
SyncCharts in C—
A Proposal for Light-Weight, Deterministic Concurrency

[Extended Abstract]
∗

Reinhard von Hanxleden
Department of Computer Science, Christian Albrechts Universität zu Kiel

Olshausenstr. 40, 24098 Kiel, Germany
rvh@informatik.uni-kiel.de

ABSTRACT
Statecharts are a well-established visual formalism for the
description of reactive real-time systems. The SyncCharts
dialect of Statecharts, which builds on the synchrony hy-
pothesis, has a sound formal basis and ensures deterministic
behavior. This paper presents SyncCharts in C (SC), an
approach to seamlessly and efficiently embed SyncCharts
constructs into a conventional imperative programming lan-
guage. SC offers deterministic, light-weight concurrency and
preemption via a simulation of multi-threading, inspired by
reactive processing.

A reference implementation of SC, based on C macros, is
available as open source code. SC can be used in a number
of scenarios: 1) as a regular programming language, requir-
ing just a C compiler; 2) as an intermediate target language
for synthesizing graphical SyncChart models into executable
code, in a traceable manner; 3) as instruction set architec-
ture for programming precision timed (PRET) or reactive
architectures, abstracting functionality from physical tim-
ing; or 4) as a virtual machine instruction set, with a very
dense encoding.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language Con-
structs and Features

General Terms
Design, Languages

Keywords
SyncCharts, Statecharts, Esterel, synchronous programming,
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1. INTRODUCTION
The control flow of reactive systems typically entails not
just the sequential control flow found in traditional pro-
gramming languages, such as conditionals and loops, but
also exhibits concurrency and preemption. How to express
this adequately in an imperative language such as C or Java
is a notoriously difficult problem. Threads and associated
synchronization primitives are widely used, but entail sig-
nificant overhead and easily lead to non-determinism and
deadlock [13].

This paper presents SyncCharts in C (SC), which is a light-
weight approach to express reactive control flow in C pro-
grams. SC combines the formal soundness of SyncCharts,
including deterministic concurrency and preemption, with
the efficiency and wide support for the C language.

Statecharts, SyncCharts. Statecharts [10] extend classical
finite state machines by concurrency and hierarchy/preemp-
tion. These extensions allow to keep descriptions compact
and avoid the classical state explosion problem. There exist
numerous variants of Statecharts, including e. g. Simulink/S-
tateflow and UML Statecharts. SyncCharts [2] are variant
of Statecharts that builds on the synchronous model of com-
putation, hence it employs a formal semantics and ensures
determinism.

A typical design flow employing Statecharts may start with a
graphical modeling tool that synthesizes a Statechart model
into a C program, which is further compiled into some ex-
ecutable. However, it is also quite common to bypass the
visual modeling step. Just as the code generator of a mod-
eling tool is able to express the Statechart semantics in a C
program, so it is possible for a human programmer to ex-
press Statechart behavior as a C program [24, 29]. This does
not offer the visual appeal of graphical Statecharts, but has
other advantages: 1) no need for a modeling tool, 2) high
portability, and 3) seamless integration with a fully featured,
widely used programming language, including the type sys-
tem, expression handling, control flow, access to low-level
I/O, pre-processors, etc.

Even if one assumes a design flow that starts at a graphi-
cal modeling tool that supports SyncCharts, it is of interest
how SyncChart behavior can be expressed concisely in a tra-
ditional programming language. For a number of reasons,



we would like to be able to generate code that preserves the
structure of the graphical model: 1) it simplifies the devel-
opment of the code synthesizer of the modeling tool; 2) it
facilitates back-annotations from the executable code into
the graphical model, which allows visual animations of the
running code and allows to set break points in the model;
and 3) it simplifies code certification for safety-critical em-
bedded systems.

Contributions. The main contribution of this paper is a
concise, light-weight embedding of deterministic concurrency
primitives into the C language. The main idea of SC is to
emulate multi-threading, and is inspired by reactive pro-
cessing [28]. As we do not have direct access to the program
counter at the C language level, we keep track of individual
threads via state labels, implemented as usual C program
labels. These labels can also be viewed as continuations [4],
or coroutine re-entry points [11]. Precedence among transi-
tions, respecting strong/weak abortions and hierarchy, and
the adherence to signal dependencies is achieved by checking
transition triggers in the proper order as well as assigning
appropriate thread ids and priorities. SC is no panacea, it is
still the responsibility of the SC programmer to express the
order in which threads are executed according to the logic
of the application; however, SC does offer a deterministic
mechanism to do so via thread ids/priorities.

To write and execute an SC application requires neither spe-
cific tools nor special execution platforms, although both
may support this concept further. All that is needed to get
started is an understanding of SyncCharts (see e. g. the tu-
torial provided by André [2]), a C compiler, and the SC files.
The SC files consist of one header file (sc.h), to be included
by the application code, and one C-file (sc.c), to be linked
in by the application. They are open source and available
for free download1.

Outline. The next section relates SC to other work, fol-
lowed in Sec. 3 by an example, PCO, that illustrates how
SC programmers can implement reactive control. Sec. 4 dis-
cusses signal-based communication, illustrated with the gr-
cbal3 example, and briefly elaborates on thread scheduling.
We present experimental results in Sec. 5, before concluding
in Sec. 6. The full version [27] of this paper presents the
programming model in more detail including guidelines on
finding proper schedules, covers all of the SC operators, dis-
cusses specific issues such as schizophrenia, suspension and
delayed signals, documents the current implementation, and
presents a range of further examples.

