
Diagram Control and Model Order for Sugiyama
Layouts

Sören Domrös[0000−0002−8011−8484] and
Reinhard von Hanxleden[0000−0001−5691−1215]

Department of Computer Science, Kiel University, Kiel, Germany
{sdo,rvh}@informatik.uni-kiel.de

Abstract. Graphical wysiwyg editors for programming languages are
popular since they allow to control the diagram layout to express inten-
tion via secondary notation such as proximity and topology. However,
such editors typically require users to do manual layout. Conversely, au-
tomatic layout of diagrams typically fails to capture intention because
graphs are usually considered to not contain any order. Model order
can combine the desire for control of secondary notation with automatic
layout, without additional overhead, since the textual model already em-
ploys secondary notation. We illustrate how model order can exert con-
trol on the example of the programming languages SCCharts and Lingua
Franca and collect developer feedback to validate our findings.

Keywords: Automatic Layout · Model Order · User Intentions.

1 Introduction

Automatic layout rises in popularity, as seen in the example of elkjs1 with, as
of this writing, more than 700.000 weekly downloads. Even though automatic
layout improved over time and gets more widely used, wysiwyg editors that
rarely employ automatic layout are still very common. wysiwyg editors place
the burden of layout on the user, which can be a severe impediment to pro-
ductivity [10]. However, wysiwyg editors have the advantage that they allow
controlling secondary notation [10] by creating order, grouping, or alignment in
a very direct way and on a graphical level, which is desirable. As Taylor reported
for wysiwyg type-setting [16]: “People like having feedback and control.”

One approach to augment automatic layout of diagrams with control is to
let the user formulate explicit layout constraints, e. g., through (textual) model
annotations or via some wysiwyg-like graphical interaction [5,11]. Constraints
have the advantage to be integrated into layout algorithms. Hence, layout does
not need to be done on a pixel granularity, which when done manually often has
inconsistencies [14]. Instead, they focus on topology, alignment, or proximity of
nodes. Constraints, however, require additional effort beyond creating a textual

1 https://npmtrends.com/elkjs

https://npmtrends.com/elkjs


2 S. Domrös and R. von Hanxleden

scchart Example1a {
. . .
initial state Start {

. . .
}
if . . . go to Send
if . . . go to Receive
state Send { . . . }
. . .
state Receive { . . . }
. . .
state Done { . . . }
immediate go to Start

}

(a)

Example 1a

Start

Send

Receive

Done

1.

3.4.

2.

2. 2.1.

1.

- Send & Receive

(b)

scchart Example1b {
. . .
initial state Start {

. . .
}
if . . . go to Send
if . . . go to Receive
state Receive { . . . }
. . .
state Send { . . . }
. . .
state Done { . . . }
immediate go to Start

}

(c)

Example 1b

Start

Send

Receive

Done

1.

3.4.

2. 2.

1.

2.

1.

- Receive & Send

(d)

Figure 1: Two semantically identical variants of an obfuscated SCCharts model
created by and used with permission of Scheidt & Bachmann System Technik
GmbH.

model, and sometimes require knowledge about the underlying layout algorithm
to be used effectively, as reported by users and developers of ELK [4].

In this paper, we investigate the research question how to exert control by
using model order [2] for Sugiyama or layered layouts [15] whenever the tex-
tual model in a tool that employs modeling pragmatics [7] by using a textual
model and a graphical model side-by-side expresses secondary notation (R1). We
also explore how model order integrates with the mental map, layout stability,
aesthetic criteria, and secondary notation in text and diagram (R2).

The Sugiyama algorithm consisting of the phases cycle breaking, layer as-
signment, crossing minimization, node placement, and edge routing may produce
drawings as the one depicted in Fig. 1. Here, nodes are assigned to (horizontal)
layers such that nodes in the same layer are not connected by an edge. The cy-
cle breaking step determines which edges should go against the layout direction
and hence the order of Send and Receive. Blindly optimizing aesthetic criteria
disregards the intention of the model and leaves no leverage to control the lay-
out. The two versions are semantically identical, however, the vertical ordering
in Fig. 1b suggests that Send happens before Receive while Fig. 1d suggests the
inverse. Fig. 1b was created using the textual model in Fig. 1a, while Fig. 1d was
created using Fig. 1c. Hence, the textual order should be considered, since the
mental map, the inner representation of the model, and secondary notation of
the textual model should not diverge from their representation in the diagram.

