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Abstract—Graphical model-based system design is very appeal-
ing. However, there exist many different formalisms, with differ-
ent semantics—as far as they do have well-defined semantics—
and differing capabilities of the accompanying tools. In this paper,
we present a case study from the avionics domain and report
on the experiences in using different modeling languages and
tools. The focus here is on the pragmatics of modeling, i.e. , the
practical process of building and inspecting graphical models.
The underlying application is a high-lift flap system, which is
highly safety-critical and served as a demonstrator within the
Dependable Embedded Components and Systems (DECOS) project
that explored the design of distributed dependable systems build
on time-triggered architectures.

Specifically, we compare a realization in the Safety Critical
Application Development Environment (SCADE), a commercial
tool from Esterel-Technologies, with a design in the Kiel Inte-
grated Environment for Layout (KIEL), a research tool that allows
to explore novel model handling paradigms. Hence we compare
traditional graphical drag-and-drop WYSIWYG modeling with
alternative, productivity enhancing approaches. We conclude
with a brief outlook on future extensions which will tightly
integrate with existing tools based on the Eclipse platform.

I. INTRODUCTION

The use of graphical representations for abstract specifica-
tion of problems or solutions in computer science well estab-
lished. The most well-known—graphs—implicitly go back to
Euler in the 18th century, cf. [23].

Visually enriched and equipped with source code generation
one might regard them as the next logical step in developing
systems just as the steps from object code to assembler and to
higher-level textual programming languages. In programming
most developers avoid to go back to the assembler roots unless
the application requires squeezing out last performance opti-
mizations by manual tricks. So higher programming languages
are ruling the development processes and one might ask why
graphical representations have not yet taken over the scepter.

The problem is that there exists a growing set of modeling
languages and development environments for them. In the
control engineering well known is Matlab/Simulink [27] or
LabView [28] while control flow is better expressed with
Statecharts introduced by Harel in 1987 [22]. These days
are many different incompatible Statecharts semantics known
[31]. The Unified Modeling Language (UML) [39] tries to cope
with these differences by standardization. However, this was

done with a focus on language syntax and with a lack of
precise semantics [13], which makes it difficult to describe
system behavior unambiguously. This lack of semantics is
accompanied by a quite bewildering variety of graphical
syntaxes.

Consequently, the UML is often regarded as too general,
which has lead to the concept of Domain Specific Modeling
Languages (DSMLs) [40]. It is by now standard practice to
create new DSMLs and to build custom editors and tools for
these. Often, this is still done manually; alternatively, one
may employ a framework that supports the generation of new
graphical languages. The Eclipse Platform [11], with its sub-
project Graphical Modeling Framework (GMF) [18], allows
to synthesize customized graphical interactive drag-and-drop
editors for new DSMLs from some basic specifications. Hence
there now emerges a variety of new graphical languages from
the Eclipse community, each for a special purpose or a special
domain. With this diversity of graphical formalisms without
a real standard, the different technologies get developed and
evolve rather independently. This includes different approaches
to the pragmatics of model handling, i.e. , how models are
created, edited, visualized, inspected, simulated, compared and
so on.

In this paper, we present a case study from the avionics
domain and report on the experiences in using different mod-
eling languages and tools. The focus here is on the pragmatics
of modeling, here specifically on how models are created,
structured, and visualized during simulation.

While within the Dependable Embedded Components and
Systems (DECOS) project the demonstrator was mainly de-
veloped with the commercial modeling environment SCADE,
afterwards we transferred some of the models to the KIEL
tool in order to compare their usability. These modelling
environments are presented briefly in the remainder of the
introduction. The rest of this paper is structured as follows.
Section II presents the application from the avionics domain
considered in this paper, including a brief description of
the DECOS project where it served as a demonstrator. Sec-
tion III then describes the modeling of the application with
SCADE, using traditional modeling approaches as far as their
pragmatics is concerned. This is compared in Section IV
with alternative editing and simulation visualization paradigms



provided by KIEL. We conclude with an outline of prospective
future developments in modeling pragmatics within the Eclipse
framework.