2. RELATED WORK
As mentioned in the introduction, it is already common
practice to express Statecharts in a classical programming
language. Samek describes how to express UML Statecharts
in C/C++ [24]. As in UML Statecharts, this approach does
not provide deterministic concurrency. Wagner et al. de-
scribe how to implement FSMs in C [29], but these are flat
automata without any concurrency.

1http://www.informatik.uni-kiel.de/rtsys/sc/

There have been several proposals to extend traditional pro-
gramming languages by synchronous constructs. Reactive
C [8] is an extension of C inspired by Esterel. It employs
the concepts of computational instants (ticks) and preem-
tions, but does not provide true concurrency; Reactive C’s
merge operator emulates concurrency by running threads se-
quentially, in their textual order. FairThreads [5] extend
this by true concurrency, implemented via native threads.
They also offer macros to express automata. SC does not
use native threads, but does its own, light-weight thread
book keeping. Another difference is that the signal mech-
anism provided by FairThreads does not allow reaction to
signal absence, whereas SC does allow this (see grcbal3). The
Esterel-C Language (ECL) [12] is another proposal to extend
C by Esterel-like constructs; a C program is annotated with
Esterel-like constructs for signal handling and reactive con-
trol flow, and from this program the ECL compiler derives
an Esterel part and a purely sequential C part. SC is in the
same spirit of annotating C with synchronous operators, but
differs from ECL in that it does not resort to a separate lan-
guage (Esterel). Another recent proposal for a synchronous
extension of C is Precision Timed C (PRET-C) [22]. PRET-
C focuses on temporal predictability and assumes a target
architecture with specific support for thread scheduling and
abort handling. PRET-C provides a minimal set of C ex-
tensions, namely a concurrency operator, which runs threads
with static priorities, a delayed abortion operator, and an
EOT operator that delineates ticks.

Lusteral, presented by Mendler and Pouzet [16], also tries
to capture the essence of synchronous programming in a
small number of operators. It combines elements of the syn-
chronous languages Lustre, Esterel and Signal and embeds
them in Haskell; as this is a functional language, it allows
to express the semantics of the Lusteral operators nicely as
higher-order functions.

As SC expresses synchronous, control-oriented concurrency
by means of an—ultimately sequential—C program, execut-
ing an SC program raises similar issues as they arise when
synthesizing a synchronous language into sequential code.
There have been numerous proposals for this, in particular
for the Esterel language [18, 7]. It is a common procedure
to translate an Esterel program into a C program, but the
resulting C program usually bears little resemblance to the
original Esterel program. For example, the C code might
be a flat automaton, or it might simulate a hardware cir-
cuit. Probably the closest in spirit to SC is the BAL virtual
machine [7], which proposes a high-level ISA that captures
the Esterel semantics as closely as possible; see also Sec. 5.
Another interesting approach is the dynamic list code gener-
ation [7], which produces C code that executes concurrently
running threads by dispatching small groups of instructions
that can run without a context switch. These blocks are
dispatched by a scheduler that uses linked lists of pointers
to code blocks that will be executed in the current cycle.
While the fundamentals of that code generation are very
different from the SC approach, their use of pointers and
gcc’s computed gotos has inspired the label-based “coarse
grain program counter” approach presented here.

As discussed in Sec. 3, SC is also related to the program-
ming model proposed for the Precision Timed Architecture
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(PRET) proposed by Edwards and Lee [15]. Another re-
lated programming model is SHIM [26], proposed for soft-
ware/hardware integration, which provides Kahn process
networks with CSP-like rendezvous communication and ex-
ception handling. It uses a separate compiler to convert a
SHIM program into sequential C code. SHIM, like SC, has
been inspired by synchronous languages, but it does not use
a synchronous programming model, instead relying on com-
munication channels for synchronization.

As SC can be used as a target format when synthesizing
Statecharts into a sequential program, this work also re-
lates to code generation from Statecharts. Three different
methods of compiling Statecharts are common: compilation
into an object oriented language using the state pattern [1],
dynamic simulation [30], and flattening into finite state ma-
chines. Since flattening can suffer from state explosion, often
a combination of flattening and dynamic simulation is used.
All of these methods incur relatively high overhead and typ-
ically make use of a run time system to achieve concurrency,
and usually the result is not deterministic.

For SyncCharts, it is also possible to translate the Statechart
model into an equivalent textual Esterel program [9]. Such
a translation was proposed by André [3] together with the
initial definition of SyncCharts and their semantics. This
transformation, with additional unpublished optimizations,
is implemented in Esterel Studio. The resulting Esterel pro-
gram can then be translated into software or hardware [18].
As discussed in Sec. 5, this path via Esterel to C is here used
for experimental comparison. A drawback of this approach
is that the original structure of SyncCharts cannot always be
preserved in the Esterel code, as Esterel does not allow the
arbitrary control flow that can be expressed by SyncChart
transitions; this also can induce the need for additional sig-
nals, to encode the next active state. This structure is even
less preserved in a C program compiled from the Esterel
program.