To answer the research question R1 and R2 stated above, we contribute

– an investigation how controlling the diagram via model order influences the
mental map, layout stability, and secondary notation in Sec. 3 and

– an analysis of SCCharts and Lingua Franca (LF) in the context of model
order and control in Sec. 3.1 and 3.2.

Sec. 4 summarizes and generalizes ours insights and suggests future research.



Diagram Control and Model Order for Sugiyama Layouts 3

A long version of this paper [3] contains additional examples and insights
for model order and its interaction with the mental map, secondary notation,
stability, aesthetic criteria, and control, more detailed evaluation results, and a
guidebook how to get model order information for a given language.

2 Related Work

Purchase [13] investigated what aesthetic criteria humans adhere to when draw-
ing graphs given by a textual description. As stated by Purchase, other studies
[12,8] focus on reduction of edge crossings, symmetry, placement of important
nodes at the top, large angles between incident edges, and average edge length.
Purchase investigated whether there are additional criteria people favor when
drawing graphs, by analyzing the final drawings and the intermediate steps of
two graphs created by the participants. The study revealed that people prefer
to place nodes on a grid and that they initially use aesthetic criteria such as
only vertical or horizontal edges or nodes ordered lexicographically or by their
occurrence in the graph representation. Moreover, the study revealed that the
participants worked through the graph node by node or edge by edge depending
on the graph representation. They intuitively used the given model order of the
graph representation and revised this order partially if the result created unde-
sired crossings or clutter. To evaluate model order, we hence need real models
and preferably the developers that built them to investigate what their intention
in specific placements was. Moreover, evaluation of model order configurations
should be done in an interactive tool to considering the different creation steps.

3 Control and Model Order

How model roder relates to common aesthetic criteria was already covered by
previous work [1,2]. Here, we investigate how model order relates to mental
map, stability, secondary notation, and control on a meta level (R2) by focusing
on tools for model-driven-engineering that use text and diagram side-by-side
utilizing the concept of modeling pragmatics [7].

The mental map describes the mental image one has of a graphical model [9].
Misue et al. define preserving the mental map as preserving orthogonal ordering
and proximity. Preserving the mental map and with it the stability of the drawing
is especially important when working with models for real use-cases since they
are typically large, hierarchical, and do not fit on a single screen2. Developers
already create a mental map while creating the textual model and not only by
looking at the accompanying diagram. Hence, we might compromise the mental
map if the textual model does not match the graphical model, as it would be the
case if Fig. 1a would create the diagram in Fig. 1d. Since the textual ordering
2 This can be explored interactively in the LF playground https://github.com/lf-lang/

playground-lingua-franca by opening the cdn_cache_demo model created by Mag-
nition taken from https://github.com/MagnitionIO/LF_Collaboration.

https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/MagnitionIO/LF_Collaboration


4 S. Domrös and R. von Hanxleden

only has one dimension but the drawing has two to express order, we have to
further determine which dimension in the diagram corresponds which textual
ordering for a given language.

Similarly, secondary notation exists in textual models. E. g., developers be-
gin to write the textual model with an initial state at the top, final states are
typically at the bottom, and nodes that should be next to each other in the
drawing are typically also placed next to each other in the textual model, as
seen in Fig. 1. Since intentional secondary notation exists in the textual source,
we should control the layout using the textual model order to bring secondary
notation from the text into the diagram.

Control is a very desirable aspect of layout. This might be the reason wysi-
wyg editors are still implemented even though moving boxes around is a te-
dious process [10]. Moving boxes to desired positions directly creates secondary
notation. This level of control can also be achieved using interactive constraint
frameworks [5,11] with the advantage of automatic layout. However, using model
order inside a layout algorithm can similarly exert control by treating the textual
ordering as a constraint. Moreover, model order can also be used as a tie-breaker
together with common aesthetic criteria creating different levels of control [2].

To understand how a language can be controlled using model order, we have
to identify what part of the textual model is intended secondary notation and
how this should be transferred to the two-dimensional diagram during the cycle
breaking and crossing minimization steps of the Sugiyama algorithm.

