpful visual cues for navigating complex models.

KIELER improves the utility of proxies with semantic tags and filters, which
makes it possible to define proxies and a semantic context in the synthesis for
further filtering. De Carlo et al. [2] note that this could be done on the client
only, but they want to move it partly to the server. In any case, it is important
to utilize semantic information about the model for filtering. If proxies are not
sufficiently filtered, one cannot use them at all and this is not a matter of merging
or overlaying proxies with clever algorithms but a general problem that occurs
in complex models.

Smart Zoom Proxies of off-screen nodes provide context when the view
is zoomed in on the details of the diagram. However, they do not provide a
good overview over a large diagram in the zoomed out state. When viewing
large diagrams as a whole it becomes difficult to discern any details. This makes
it challenging to build a mental model of the diagram, and it is difficult to
determine where to navigate to.

An approach to help with this is semantic zooming, which is an overview-
and-detail technique that has seen many iterations and applications. The key
idea is to provide different views depending on the current zoom level according
to the required level of detail [15,8,2].

We here propose a variant of semantic zooming that we refer to as smart
zoom. We approach the readability of diagram elements using only zoom and pan
operations based on a static base diagram. The diagram application can define
a part of the rendering of graph elements as its key rendering via a semantic
tag. Such a tag will only be used within the framework on the client to make
such a rendering more legible, while keeping the layout and overall appearance

12 M. Kasperowski et al.

0 5 10 15 20 25 30 35 40 45 50 55
1

20

40

60

Figure 7: The y-axis represents the node-key width ratio, i. e. the maximum factor
by which smart zoom can upscale a key rendering. The x-axis shows the number
of scalable key renderings in a graph. The box plots show the distributions of
node-to-key ratios for different graph sizes. This data stems from an analysis
of 1250 SCCharts collected over approximately ten years from different projects
and teaching. We removed outlier ratios that were larger than 75 in order to not
hide the ratios in the denser part of the small to medium-sized graphs, which
represents the majority of the graphs.

of all graph elements stable based on the layout of the static base diagram. For
example, Fig. 6a shows the large model from Fig. 4 using smart zoom, scaled
down by approximately 6000%, yet with legibly represented titles. Here we scale
up and overlay the titles as the key renderings within the pre-layouted bounding
box of the graph element they represent to a constant 100% scaling, if the space
permits, to keep the key renderings legible at many zoom levels. Compared to
Fig. 4, this shows better readability.

The framework allows any part of the rendering (names, icons, shapes, etc.)
to be the key rendering, for this example it is the text rendering of name of the
region. Scaled up key renderings may also overlap other parts of the diagram
that are lower down in the hierarchy making the key rendering more prominent.
While zooming in, the key rendering will remain at that size until the diagram
around it has been scaled up to match its size and any overlaps are then resolved.
Furthermore, the client simplifies elements with content that would be too small
by hiding the content entirely. Compare the state labeled handle_KH_ST_6
between Figs. 6a and 6b, where zooming in reveals further inner behavior.

GLSP follows a different concept. De Carlo et al. [2] point out that their
semantic zoom re-computes the layout and, therefore, requires extra roundtrips
to the server, limiting the performance of their implementation. In KIELER we
decided to always base such zoom and pan operations on the layout of the static
base diagram to keep the performance high and even increase it by omitting too
small elements, while also maintaining a mental map of the model by having a
consistent layout where no elements move around due to a new layout.

KIELER: A Text-First Framework for Automatic Diagramming 13

(a) High-level overview. (b) Partially zoomed in view.

Figure 8: Top-down drawing of the wagon model used also in the other examples.
Fig. 8a shows the entire diagram. Node titles are readable similar to the smart
zoom effect. The structure can also be seen without zooming or panning. Fig. 8b
shows a zoomed in excerpt. Details of the current layer are readable and the
general structure of the model can easily be recognized.

Smart zoom can only work effectively when there is sufficient space to upscale
the key renderings, i. e. when the node containing the key rendering is signifi-
cantly larger than the key rendering itself. At the same time smart zoom is only
necessary when diagrams reach a certain size, since there is simply no need for
upscaling in small diagrams.

In Fig. 7 we show how node to key rendering ratios (node-key ratios) are
typically distributed in graphs of varying sizes. The examples analyzed are all
nested graphs, i. e. graphs with hierarchical containment. This means that nodes
can be relatively large since they have to accommodate their children. In these
types of graphs the node-key ratios generally tend to become larger in larger
graphs. Smart zoom is effective in all cases except for very large graphs without
any nesting where each node has roughly the same size as its key rendering.