One approach to synthesize SyncCharts into a textual pro-
gram that does preserve the original structure is to generate
code directly for a reactive processor [28], as done by the
state machine to KEP compiler (smakc!) [25]. Unlike the
instruction set architecture (ISA) of traditional processors,
which provide only sequential control flow operators such as
branches and jumps, the ISA of reactive processors directly
expresses concurrency and preemption. The smakc! com-
piler targets the Kiel Esterel Processor [14], which imple-
ments synchronous concurrency via multi-threading. This
multi-threading approach, which is also realized for exam-
ple in the StarPro processor [31], has the advantage of allow-
ing high degrees of concurrency without excessive resource
requirements. The SC operators have been inspired by the
KEP ISA, and adopt the KEP’s mechanism of priority-based
multi-threading. However, the SC operators have been de-
veloped with SyncCharts in mind, rather than Esterel, and
they make minimal assumptions on the execution platform.
The main resulting differences between SC and the KEP
ISA are: 1) SC provides a TRANS operator that implements
an arbitrary state transition; 2) SC does not provide Es-
terel’s exception handling via traps; 3) SC does not rely on
special watcher units to implement aborts. A motivation
for the KEP’s watcher units was to avoid Checkabort in-

structions [23, 22], as these introduce an overhead—both in
terms of code size as execution speed—at each tick, in all
threads, proportional to the abort nesting depth. Interest-
ingly, SC needs neither watchers nor Chkaborts, by giving
parent threads the power to abort their descendants with
the TRANS operator.

3. REACTIVE CONTROL IN SC—PCO
This section covers 1) the general structure of SC programs,
2) how SC macros are embedded in regular C code, 3) the
concept of deterministic, label-based simulated multi-thread-
ing, and 4) deterministic preemptions. We will illustrate
these points with PCO, shown in Fig. 1, a simple producer-
consumer example with an observer. It is inspired by Lickly
et al. [15], but to illustrate not only concurrency but also
preemption, it has been augmented with a parent thread
that restarts production/consumption once the buffer has
the value 10 (transition at bottom right), and which termi-
nates after 20 iterations.

The SyncCharts version (Fig. 1a) shows a Parent macro
state, which is an AND (parallel) state that consists of three
substates, corresponding to the producer, consumer and ob-
server. Each substate consists of a state with a self-transition,
which is triggered unconditionally and performs some action.
For example, the producer state writes the current value of
i into a buffer BUF, a valued signal in SyncCharts parlance.
The consumer state reads the value of BUF into some vari-
able tmp and then writes tmp into an array arr. The observer
also reads from BUF. The Parent state re-enters itself when
BUF has the value 10, and transitions to some final state
when k, incremented by the observer, has reached the value
20.

Compared to an implementation that would try to achieve
the same behavior with, say, Java threads, the interesting
aspect of the SyncChart implementation is that the concur-
rency is deterministic. The three substates of Parent execute
in lock step, and the SyncCharts semantics requires that
in each execution, BUF must be written before it is read.
Hence, the code generator of EsterelStudio, which generates
C code from this (via Esterel), must schedule the producer
before the consumer and the observer. Similarly, the tran-
sitions leaving Parent have deterministic behavior; in this
example, they are so-called weak abortions, meaning that
the body of the parent gets to finish its current execution
before a transition is taken. An implementation with classi-
cal Java threads offers none of these assurances. To achieve
the same effect would require explicit barrier synchroniza-
tion. Note also that for example using Java’s synchronized
to protect access to the shared buffer does not help, as this
would only guarantee exclusive access, but no ordering.

One approach suggested recently to enforce this synchro-
nization is to use explicit low-level time-triggered schedul-
ing. The PRET architecture [15] offers a DEAD instruction
which guarantees a (minimal) delay before a thread pro-
ceeds. Fig. 1b shows the PRET version of a reduced variant
of PCO that does not have preemptions. In this PRET ver-
sion, the buffer access is coordinated by giving the producer
a head start before the consumer and observers (DEAD 28
vs. DEAD 41), and then keeping all three running at the
same rate (DEAD 26). To guarantee proper synchroniza-



(a) SyncChart, designed with EsterelStudio

int main() {
  DEAD(28); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26);
    *buf = i;
  }
  return 0;
}

Producer
int main() {
  DEAD(41);
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  int arr[8];
  for (i =0; i<8; i++)
    arr[i] = 0;
  for (i = 0; ; i++) {
    DEAD(26);
    register int tmp = *buf;
    arr[i%8] = tmp;
  }
  return 0;
}

Consumer
int main() {
  DEAD(41); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  volatile unsigned int * fd =  
 (unsigned int*)(0x80000600);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26); 
    *fd = *buf;
  }
  return 0;
}

Observer

Figure 5: Simple Producer/Consumer Example

5.1 Mutual Exclusion

A general approach to managing shared data across separate threads is to have mutually exclusive critical

sections that only a single thread can access at a time. Our memory wheel already guarantees that any

accesses to a shared word will be atomic, so we only need to ensure that these accesses occur in the correct

order.

Figure 5 shows the C code for the producer, consumer, and an observer all accessing a shared variable

(underlined). The producer iterates and writes an integer value to a shared data. The consumer reads this

value from this shared data and stores it in an array. For simplicity, our consumer does not perform any other

operations on the consumed data or overwrite the data after reading it. The observer also reads the shared

data and writes it to a memory-mapped peripheral. We use staggered deadlines to offset the threads to force

a thread ordering. The deadline instructions are marked in bold.