A. SCADE

The Safety Critical Application Development Environment
(SCADE) is a modeling tool of Esterel-Technologies [12]. It
allows to graphically define dataflow for control loops like
Matlab/Simulink and control-flow like Statecharts (e.g. Mat-
lab/Stateflow), but uses a precise formal semantics built on the
synchronous model of computation. Hence, it can be seen as a
graphical editor on top of synchronous, textual languages [4],
[32]. In SCADE up to version 5, which is the version used for
the DECOS aerospace project, it was mainly Lustre for dataflow
[21] and Esterel for control-flow [5]. Since version 6 SCADE
employs its own SCADE textual language, which tries to merge
the two basic paradigms as described by Colaço et. al. [9].

A certified code generator can generate C-Code to be used
in aerospace safety-critical systems that must be developed
according to DO-178B [37].

B. KIEL

The Kiel Integrated Environment for Layout (KIEL) project
is a test bed to experiment with novel system modeling
paradigms. It has a focus on the pragmatics on how graphical
models are created, inspected, analyzed and visualized [41],
and employs the Statechart formalism. A main concept is to
leverage automatic assistance by the computer to relieve the
developer of tedious tasks in practical model handling [35].
For example, the editing of graphical models with the tra-
ditional WYSIWYG drag-and-drop editors can be quite time
consuming, compared to performing similar edits to a textual
program. Changing a Statechart by inserting a new state at
some position typically requires the developer to first manually
make space for the new state by enlarging the parent state and
moving all surrounding objects. Additionally inexperienced
users often come up with rather unstructured models difficult
to comprehend, just due to their manual layout.

The basic idea is to separate the graphical representation of
a model from the model itself, and to let the designer work on
the model, nots its representation. This is akin to the Model-
View-Controller familiar from software engineering [36]; the
critical difference is that here we employ MVC not to develop
the modeling tool, but we let the user of the modeling tool
employ MVC to develop some application.

The key enabler for providing MVC at the tool user level
is the systematic application of automatic layout for graphical
models. Modeling itself is no more a drag-and-drop interaction
where the developer manually positions items on the screen,
instead the system performs the full layout automatically. The
user can employ a macro-based structural approach to perform
changes of the model structure and the layout is decided by the
framework [34]. For example, a single command may add a
successor state to an existing state, or upgrade a simple state to
a composite or a parallel state. An alternative editing paradigm
is provided by a fully synchronized text-editor that allows to

edit a textual representation of the diagram whose changes are
immediately reflected in the graphical representation [33].

II. THE APPLICATION: A HIGH-LIFT FLAP SYSTEM

The application considered here was developed within the
Dependable Embedded Components and Systems (DECOS)
project, an Integrated Project within the European Union
Framework Program 6 [10], [19], [24]. The project explored
approaches to build a system based on components of the shelf
(COTS) components and employs different layers of abstrac-
tions and tools to develop and deploy the application. Aiming
at mixed criticality systems, including safety-critical ones, it
was built upon the Time-Triggered Architecture (TTA) [25]
with different possible lower level implementations, including
the TTP [26] and FlexRay [3] communication protocols.

Next to the basic technology development in DECOS, there
were three demonstrator sub-projects, each employing the new
technology in a different domain. One domain is industrial
control [20], another domain is the automotive industry [8].
The third domain, which centered on the application consid-
ered here, is the aerospace sector [14]–[16], [38], represented
in DECOS by Airbus Germany [1].

Fig. 1. Schematical View of a High-Lift Flap System [29]

The aerospace demonstrator implements a high-lift flap
system, which is motivated by the state-of-the-art of such
systems [29]. The main purpose of a flap system as depicted
in Fig. 1 is to increase the size and concavity of the wings
and by this to increase the high-lift temporarily. This is used
at low speed for landing and take off purposes only. There are
several reasons why the high-lift system is safety-critical.

• First, its proper function is required during landing pro-
cedures. Hence a system freeze during flight might cause
severe landing problems.

• Second, it is required that all flaps on both wing sides
are at all times perfectly synchronized. Otherwise it
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Fig. 2. Electronically Synchronized System Schematics

would influence the flight attitude and would most likely
ultimately lead to a crash.