3.1 Controlling SCCharts Layout via Model Order

SCCharts [6] is a sequentially constructive statechart dialect that models control-
flow. Fig. 1 depicts an SCChart drawing with the corresponding textual model.
An SCChart consists of a declaration of inputs, outputs, constants, variables
and actions, which are here filtered out of the diagram. Moreover, it has con-
current regions (the white box called Send & Receive in Fig. 1b) with states
and transitions between them. The textual syntax only allows to define outgo-
ing transitions of a state directly under the state declaration, which constraints
the global edge order. E. g., the state Start has two outgoing transitions defined
below it. States might have internal behavior including everything an SCChart
may consist of.

The developer may reorder states without changing the semantics of the
model. However, the initial state, i. e., the state Start, is usually defined at the top
of a textual model. Moreover, the textual SCCharts model employs secondary
notation such that the node model order indicates the control-flow direction.
E. g., the textual model for Fig. 2 defines the states Ok and Active that belong to
the same control-flow branch above the state Failed, Disconnected defined first,
and the states Inactive and Disconnect at the end.

Only transitions with mutually exclusive transition guards can be freely re-
ordered without changing the behavior since reordering changes their priority,
which SCCharts users want to visualize as secondary notation (R2). Hence, if



Diagram Control and Model Order for Sugiyama Layouts 5

Example 2

Disconnected

Renewed

Interrupted
Requested

Await

Timeout

Answered1.

2.

-

Ok

Active

Failed

Inactive

Disconnect

1.

2.
1.

2.

3.

4.

5.
1.

2.

1.

2.

3.

-

Figure 2: An obfuscated SCCharts model created by and used with permission
of Scheidt & Bachmann System Technik GmbH. It uses model order to constrain
the flow and as tie-breaker for the (vertical) order inside a layer.

the textual ordering of model elements has semantics, they cannot be freely
reordered to exert control (R1).

Previous work on model order for SCCharts [1,2] resulted in the following
model order configurations. Strategy 1 uses the strict model order cycle breaker
that enforces the node model order along edges since the node model order
employs intended secondary notation. Strategy 1 uses the edge model order
to pre-order node and edges before the crossing minimization step, which may
revise the pre-order to reduce edge crossings. Additionally, Strategy 1 uses the
node and edge model order as secondary criterion for crossing minimization such
that the solution with minimal crossings that respects most of the model order
will be chosen. Strategy 1 was already field-tested while teaching two students
courses about Embedded System and Synchronous Languages and is currently
also employed by Scheidt & Bachmann System Technik GmbH (S&B). Strategy
2 has a different use-case and fully controls the layout by model order to create
layouts for documentation [2].

Additionally to our own experience with SCCharts, we interviewed five S&B
developers about 36 SCCharts models created for non-safety critical projects in
the railway domain. 30 models fully conformed to the model order not counting
models where one edge needed reordering to achieve the desired result.

On no occasion, developers or students reported anything out of the ordinary
or problems as a result of the cycle breaking step constrained by model order,
e. g., backward edges that should not be there. However, S&B developers did
not notice that the node model order constrained the flow of the diagram before
pointing it out via Fig. 2. Here, the connector state (black dot) above the initial
state Disconnected is a dangling node—a node with only edges to the right—even
though it is not a source node. Moving this node somewhere else may, however,
hide the symmetry of the Interrupted and Renewed states.

The strict model order cycle breaking has been active as the default layout
for about a year, which allowed us to gather feedback on it. During this time
this strategy did not produce Obviously Non-Optimal (ONO) or left developers
confused. Hence, model order should per default control the flow (R1).



6 S. Domrös and R. von Hanxleden

Strategy 2 cannot be the default option for SCCharts, since it may produce
ONO layouts. However, if a controlling, more strict, strategy controls most parts
of the layout, a bad layout often points to a bad textual model. How this may
affect developers needs further evaluation.

3.2 Controlling Lingua Franca Layout via Model Order

Lingua Franca [7] is a polyglot coordination language for reactive real-time sys-
tems that models data-flow. An example LF model can be seen in Fig. 3.

main reactor {
a = new Accelerometer();
dx = new Display(row = 0);
dy = new Display(row = 1);
timer t(0, 250 msec);
state count:int(0);
reaction(t) →a.trigger . . .