As Figure 5 shows, every loop iteration first executes the critical section of the producer, and then the

observer and the consumer in parallel. The offsets to achieve this are given by deadlines at the beginning of

the program. The offset of the producer loop is 28∗6 = 168 cycles, which is 78 cycles less than the offset of

41 ∗ 6 = 246 for the consumer and observer. Since this difference is the same as the frequency with which

the wheel schedule repeats, this guarantees the producer thread will access the data an earlier rotation of the

wheel. Once inside the loop, deadlines force each thread to run at the same rate, maintaining the memory

access schedule. It is important for this rate to be a multiple of the wheel rate to maintain the schedule. In

this example, each loop iteration takes 26∗6 = 156 cycles: exactly two rotations of the wheel.
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(b) PRET version, without preemption (from [15])

1 #include ”sc .h”
2

3 int BUF, fd, i , j , k = 0, tmp, arr [8], idHi = 4;
4 typedef enum { TickEnd, Main, Cons, Obs, Prod }

idtype;
5 const int ids [] = { 0, 1, 2, 3, 4 };
6 const char ∗id2threadname[] = { ”TickEnd”, ”Main”,

”Cons”, ”Obs”, ”Prod” };
7

8 // ====== MAIN FUNCTION ======
9 int main()

10 {
11 int notDone, init = 1;
12

13 do {
14 notDone = tick( init ) ; // Call tick function
15 sleep (1) ; // Slow down by 1 sec
16 init = 0;
17 } while (notDone);
18 return 0;
19 }
20

21 // ====== TICK FUNCTION ======
22 int tick ( int isInit )
23 {
24 TICKSTART(isInit); // Main thread
25

26 PCO: PAR(0, Prod, ids [Prod]);
27 PAR(0, Cons, ids[Cons]);
28 PAR(0, Obs, ids[Obs]);
29 PARE(0, Parent, id2b(Prod) | id2b(Cons) |

id2b(Obs));
30

31 Prod: for ( i = 0; ; i++) { // Producer
32 PAUSE(L0);
33 L0: BUF = i; }
34

35 Cons: for ( j = 0; j < 8; j++) // Consumer
36 arr [ j ] = 0;
37 for ( j = 0; ; j++) {
38 PAUSE(L1);
39 L1: tmp = BUF;
40 arr [ j % 8] = tmp; }
41

42 Obs: for ( ; ; ) { // Observer
43 PAUSE(L2);
44 L2: fd = BUF;
45 k++; }
46

47 Parent: PAUSE(L3); // Main (cont’d)
48 L3: if (k == 20) // IF iteration limit
49 TRANS(Done); // THEN terminate
50 if (BUF == 10) // IF buffer = 10
51 TRANS(PCO); // THEN restart PCO
52 goto Parent; // ELSE continue
53

54 Done: TERM;
55 TICKEND;
56 }

(c) Complete SC program

Figure 1: The PCO (Producer-Consumer-Observer) example.



Mnemonic, Operands Notes

TICKSTART∗(isInitial) Start (initial) tick.
TICKEND Finalize tick, return 1 iff there is still an enabled thread.

PAUSE∗(l) Deactivate current thread for this tick, continue next tick at address label l.
TRANS(l) Abort descendant threads, jump to l.
SUSPEND∗(l) Suspend (pause) thread and its descendants, continue at l.
TERM∗ Terminate current thread.

PAR(p, l, id) Create a thread with an initial priority p, a start address l, and an id id.
PARE∗(p, l, idsdesc) Specify priority p, continuation address l and descendant threads (for TRANS and JOIN).
JOIN∗(lthen, lelse) If descendant threads have terminated normally, jump to lthen; else pause, proceed to lelse.

PRIO∗(p, l) Set current thread priority to p, continue at l.
PPAUSE∗(p, l) Shorthand for PRIO(p, l′); l′: PAUSE(l) (saves one call to dispatcher)
JPPAUSE∗(p, lthen, lelse) Shorthand for JOIN(lthen, l); l: PPAUSE(p, lelse) (saves another call to dispatcher)

Table 1: SC thread operators—tick delimiters, fork/join, priority handling, and abortion and suspension.
Operators marked with an asterisk may call the thread dispatcher, i. e., can result in a thread context switch.

tion this way requires a timing analysis of the code and the
underlying architecture, and the resulting program is fairly
non-portable.

The SC version of PCO is shown in Fig. 1c. The main
function contains a while loop that calls a tick function.
This function computes one reaction by simulating all en-
abled threads for one tick. The return value of tick indi-
cates whether the program has terminated, i. e., whether all
threads have become disabled. The while loop of main contin-
ues as long as any thread is still enabled. In this example, a
call to sleep(1) results in a reaction rate of—approximately—
once per second. The tick function consists of regular C
code and some macros. These SC macros are declared in
sc.h, included in line 1. An overview of the SC Thread Han-
dling Operators, which perform the multi-threading simu-
lation and form the core of SC, is given in Table 1. The
remaining SC operators are presented in Sec. 4, Table 2.

The first SC macro used in PCO, TICKSTART, performs
some book keeping, depending on whether this is the initial
tick or not. This is followed by a sequence of PAR/PARE
macros, which fork off the children of the current thread.
The current thread, started when entering tick, is the Main
thread. The forked threads are Prod, Cons, and Obs. Each
PAR gives a thread a priority (here all 0), a starting label,
and an id. PARE specifies a priority for the current thread
(again 0), a continuation label (Parent), and the set of chil-
dren that were just forked. Sets of threads are encoded as
a bit vector, id2b maps a thread into this vector. This set
is needed to properly abort Main’s children when TRANS is
called. Threads are declared with the idtype enumeration
type (line 4). The starting point of each thread is declared
with an ordinary C label, named after the thread. This is
just a convention; from a C perspective, these labels and the
thread names have different name spaces and are different
objects—one is a memory address, the other is an enumer-
ation type index.