• Third, the surface area of one flap panel is quite large,
much larger for example than the ailerons. For this reason
the mechanical forces on the panels are tremendous. If
the holding mechanisms (brakes, motors) of the panel
shafts would fail, the high forces would feedback onto
the actuator shafts and cause them to spin. Ultimately
centrifugal forces might then destruct the installation and
seriously damage the wings.

In the following, we consider two deployment alternatives,
which are the traditional, mechanical approach and a novel,
electrical approach.

A. Mechanical Synchronization

For the perfect synchronization of all flap panels, state-of-
the-art mechanisms perform the alignment purely mechani-
cally. Every flap panel is driven by a rotary actuator that gets
its actuation by a rotating shaft lengthwise within the wing.
Another long cross-shaft lies across the whole fuselage and
connects the left wing flap panel with the right wing flap
panel. A central power control unit actuates the shaft with
the help of two electrical motors. If one motor fails, the other
side will move the whole shaft with half the speed by a speed
summing differential. This way both sides are always perfectly
synchronized unless a shaft breaks or blocks, whereupon the
shaft brakes freeze the system. However this scenario is highly
unlikely.

The drawback of this solution is obvious: The shaft across
the fuselage is very inflexible and the development of the
tip-to-tip shaft transmission very laborious and includes the
internal construction of the fuselage into the development of
the flap system, which makes the system neither modular nor
reusable.

B. Electrical Synchronization

The approach is to perform the flap panel synchronization
electrically instead of mechanically and to remove the cross-
shaft through the fuselage. The system architecture used in
the project is depicted in Fig. 2. For the sake of simplicity
only two panels were developed, one for each wing. Each
panel is still actuated by an individual cross-shaft, but they
are not mechanically connected anymore. Additionally, each
shaft is actuated by a set of two motors at the ends of the shaft.
Hence the two panels could be moved independently, and the
electrical synchronization is responsible for avoiding this. The
two motors on each panel are still mechanically connected
for redundancy reasons: if one motor would fail, the other
one could still rotate the shaft with half-speed. Due to this
direct mechanical connection, the motors must be precisely
synchronized in order to avoid a torque-fight. Each shaft is
equipped with a cross-shaft brake (CSB) to freeze the system
when it is not moving, and two redundant sensors, called
position pick-off unit (PPU) . Each motor is controlled on
low level by its motor control electronics (MCE) and on
application level by an additional actuator control electronics
(ACE). MCE and ACE are closely coupled and for simplicity
could be regarded as one unit. The control loops are closed
between the ACEs and PPUs so that the shafts can be moved
to any exact position with high precision. Additionally, one
central system control unit (SCU) communicates with the
cockpit and takes pilot flap position requests on the one hand,
and calculates set-point values for the shafts and monitors the
system and commands fault reaction strategies on the other
hand.

For this safety-critical application with small control loop
periods (2ms), the field bus connecting SCU, ACEs and PPUs is
a time-triggered architecture as proposed by the DECOS project
described above. The communication between SCU and other



aircraft systems use the standard Airbus Avionics Full Duplex
Switched Ethernet (AFDX) [2] communication, which extends
standard Ethernet with enhancements for predictability and
dependability.

III. THE INITIAL MODEL OF THE APPLICATION—SCADE

The high-lift flap system basically separates in two different
functions:

A. Closing the control loop between actuator and sensors,
influenced by control commands of the central control
unit communicating with the cockpit and

B. monitoring of the system, detecting faults and react on
them appropriately to get as much fault-tolerance as
possible.

A. Basic Control

The basic control algorithms are implemented rather straight
forward. The basic loop is shown in Fig. 3. The whole system
is for safety reasons purely time-triggered, and so is the field
bus. Hence the central system control unit (SCU) sends to the
actuator control electronics (ACE) periodically set-points for
the cross-shaft position at every time-cycle. To synchronize all
four actuator stations, the SCU does not send a final destination
value, but instead calculates the whole movement trajectory
(including in- and decreasing of speed) of the cross-shaft.
At each time cycle only the position and speed that the four
stations should have at that time are supplied. To calculate the
correct trajectory, the SCU considers the current plane angle
and speed and the flap angle requested by the pilot via the
control levers. The latter two values are used to do auto-
retraction of the panels in certain flight modes in order to
avoid damage to them.