Top-Down Layout Dynamic adjustments of the displayed diagram are
limited in what accessibility features can be realized with them while remaining
agnostic to the concrete diagram type. For large diagrams that visualize nested
graphs we can also use top-down layout [12]. We obtain a similar benefit to
smart zoom, i. e. names of nodes are readable when zoomed out but, in contrast
to smart zoom, the diagram of one hierarchy level remains quite compact when
zooming in. This makes reading and navigating large diagrams a lot easier. Fig. 8
shows the effect of zooming in a top-down layout. The main advantage of top-
down layout is that entire hierarchy levels can be read at once. The layout stays
consistent and does not depend on the layout of the inner graph in a deeper
hierarchy level. Here, zooming is the main control interaction to view details.

We previously examined the effect of top-down layout on the readability of
diagrams [12]. The key takeaway from that evaluation was that top-down layout
does indeed increase readability of labels in large diagrams across different zoom

14 M. Kasperowski et al.

levels. GLSP currently does not support top-down layout since it is a relatively
new feature of ELK, but there are no technical limitations to supporting it.

The raw data used for the smart zoom and top-down layout analysis is avail-
able for download5.

5 Conclusion

We presented the KIELER framework that utilizes both the textual and the
graphical model and provides general solutions for common problems of lan-
guages that aim to have a graphical view.

A text-only approach for developing complex systems misses the advantages
that filtered, graphical representations provide for some languages. Furthermore,
compared to a diagram-first approach on the example of GLSP, the text-first ap-
proach, as used by KIELER framework, still provides all the advantages of textual
editing, while being able to utilize the best of a graphical view. Filtering is a
first-class citizen in KIELER and it is common to hide parts of the model that
are better edited textually or that are irrelevant for the current use case. In a
diagram-first approach, however, filtering does not integrate well with editing.
A well implemented diagram-first approach should not sacrifice the benefits of
textual editing but rather emulate and enhance them. A text-first approach nat-
urally does this by building on top of text-only tooling. Linking text and diagram
lets users utilize the representation that helps with their current problem.

We presented the KIELER synthesis, options sidebar, proxies, smart-zoom,
and top-down layout approach to efficiently work with diagrams of complex
systems and help to increase the readability of large human-made hierarchical
models and compared each to its GLSP pendant if it exists.

Some features presented in this paper are experimental and have not yet
found their way into the official releases of the open-source projects. Nevertheless,
we provide a tool demo5 that is a pair of Visual Studio Code extensions that
can be installed locally to test smart zoom, top-down layout, and proxies. The
download also includes several example models and a usage guide.

Future Work and Outlook

The KLighD component currently implements many features of the KIELER
framework. In the long run, they would serve better as modules within the
Sprotty framework for languages that fit the KIELER approach to modeling.
Hence, we plan to migrate part of the KLighD micro layout capabilities as well
as proxies and the synthesis option sidebar into Sprotty itself. This would not
only allow more users to easily configure diagrams for their textual language, but
specifically allow using them together with GLSP. Furthermore, we plan to make
more of our framework available on the client-side such as the micro and macro
layout. Currently, our synthesis API is quite restrictive as a synthesis must be

5 https://doi.org/10.6084/m9.figshare.25304083

https://doi.org/10.6084/m9.figshare.25304083

KIELER: A Text-First Framework for Automatic Diagramming 15

written in Java — this could be expanded with a more open API, e. g., a JSON
schema, allowing syntheses in other languages.

References

1. Burigat, S., Chittaro, L., Gabrielli, S.: Visualizing locations of off-screen objects on
mobile devices: A comparative evaluation of three approaches. In: Proc. 8th Conf.
on Human-Computer Interaction with Mobile Devices and Services. pp. 239–246.
ACM (2006). https://doi.org/10.1145/1152215.1152266

2. De Carlo, G., Langer, P., Bork, D.: Advanced visualization and interaction in
GLSP-based web modeling: Realizing semantic zoom and off-screen elements. In:
Proc. 25th Int. Conf. on Model Driven Engineering Languages and Systems. pp.
221–231. Association for Computing Machinery, New York, NY, USA (2022). https:
//doi.org/10.1145/3550355.3552412