The code for each thread is regular C code, except that each
thread contains a PAUSE macro. PAUSE indicates that a
thread becomes inactive and is ready to relinquish control
to the dispatcher. An argument to PAUSE indicates at which
label the pausing thread should resume in the next tick.

The dispatcher, called by PAUSE, selects a thread for re-
sumption. In PCO the dispatcher selects from the active
threads, which still have work to do in the current thread,
the one with the highest thread id. The dispatcher may also
consider dynamic priorities, see Sec. 4, but in PCO these are
all 0. Threads are mapped to their ids with the ids array
(line 5). The TickEnd thread, which must be present in any
SC program and must have the lowest id (0), returns from
tick if none of the other threads are active anymore.

Taking a look at the Main thread continuation at the Parent
label (line 47), we note that the transitions triggered by in-
specting first k and then BUF are implemented with TRANS
operators (lines 49 and 51). This operator transfers control
to the argument label, and also aborts Main’s child threads.
Finally, TERM terminates the current thread (Main), and
TICKEND does last book keeping before leaving tick again.

To summarize, we simulate multi-threading by keeping track
of continuation points and calling a dispatcher whenever a
context switch might occur. In the example, the dispatcher
is called by PAUSE (thread becomes inactive for the current
tick), PARE (children have been created, current thread may
have changed priority), and TERM (thread has terminated).
The context of a thread is very light-weight: it consists of its
id (static), its continuation label (dynamic), and a priority
(dynamic). Everything else is shared. The thread id encodes
the order in which threads are dispatched. In PCO, the
producer has to run before the consumer and the observer,
hence Prod gets the highest id (4).

Modularization. All threads are included in one C tick
function, just as for example a SyncChart or Esterel pro-
gram is usually synthesized into a single reaction function.
This makes data sharing/communication trivial, but lim-
its modularization. This is a consequence of the label-based
continuation encoding, since in C, we cannot transfer control
to a label across function calls. Alternatives, such as encod-
ings based on setjmp/longjmp, would provide more flexibility,
but would also incur higher overhead. Note, however, that
modularization is still possible insofar as “instantaneous”
functionality, without any SC operator that calls the dis-
patcher, can still be compartmentalized into function calls.



This suggests a programming model where the thread struc-
ture and their scheduling logic is summarized in a top-level
tick function, and thread-local activities and data-intensive
computations are modularized as function calls.

4. SIGNALS IN SC—GRCBAL3
This section covers 1) more elaborate thread scheduling via
the use of dynamic thread priorities, 2) a synthesis path
from Esterel to SC, 3) how SC macros alone suffice to write
a tick function, and 4) signal handling. Signals are used by
SyncCharts for broadcast communication among threads,
and SC provides a set of operators for them; note, however,
that an SC programmer may also use regular C variables,
as was demonstrated in PCO. Again we use an example, gr-
cbal3, to illustrate these issues. Originally, this example was
programmed in Esterel, and has been presented by Edwards
and Zeng in their description of the Columbia Esterel Com-
piler [7]. Hence the name of the benchmark: GRC is the
Graph Code intermediate representation of the CEC, BAL
is the Bytcode Assembly Language of a VM targeted by the
CEC. The grcbal3 Esterel code has been transformed into
a SyncChart using KIEL [19]. Fig. 2a shows the Esterel
version, on the right, with the generated SyncChart, in the
midst of an animated simulation—the initial tick has just
been executed, with no inputs present.

The Esterel program illustrates the use of signals to synchro-
nize threads. It has an input signal A and output signals
B. . . E. There are three concurrent threads, which are en-
closed in a trap triggered by T. Esterel’s trap construct pro-
vides exception handling; in the example, the exit T state-
ment (line 11) throws the exception. The three threads com-
municate back and forth via signals; for example, if A is
present, the first thread emits a B, which causes the second
thread to emit C, which in turn causes the first thread to
emit a D.

The SyncChart synthesized by KIEL is equivalent to the
Esterel version. However, as SyncCharts do not provide
traps, they have to be emulated with weak abortions. This
translation is always possible, and in grcbal3 this can be done
in a straightforward fashion, via a weak abort triggered by
a fresh signal T . The transition that implements this is
shown in the lower right of the SyncChart, which leads to a
final state (double circle).

Fig. 2b shows the tick function of the SC version of grcbal3.
In addition to the SC concurrency operators already intro-
duced in Sec. 3 and Table 1, grcbal3 makes use of SC signal
operators. An overview of these and some other, sequential
control operators is given in Table 2.

To better understand this example’s operation, consider also
the execution trace shown in Fig. 2c. All SC macros (apart
from TICKSTART and TICKEND) log their operation to std-
out if instructed to do so via a preprocessor directive. The
trace illustrates the operation of grcbal3 in case input signal
A is present. The first line shows the input signals (A) and
the enabled threads (initially none) as bit vector, in octal
notation with leading 0. TICKSTART, PAR, and PARE are
as explained for the PCO example (Sec. 3). One difference,
however, is that threads A1, A2 and A3, which correspond
to the three concurrent substates embedded in the macro

state in the SyncChart version, are started with priorities
3, 2, and 1, respectively. This priority is used by the dis-
patcher, which always resumes the active thread with the
highest priority; if there are multiple such threads with the
same, highest priority, then the highest thread id decides.
In PCO, all threads had priority 0, hence only the thread id
mattered to the dispatcher.