The ACEs control the speed command to their motors such
that the given set-point values are always best matched. A
simple proportional controller with differential additions is
implemented in the ACE module.

The whole control loop is implemented in SCADE and
spans over many modules and many hierarchy levels. Due to
its standard navigation and view mechanisms, its graphical
representations are too complex to be presented fully in this
paper. To give an example, the proportional controller of the
ACE is shown in Fig. 4. This pure dataflow diagram shows the
model inputs on the left—the set-point values for motor speed
and shaft position and the measured current shaft position
as obtained by the PPU—and its output to the motor control
electronics (MCE) on the right.

The control loops are implemented mainly with SCADE
dataflow and little control-flow. The more challenging part is
the monitoring and fault reaction implementation presented in
the following.

B. Fault Detection and Reaction

1) Local Monitoring: To determine what can go wrong
in the system, first a Failure Modes and Effects Analysis
(FMEA) was performed by the mechanical engineers within
the DECOS aerospace sub-project. Basic failure modes were

identified, the effects on the system, how the modes could
be detected by the system (without additional sensors) and
what an appropriate reaction would be. Main failure classes
are classified as follows:

1) loss of motor power or disconnection from shaft,
2) powered runaway in both directions,
3) jam of motor, gear or cross-shaft,
4) breakage of shaft at different positions,
5) cross-shaft brake (CSB) failure, either released or set, and
6) communication failure.

Some of these cases the system can tolerate and still be
operational with reduced performance. E.g. when one motor
gets disconnected somehow, the other motor of that flap panel
is still able to drive the cross-shaft and hence the whole flap
panel with reduced speed. A loss of the CSB can be coped with
by the motors by actively holding and controlling the cross-
shaft to certain positions where the system should be held.
While the whole system is designed following the single fault
hypothesis [30] such that it tolerates every single failure, it
still can tolerate certain multiple concurrent faults as well. For
example one motor may fail at each flap panel and both brakes
could go out of order and the flaps could still be maneuvered.
Nevertheless a jam of the system or two motor failures at
the same panel would disable the proper operation and hence
the system must be completely frozen on both sides to avoid
asynchronous states.

The implementation in SCADE mixes both dataflow and
control-flow aspects. The first version was implemented in
SCADE version 5 and hence the two paradigms are explicitly
separated (just the same as in Simulink). The first part is
schematically shown in Fig. 5.

The main state of each flap panel is modelled by a complex
Statechart which gets described in more detail in the next
section. States represent detected error modes and the currently
active reaction strategy. Hence transitions between these states
are responsible for the error detection and reaction decision.

The guards of the transitions must therefore somehow
relate to the sensor readings of the PPUs and the set-point
values of the SCU. To determine failure modes, those values
need to be processed and compared. Doing this in transition
trigger expressions of pure Statecharts would lead to very long
and incomprehensible textual transition guards. As in SCADE
version 5 it is not possible to mix dataflow expressions into
the Statecharts, the dataflow got pulled out of the chart and
the calculations are done in advance. So the relevant variables
in the monitors are fed into complex comparison and check
operators in the dataflow level of the model and get translated
into simple Boolean triggers for the control Statechart. The
Statechart then can decide by querying simple Boolean signals
in what system modes it should switch and output this mode
and some other commands or failure codes.

This is the main point where the application would benefit
from the new mix of paradigms introduced in SCADE version
6. In SCADE 5 it is only possible to embed a Statechart into a
dataflow diagram and use simple dataflow variables as signal
inputs for the Statechart. The other way round is only possible



Fig. 3. Basic Control Loop

Fig. 4. Simple Loop Controller in SCADE

in SCADE 6, where one may mix dataflow and control-flow
in any hierarchy level. Dataflow components may be placed
within states for example. A state of a state machine can define
some kind of modal dataflow, which means the dataflow is
only active when the state is active. Hence in every state the
outputs of the subsystem are required to be written at most
once. If an output is not written in some state, it holds its old
value.