} (a)

AccelerometerDisplay

a : Accelerometer

1

2
trigger

x

y

z

dx : Display
message

dy : Display
message

(0, 250 msec)

1

2

3

(b)

Figure 3: The AccelerometerDisplay LF example model with abbreviated textual
model and graphical representation.

Fig. 3a depicts the main reactor of the LF model and Fig. 3b depicts the cor-
responding diagram with a timer (clock), reactions (numbered arrows shapes),
and reactors (gray boxes). Users may define states, actions, timers, reactors,
edges between reactors, and reactions and often define the components in the
mentioned order forming ordering groups. E. g., users define reactors in a sepa-
rate group above the ordering group of reactions. A reactor may again consist
of everything the main reactor has to offer but may define inputs and outputs.
Edges between reactors and other elements are created implicitly based on their
interfaces, i. e., their declared inputs and outputs, which corresponds to the port
model order. The reactor instantiation order can be freely changed as it is the
case for all elements despite reactions and typically expresses desired secondary
notation that could be controlled via model order (R1). The order of reactions
defines their scheduling order. Hence, we cannot freely reorder them to con-
trol the layout (R1). However, this scheduling order is secondary notation that
developers want to represent in their drawing.

Interviews and presentations as part of the weekly LF team meeting, in-
terviews with Magnition that want to use LF to model cache structures, and
one-on-one interviews resulted in the following statements.

1. Edge-crossings should be reduced.
2. Stability is important for large hierarchical models.
3. The ports of reactors define their interface and should hence be respected.
4. The reactor-instantiation-order could be used to control their ordering.
5. Actions should be placed such that the flow indicates their activation.



Diagram Control and Model Order for Sugiyama Layouts 7

Note that statement 1, 2, and 3 came from Magnition developers and 1, 3, 4
from the person in the LF community that mainly interacted with us during
the presentations and discussions. All the statements above were additionally
verified by one-on-one interviews with a small group of developers regarding the
layout of LF models.

We see that LF developers value common aesthetic criteria (statement 1) but
prefer stability create by model order for large models (statement 2). Reactor
order and port order are the primary elements that can be used to control the
layout (statement 3 and 4). However, different model elements are not directly
comparable, even though there might be relative orderings between the different
ordering group (statement 5).

We conclude that we should not use model order strategies that completely
constrain the layout for LF (R1). Layout algorithms for LF should use model
order only as a tie-breaker as the default strategy and may only constrain nodes
of the same ordering group to avoid misleading secondary notation. For cycle
breaking the depth-first strategy that uses model order to determine the visiting
order proved to be good to handle the often intertwined action and reaction
networks quite well. Since most models are small, finding and analyzing all cycle
might be a promising strategy. Additionally, big models might want to constrain
the port or node order by model order to increase stability and preserve the
mental map (R2).

4 Conclusion

How SCCharts and LF layout and secondary notation can be controlled by
model order can be generalized for similar languages, as SCCharts are just
state-machines and LF is only a special kind of actor oriented data-flow lan-
guage. Hence, constraining the flow of all state-machines by the state model
order creates intentional backward edges for all state-machine dialects. How-
ever, the model order should only be used to control the layout and used as
a constraint if the underlying textual ordering matches the user intention and
can be controlled by the user. Model elements that are ordered by convention,
restrictions in the grammar, or are only programmatically created should only
control the diagram if their order expresses intention.

While flow of information can often be constrained to create secondary nota-
tion that visualizes how data or control may go backwards, constraining crossing
minimization by model order should not be a default strategy for automatic lay-
out. Even if model order is only considered as a tie-breaker it always increases
stability, which helps to maintain the mental map, and may be one option to
control the layout. The control given by strict model order strategies is, however,
always desired to create specific layouts for documentation or presentations.

For languages with cross-hierarchical edges and expandable and collapsible
hierarchical nodes, stability is a very important aspect. Considering node or port
order to constrain the layout can solve this problem without an editing overhead.