After Main has forked its children, PARE calls the dispatcher,
see line 5 in the program, line 7 in the trace. This starts A1
(thread id 2), as it has the highest priority. A1 determines
A as present and emits signal B. The PRIO directive lowers
A1’s priority to 2, specifies L0 as continuation, and calls the
dispatcher. Now A2 (id 3) is started, as it has the same
priority as A1, but a higher thread id. A2 determines B as
present and hence emits C. Then the TERM operator termi-
nates C, meaning that it is deactivated (does not resume in
the current tick) and disabled (will not be resumed in the
next tick). Therefore TERM calls the dispatcher, without
specifying a continuation label. The set of remaining en-
abled threads is encoded in a bit vector, see line 13 of the
trace. The vector octal 027, binary 10111, has bits 0 (right-
most bit, indicating thread TickEnd), 1 (Main), 2 (A1) and
4 (A3) set.

In this fashion, control is passed back and forth between
Main’s children until they have all have completed their tick,
and the Main thread, running at priority 0, resumes; see line
24 of the trace. It determines that T is present, which
corresponds in the original Esterel program to a thrown ex-
ception (exit T), hence the program has to terminate. This
is done by first aborting Main’s children with TRANS (in
this case unnecessary, as they have all terminated already),
transferring control to label B, and then terminating Main.

As the trace indicates (line 27), a total of 24 SC instructions
have been executed, and solely the always-enabled TickEnd
thread is still enabled. The trace also shows the signals
emitted by the reaction. In this example, the main function
calling the tick function not only sets the inputs (currently
read in from an array), but also compares the generated
output to a reference output (“Outputs OK”).

One last operator in grcbal3 not explained yet is the JOIN
in line 29. Here the Main thread checks whether all of its
children have terminated. If so, then Main also terminates,
according to the semantics of SyncChart macro states, and
similarly Esterel’s concurrency operator || .

To summarize, grcbal3 illustrates how thread ids and priori-
ties can be used to schedule threads in an arbitrary fashion.
In this case, we have used this to schedule threads such
that signal dependencies, imposed by the Esterel/SyncCha-
rts semantics, are adhered to. This semantics requires that
within a tick all potential signal emitters run before a signal
is tested. This is similar to the situation in the producer-
consumer example, just that in grcbal3 there is not just one
buffer to synchronize on, but four output signals.

Thread Scheduling. The grcbal3 example is, admittedly,
fairly intricate, as it has also been designed to illustrate the
scheduling challenges that Esterel poses to a compiler. For



(a) Screen shot of KIEL[20], as it synthesizes a SyncChart from the original Esterel code [7]

1 TICKSTART(isInit); // id 1
2 PAR(3, A1, ids[A1]); // id 2
3 PAR(2, A2, ids[A2]); // id 3
4 PAR(1, A3, ids[A3]); // id 4
5 PARE(0, AMain, id2b(A1) | id2b(

A2) | id2b(A3));
6 A1: PRESENT(A, A1B);
7 EMIT(B);
8 PRIO(2, L0);
9 L0: PRESENT(C, A1A);

10 EMIT(D);
11 A1A: PRIO(1, L1);
12 L1: PRESENT(E, A1B);
13 EMIT(T );
14 GOTO(A1C);
15 A1B: PAUSE(L2);
16 L2: EMIT(B);
17 A1C: TERM;
18 A2: PRESENT(B, A2A);
19 EMIT(C);
20 A2A: TERM;
21 A3: PRESENT(D, A3A);
22 EMIT(E);
23 A3A: TERM;
24 AMain: PRESENT(T , AJoin);
25 TRANS(B);
26 AJoin: JOIN(B, AMain);
27 B: TERM;
28 TICKEND;

(b) SC tick function

1 ==== TICK 0 STARTS, inputs = 01, enabled = 00
2 ==== Inputs (id): A (0)
3 ==== Enabled (id, state): <none>
4 PAR: Main ( id 1, prio 0, <null> −> <null>) forks A1 (2) with prio 3, startlabel A1
5 PAR: Main ( id 1, prio 0, <null> −> <null>) forks A2 (3) with prio 2, startlabel A2
6 PAR: Main ( id 1, prio 0, <null> −> <null>) forks A3 (4) with prio 1, startlabel A3
7 PARE: Main ( id 1, prio 0, <null> −> AMain) has descendants 034
8 PRESENT: A1 (id 2, prio 3, <null> −> A1) determines A (0) as present
9 EMIT: A1 (id 2, prio 3, <null> −> A1) emits B (1)