3. Domrös., S., Riepe., M., von Hanxleden., R.: Model order in Sugiyama layouts. In:
Proc. 18th Int. Joint Conf. on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: IVAPP. pp. 77–88. INSTICC, SciTePress
(2023). https://doi.org/10.5220/0011656700003417

4. Domrös, S., von Hanxleden, R., Spönemann, M., Rüegg, U., Schulze, C.D.: The
Eclipse Layout Kernel. arXiv preprint, arXiv:2311.00533 [cs.DS] (2023). https://
doi.org/10.48550/arXiv.2311.00533

5. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proc. IEEE
91(1), 127–144 (Jan 2003). https://doi.org/10.1109/JPROC.2002.805829

6. Eumann, P., Wechselberg, N.: Application of SCCharts in the railway do-
main (2023), https://rtsys.informatik.uni-kiel.de/~biblio/downloads/Synchron23/
Day1/Day1-0900-Eumann-SCChartInRailway.pdf, Int. Open Workshop on Syn-
chronous Programming

7. Frisch, M., Dachselt, R.: Visualizing offscreen elements of node-link dia-
grams. Information Visualization 12(2), 133–162 (2013). https://doi.org/10.1177/
1473871612473589

8. Frisch, M., Dachselt, R., Brückmann, T.: Towards seamless semantic zooming tech-
niques for UML diagrams. In: Proc. 4th ACM Symp. on Software Visualization.
pp. 207–208 (2008)

9. Glaser, P.L., Bork, D.: The bigER tool - hybrid textual and graphical modeling
of entity relationships in VS Code. In: 25th Int. Enterprise Distributed Object
Computing Workshop. pp. 337–340. IEEE (2021)

10. von Hanxleden, R., Lee, E.A., Fuhrmann, H., Schulz-Rosengarten, A., Domrös, S.,
Lohstroh, M., Bateni, S., Menard, C.: Pragmatics twelve years later: A report on
Lingua Franca. In: 11th Int. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation. LNCS, vol. 13702, pp. 60–89. Springer, Rhodes, Greece
(Oct 2022). https://doi.org/10.1007/978-3-031-19756-7_5

11. Jöhnk, F.: Structure-based editing for SCCharts. Master thesis, Kiel University,
Department of Computer Science (May 2022), https://rtsys.informatik.uni-kiel.
de/~biblio/downloads/theses/fej-mt.pdf

12. Kasperowski, M., von Hanxleden, R.: Top-down drawings of compound graphs.
arXiv preprint, arXiv:2312.07319 [cs.DS] (December 2023). https://doi.org/10.
48550/arXiv.2312.07319

https://doi.org/10.1145/1152215.1152266
https://doi.org/10.1145/1152215.1152266
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.5220/0011656700003417
https://doi.org/10.5220/0011656700003417
https://doi.org/10.48550/arXiv.2311.00533
https://doi.org/10.48550/arXiv.2311.00533
https://doi.org/10.48550/arXiv.2311.00533
https://doi.org/10.48550/arXiv.2311.00533
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1109/JPROC.2002.805829
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/Synchron23/Day1/Day1-0900-Eumann-SCChartInRailway.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/Synchron23/Day1/Day1-0900-Eumann-SCChartInRailway.pdf
https://doi.org/10.1177/1473871612473589
https://doi.org/10.1177/1473871612473589
https://doi.org/10.1177/1473871612473589
https://doi.org/10.1177/1473871612473589
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1007/978-3-031-19756-7_5
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fej-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fej-mt.pdf
https://doi.org/10.48550/arXiv.2312.07319
https://doi.org/10.48550/arXiv.2312.07319
https://doi.org/10.48550/arXiv.2312.07319
https://doi.org/10.48550/arXiv.2312.07319

16 M. Kasperowski et al.

13. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a Lingua Franca for
deterministic concurrent systems. ACM Trans. on Embedded Computing Systems
(TECS) 20(4) (May 2021). https://doi.org/10.1145/3448128

14. Metin, H., Bork, D.: On developing and operating GLSP-based web modeling tools:
Lessons learned from bigUML. In: 26th Int. Conf. on Model Driven Engineer-
ing Languages and Systems. pp. 129–139. IEEE (2023). https://doi.org/10.1109/
MODELS58315.2023.00031

15. Perlin, K., Fox, D.: Pad: An alternative approach to the computer interface. In:
Proc. 20th annual Conf. on Computer Graphics and Interactive Techniques. pp.
57–64. ACM, New York, NY, USA (1993). https://doi.org/10.1145/166117.166125