8 S. Domrös and R. von Hanxleden

References

1. Domrös, S., von Hanxleden, R.: Preserving order during crossing minimization in
Sugiyama layouts. In: Proceedings of VISIGRAPP 2022 - Volume 3: IVAPP. pp.
156–163. INSTICC, SciTePress (2022). https://doi.org/10.5220/0010833800003124

2. Domrös., S., Riepe., M., von Hanxleden., R.: Model order in Sugiyama layouts.
In: Proceedings of VISIGRAPP 2023 - Volume 3: IVAPP. pp. 77–88. INSTICC,
SciTePress (2023). https://doi.org/10.5220/0011656700003417

3. Domrös, S., von Hanxleden, R.: Diagram control and model order for sugiyama
layouts (2024). https://doi.org/10.48550/arXiv.2406.11393

4. Domrös, S., von Hanxleden, R., Spönemann, M., Rüegg, U., Schulze, C.D.: The
Eclipse Layout Kernel (2023). https://doi.org/10.48550/arXiv.2311.00533

5. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network dia-
gram authoring tool. In: Revised Papers of GD ’08. LNCS, vol. 5417, pp. 420–431.
Springer (2009). https://doi.org/10.1007/978-3-642-00219-9

6. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado,
J., Mercer, S., O’Brien, O.: SCCharts: Sequentially Constructive Statecharts for
safety-critical applications. In: Proc. ACM SIGPLAN PLDI ’14. pp. 372–383.
ACM, Edinburgh, UK (Jun 2014). https://doi.org/10.1145/2594291.2594310

7. von Hanxleden, R., Lee, E.A., Fuhrmann, H., Schulz-Rosengarten, A., Dom-
rös, S., Lohstroh, M., Bateni, S., Menard, C.: Pragmatics twelve years later:
A report on Lingua Franca. In: Proceedings of ISoLA’ 22. LNCS, vol.
13702, pp. 60–89. Springer, Rhodes, Greece (Oct 2022). https://doi.org/10.1007/
978-3-031-19756-7_5

8. Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving multiple aesthetics pro-
duces better graph drawings. JVLC 24(4), 262–272 (2013). https://doi.org/10.
1016/j.jvlc.2011.12.002

9. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. JVLC 6(2), 183–210 (Jun 1995). https://doi.org/10.1006/jvlc.1995.1010

10. Petre, M.: Why looking isn’t always seeing: Readership skills and graphical pro-
gramming. Communications of the ACM 38(6), 33–44 (Jun 1995). https://doi.org/
10.1145/203241.203251

11. Petzold, J., Domrös, S., Schönberner, C., von Hanxleden, R.: An interactive
graph layout constraint framework. In: Proceedings of VISIGRAPP 2023 - Volume
3: IVAPP. pp. 240–247. INSTICC, SciTePress (2023). https://doi.org/10.5220/
0011803000003417

12. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding?
In: Proceedings of GD ’97. LNCS, vol. 1353, pp. 248–261. Springer (1997)

13. Purchase, H.C.: A healthy critical attitude: Revisiting the results of a graph draw-
ing study. Journal of Graph Algorithms and Applications 18(2), 281–311 (2014).
https://doi.org/10.7155/jgaa.00323

14. Purchase, H.C., Archambault, D., Kobourov, S., Nöllenburg, M., Pupyrev, S., Wu,
H.Y.: The turing test for graph drawing algorithms. In: Proceedings of GD ’20.
pp. 466–481. Springer (2020). https://doi.org/10.1007/978-3-030-68766-3_36

15. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics
11(2), 109–125 (Feb 1981). https://doi.org/10.1109/TSMC.1981.4308636

16. Taylor, C.: What has WYSIWYG done to us? The Seybold Report on Publishing
Systems 26(2) (Sep 1996)

https://doi.org/10.5220/0010833800003124
https://doi.org/10.5220/0010833800003124
https://doi.org/10.5220/0011656700003417
https://doi.org/10.5220/0011656700003417
https://doi.org/10.48550/arXiv.2406.11393
https://doi.org/10.48550/arXiv.2406.11393
https://doi.org/10.48550/arXiv.2311.00533
https://doi.org/10.48550/arXiv.2311.00533
https://doi.org/10.1007/978-3-642-00219-9
https://doi.org/10.1007/978-3-642-00219-9
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.5220/0011803000003417
https://doi.org/10.5220/0011803000003417
https://doi.org/10.5220/0011803000003417
https://doi.org/10.5220/0011803000003417
https://doi.org/10.7155/jgaa.00323
https://doi.org/10.7155/jgaa.00323
https://doi.org/10.1007/978-3-030-68766-3_36
https://doi.org/10.1007/978-3-030-68766-3_36
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636

	Diagram Control and Model Order for Sugiyama Layouts