10 PRIO: A1 (id 2, prio 3, A1 −> L0) set to priority 2
11 PRESENT: A2 (id 3, prio 2, <null> −> A2) determines B (1) as present
12 EMIT: A2 (id 3, prio 2, <null> −> A2) emits C (2)
13 TERM: A2 (id 3, prio 2, <null> −> A2) terminates, enabled = 027
14 PRESENT: A1 (id 2, prio 2, A1 −> L0) determines C (2) as present
15 EMIT: A1 (id 2, prio 2, A1 −> L0) emits D (3)
16 PRIO: A1 (id 2, prio 2, L0 −> L1) set to priority 1
17 PRESENT: A3 (id 4, prio 1, <null> −> A3) determines D (3) as present
18 EMIT: A3 (id 4, prio 1, <null> −> A3) emits E (4)
19 TERM: A3 (id 4, prio 1, <null> −> A3) terminates, enabled = 07
20 PRESENT: A1 (id 2, prio 1, L0 −> L1) determines E (4) as present
21 EMIT: A1 (id 2, prio 1, L0 −> L1) emits T (5)
22 GOTO: A1 (id 2, prio 1, L0 −> L1) transfer to A1C
23 TERM: A1 (id 2, prio 1, L0 −> L1) terminates, enabled = 03
24 PRESENT: Main (id 1, prio 0, <null> −> AMain) determines T (5) as present
25 TRANS: Main ( id 1, prio 0, <null> −> AMain) disables 034, transfers to B, enabled = 03
26 TERM: Main ( id 1, prio 0, <null> −> AMain) terminates, enabled = 01
27 ==== TICK 0 terminates after 24 instructions.
28 ==== Enabled (id, state): TickEnd (0, TickEndLabel)
29 ==== Resulting signals (id): A (0), B (1), C (2), D (3), E (4), T (5), Outputs OK.

(c) Example trace; l0 –> l1 indicate the previous/current continuation of a thread

Figure 2: The grcbal3 example.



Mnemonic, Operands Notes

SIGNAL(S) Initialize a local signal S.
EMIT(S) Emit signal S.
PRESENT(S, lelse) If S is present, proceed normally; else, jump to lelse.

EMITINT(S, val) Emit valued signal S, of type integer, with value val.
EMITINTMUL(S, val) Emit valued signal S, of type integer, combined with multiplication, with value val.
VAL(S, reg) Retrieve value of signal S, into register/variable reg.

PRESENTPRE(S, lelse) If S was present in previous tick, proceed normally; else, jump to lelse. If S is a signal local to
thread t, consider last preceeding tick in which t was active, i. e., not suspended.

VALPRE(S, reg) Retrieve value of signal S at previous tick, into register/variable reg.

GOTO(l) Jump to label l.

CALL(l, lret) Call function l (eg, an on exit function), return to lret.
CHKCALL(id, lstate, l, lret) If thread id is at state lstate, call function l (eg, an on exit function of associated with id at

state lstate). Return to lret.

Table 2: SC signal operators (pure signals, valued signals, and accesses to the previous tick) and SC sequential
control operators (jumps and exit actions).

an inexperienced SC programmer it may therefore be non-
obvious how to assign priorities and thread ids properly such
that signal dependency rules are adhered to; the full paper
describes a systematic approach to do this. There are sev-
eral possible alternatives to unchecked manual priority/id
assignment: 1) one might relegate thread id and priority as-
signment to a separate analysis pass, using for example the
assignment algorithm of the KEP Esterel compiler [14] (fea-
sible, but it would require a separate compilation step); 2)
one might use SyncCharts—or Esterel—as entry language
for SC, and do the signal dependence analysis there (also
possible, but this would lose the direct embedding in C); or,
3) one might add run-time checks to the SC operators that
ensure that no signals that have been tested already in a tick
are emitted in a tick (a reasonable consistency check, easy
to implement—but it does not offer a guarantee as a static
analysis would do). However, one should also note that such
intricate dependencies appear to be rather rare. We can dis-
tinguish three types of programs: 1) programs that require
dynamic scheduling of threads, which entails run-time al-
terations of thread priorities (via PRIO); 2) programs that
require just static scheduling, which can be handled with
thread id assignment; and 3) programs that do not impose
scheduling constraints at all. From the 10 benchmarks re-
ported on in the next section, only grcbal3 and exits belong
to the first category.

5. EXPERIMENTAL RESULTS
The main intention of designing SC was to develop a concise
embedding of SyncChart behavior into C. It is difficult to
measure “conciseness” precisely, as this compares a visual
language against a textual one. A better point of reference
might be Esterel code. For example, grcbal3 in Esterel takes
25 lines (see Fig. 2a); in SC, it takes 28 lines (Fig. 2b).
This indicates a comparable level of conciseness, which is
remarkable in that the SC operators are embedded in the
imperative, sequential programming model of C. Another
interesting point of comparison is the BAL VM instruction
set, as it has been designed specifically to encode Esterel
programs in as little memory as possible [7]. To encode
grcbal3, BAL uses 74 instructions, of complexity comparable
to the SC operators. The SC version makes do with 28
instructions, and these are also arguably easier to relate to

an Esterel program or a SyncChart than the BAL assembler.
This makes SC an attractive alternative candidate for a VM
instruction set.

As another point of reference, Fig. 3a compares the size of
the SC tick functions for a number of benchmarks with the
size of the C code generated by EsterelStudio. Two synthesis
variants are considered, one based on circuit simulation, the
other based on GRC. As can be seen, SC is often less than
half the size than the synthesized C code. Fig. 3b compares
sizes of the executable on an x86 architecture, compiled with
gcc. Here the difference is less remarkable, but SC is still
ahead.