16. Petre, M.: Why looking isn’t always seeing: Readership skills and graphical
programming. Comm. ACM 38(6), 33–44 (Jun 1995). https://doi.org/10.1145/
203241.203251

17. Petzold, J., Domrös, S., Schönberner, C., von Hanxleden, R.: An interactive
graph layout constraint framework. In: Proc. 18th Int. Joint Conf. on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Volume
3: IVAPP. pp. 240–247. INSTICC, SciTePress (2023). https://doi.org/10.5220/
0011803000003417, with accompanying poster

18. Petzold, J., Kreiß, J., von Hanxleden, R.: PASTA: Pragmatic Automated System-
Theoretic Process Analysis. In: 53rd Int. Conf. on Dependable Systems and Net-
work. pp. 559–567. IEEE (2023). https://doi.org/10.1109/DSN58367.2023.00058

19. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG.
In: Proc. 10th Int. Conf. on Model Driven Engineering Languages and Systems.
LNCS, vol. 4735, pp. 635–649. IEEE, Nashville, TN, USA (Oct 2007). https://doi.
org/10.1007/978-3-540-75209-7

20. Rentz, N., von Hanxleden, R.: SPViz: A DSL-driven approach for software project
visualization tooling. arXiv preprint, arXiv:2401.17063 [cs.SE] (Jan 2024). https:
//doi.org/10.48550/arXiv.2401.17063

21. Rodriguez-Echeverria, R., Izquierdo, J.L.C., Wimmer, M., Cabot, J.: Towards a
Language Server Protocol infrastructure for graphical modeling. In: Proc. 21th Int.
Conf. on Model Driven Engineering Languages and Systems. pp. 370–380. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3239372.3239383

22. Schneider, C., Spönemann, M., von Hanxleden, R.: Transient view generation in
Eclipse. In: Proc. First Workshop on Academics Modeling with Eclipse. Kgs. Lyn-
gby, Denmark (Jul 2012)

23. Schneider, C., Spönemann, M., von Hanxleden, R.: Just model! – Putting auto-
matic synthesis of node-link-diagrams into practice. In: Proc. Symp. on Visual
Languages and Human-Centric Computing. pp. 75–82. IEEE, San Jose, CA, USA
(Sep 2013). https://doi.org/10.1109/VLHCC.2013.6645246

24. Smyth, S., Motika, C., von Hanxleden, R.: A data-flow approach for compiling
the sequentially constructive language (SCL). In: 18. Kolloquium Programmier-
sprachen und Grundlagen der Programmierung. Pörtschach, Austria (Oct 2015)

25. Vujović, V., Maksimović, M., Perišić, B.: Sirius: A rapid development of DSM
graphical editor. In: 18th Int. Conf. on Intelligent Engineering Systems. pp. 233–
238 (2014). https://doi.org/10.1109/INES.2014.6909375

26. Wechselberg, N., Schulz-Rosengarten, A., Smyth, S., von Hanxleden, R.: Augment-
ing state models with data flow. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.)
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of
his 60th Birthday. pp. 504–523. LNCS 10760, Springer International Publishing
(2018). https://doi.org/10.1007/978-3-319-95246-8_28

https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1109/MODELS58315.2023.00031
https://doi.org/10.1109/MODELS58315.2023.00031
https://doi.org/10.1109/MODELS58315.2023.00031
https://doi.org/10.1109/MODELS58315.2023.00031
https://doi.org/10.1145/166117.166125
https://doi.org/10.1145/166117.166125
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.5220/0011803000003417
https://doi.org/10.5220/0011803000003417
https://doi.org/10.5220/0011803000003417
https://doi.org/10.5220/0011803000003417
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/ivapp23b-poster.pdf
https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/10.1007/978-3-540-75209-7
https://doi.org/10.1007/978-3-540-75209-7
https://doi.org/10.1007/978-3-540-75209-7
https://doi.org/10.1007/978-3-540-75209-7
https://doi.org/10.48550/arXiv.2401.17063
https://doi.org/10.48550/arXiv.2401.17063
https://doi.org/10.48550/arXiv.2401.17063
https://doi.org/10.48550/arXiv.2401.17063
https://doi.org/10.1145/3239372.3239383
https://doi.org/10.1145/3239372.3239383
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1007/978-3-319-95246-8_28
https://doi.org/10.1007/978-3-319-95246-8_28

	KIELER: A Text-First Frameworkfor Automatic Diagramming of Complex Systems