The development of SC has not been motivated primarily by
performance concerns, but still it is interesting to see how it
compares. On the negative side, SC basically just interprets
a SyncChart, it cannot perform any global optimizations or
partial evaluations at compile time, as do for example the
EsterelStudio synthesis tools. On the positive side, SC code
has no scalability problems, neither in terms of code size
(unlike the flat automaton synthesis approach) nor in terms
of run time. It only does work that needs to be done, in the
sense that no unnecessary code regions are executed. This
is different than for example the widely used circuit simula-
tion approach, where always the whole circuit is simulated,
irrespective of which regions are active. Furthermore, the
SC context switches are very light weight, as 1) each thread
requires very little information (see Sec. 3), and 2) the dis-
patcher is fast; on the x86, in case of static thread sched-
ules and a maximal degree of concurrency smaller than the
native word width, SC does thread selection with a single
bsr (Bit Scan Reverse) assembler instruction on the active
thread vector. (See the report [27] for a further discussion
of dispatching complexity.) Therefore, SC certainly requires
less overhead than a traditional thread-based implementa-
tion, where a context switch itself already takes thousands
of instructions.

A more challenging point of reference are the monolithic C
functions synthesized from SyncCharts. The benchmarks
considered here, mostly taken from André [2], mainly serve
to demonstrate the proper coverage of the full SyncChart
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Figure 3: Experimental results.

language. Still, they provide some indication of SC’s per-
formance characteristics. Figure 3c compares the run times
of the tick functions, on an Intel Xeon architecture. For the
measurements, a representative input trace was executed,
outputs were compared against a reference trace, and the
execution times of the individual calls to the tick functions
were accumulated. Timings were done in numbers of proces-
sor cycles, using the x86 rdtsc (Read Time Stamp Counter)
instruction. The machine runs at 3 GHz, so most of the
runs took less than 1 µs. As to be expected, SC does not
beat any of the advanced synthesis techniques. In the exits
example, which makes heavy use of exit actions, modular-
ized into separate procedure calls rather than inlining (and
possibly duplicating) them, the performance is even 2–2.5x
worse. Overall, however, SC is roughly comparable, and in
four of the ten benchmarks it is faster than the Circuit ap-
proach. As applications get larger, one should expect that
SC stays comparable (at least), as again it does not have
scalability problems. Also, one should expect that in prac-
tice, SC programs are dominated by regular C operations,
not the SC operators.

6. CONCLUSIONS AND OUTLOOK
SyncCharts in C are a light-weight approach to embed deter-
ministic reactive control flow constructs into a widely used
programming language. With a relatively small number of
primitives it is possible to cover the complete SyncChart
language; the full report details non-trivial issues not ad-
dressed here, like the handling of exit actions or the proper
interaction of pre, suspend and local signals [27]. The multi-
threaded, priority-based approach has been inspired by syn-
chronous reactive processing; hence, originally, this approach
required a special compiler and a special architecture to im-
plement. For example, the KEP has watchers that check
for preemption in parallel to normal operation, a reactive
processing unit that resolves control priorities on the fly,
and a dispatcher that selects the next thread for execution
at the beginning of each instruction cycle. Therefore, it
was not obvious from the onset that it would be possible to
achieve the same behavior by isolated SC operators, embed-
ded in regular imperative code, on a standard architecture,
at a competitive performance. As it turns out, standard
architectures already provide features that can be used to
advantage, even if they are not directly available on the C
level, such as the x86 bsr instruction that can be used for
fast dispatching. A number of issues that pose challenges in

implementing synchronous programs, such as schizophrenia
or reaction to signal absence, are unproblematic; see again
the full version of the paper [27].

Considering the formal semantics of SC, as it is expressed
in terms of C, one might take the stance that the semantics
of the SC operators is expressed by the C statements they
consist of, none of which touch on any of the many semantic
uncertainties of C. In terms of mental complexity, this should
not be as daunting as one might think; as of SC version 1.3.3,
the file sc.h that defines all SC operators (except the general
versions of the dispatcher, which are defined as functions in
sc.c), is 609 lines long, of which 171 lines are comments, 62
lines are related to tracing, and 132 lines are empty. This
leaves 243 lines of C code that explain what the operators
do. Still, it should be worthwhile to formalize the semantics
at a more abstract level, to allow formal reasoning about
them.

SC is freely available, and can be used as is for writing reac-
tive applications in C. However, there are a number of inter-
esting further projects that should be pursued. For example,
the current thread continuation handling is based on com-
puted gotos, as provided by the gcc; an alternative, which
would probably be slightly less efficient, but does not rely
on this, would be to use switch/case logic instead. Also,
as already mentioned, SC seems a viable candidate as an
intermediate language when synthesizing visual SyncCha-
rts into software, especially if traceability is required; as
discussed in Sec. 4, this would also alleviate the user from
the burden of scheduling possibly intricate thread interde-
pendencies. SC might also be used as input language for
PRET architectures, specifying thread orderings without re-
lying on specific timing characteristics. It would also be an
interesting exercise to add something like a DEAD timing
primitive [15] to SC. Unlike PRET architectures, traditional
architectures probably cannot do this cycle-accurate; how-
ever, using something like the x86 rtsc instruction or the
Timing Constraint Violation Exceptions of the Open Macro
Library2 [6], it should be possible to get fairly close. One
might use this to pad calls of the tick function to reduce
the reaction jitter, replacing for example the crude call to
sleep in PCO (Fig. 1c, line 15). A related issue is the WCRT
analysis for SC, which could build on earlier work [17, 21].
Another question not addressed at all so far is how the SC

2http://oml.sourceforge.net

http://oml.sourceforge.net


approach could be used to extract true parallelism from a
program, e. g. for programming multi-core processors. This
should be feasible, e. g. by an alternative thread id/priority
assignment scheme that expresses when things can be run in
parallel; but it is an interesting question how to make this
fast and how to minimize global synchronization overheads.
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