With these mechanisms our monitor could be implemented
much more intuitively. Certain dataflow operations as checks
and calculations on data could reside within the system states
that require those checks to be done. This would lead to
simpler development and simulation as the mental map of the
model is better preserved by this locality.

2) Global Commanding: The local monitoring results of
each flap panel get combined and compared in a high-level
control module schematically depicted in Fig. 6. The relevant
variables get processed by the wing monitors described above.
Important synchronization messages are passed between the
two monitors for the basic events, i.e. the other side is either
driving, holding or switched to emergency mode. Determined
failure codes and states of one flap panel are processed by
two respective sub-command modules that decide to activate
motors or the CSBs.

A high-level command unit decides upon the rotation speed
according to the error state of all flaps and passes this infor-
mation to the main set-point calculation unit that combines it
with the destination flap angle and outputs the set-points for
speed and position to the ACEs.

3) System Setup: The whole system is modeled in SCADE
and augmented with additional architecture configuration that
is specified by the DECOS internal tool chain. This especially
concerns the time-triggered communication and operating sys-
tem setup. SCADE generates C-code that is deployed on the
target platform, a physical test-rig at the Technical University
Hamburg-Harbug. Additionally the system can be simulated
prior to its physical integration. For that a continuous-time
high precision model of the mechanical parts of the system
is available that can be connected to the SCADE controllers.
SCADE is a purely discrete modeling environment following
the strict synchronous semantics and does not directly support
continuous-time modeling. Hence the environment model was
designed in Matlab/Simulink. During simulation Simulink
and SCADE are executing in parallel while they exchange
simulation data in each simulation step. This interaction and
setup is explained in more detail elsewhere [16].

Structuring the models in SCADE with hierarchy requires
to create a completely new sub-model for each hierarchical
operator. Graphically it is not possible to directly display
one’s interior within the same graphical view. Hence if the
user might want to see the context of many operators, he
or she might end up with a screen cluttered as shown in
Fig. 7. However, to arrange all components in this fashion
on the screen is not only time consuming (it took about
20 minutes of opening, positioning and resizing windows to
create this view), but ultimately rather useless as the overall
structure is still unclear and the individual charts become too
small to be legible. Hence, this is not the way one would



Fig. 5. Schematical View on Local Monitoring Concept

Fig. 6. Schematic Overview of the Global Command Unit

actually work with the tool. Usually one displays only one
or a few operators at a time, and there is a lot of time-
consuming navigation between windows, going back and forth
in the model to learn about the system and how the dataflow
interplays between the components. Hence to identify the
context in which one operator is located is not trivial and
slows down the development process.

IV. ALTERNATIVE APPROACHES—KIEL INTEGRATED
ENVIRONMENT FOR LAYOUT (KIEL)

The main monitoring Statechart of the local monitoring
subsystems originally has been modeled in SCADE, i.e. the
Safe State Machine (SSM) editor of the SCADE suite. This is
a separate tool and only partly integrates into the dataflow
editor. In the newer version the new mixture of control- and
dataflow is tightly integrated into one development tool.

For documentation and demonstration purposes this State-
chart has been re-modeled using the Kiel Integrated Environ-

ment for Layout (KIEL) tool. While the graphical representa-
tion of the original SSM is hardly adequate to briefly describe in
a paper, the dynamic view structure of KIEL allows to generate
multiple views with different complexity of the chart.

Fig. 8 is a screenshot of the Statechart from SCADE’s SSM
editor tool. It shows the most important states and even shows
some hierarchy. However, because of the complexity, some
of the lower level states (brake, activehold, onemot, twomot)
were defined as hidden macro states, i.e. they are refined
by further substates, but this is not shown in this view. The
decision which states are hidden and which are visible within a
diagram is more or less final and static and therefore becomes
an important design decision by the developer for the goal of
creating a comprehensible statechart.

Here we have chosen this level of detail in this view, in
order to give the user a good first overview of the diagram.
However if he or she has to dig deeper in the diagram, only
the lower former hidden macrostates are shown and you lose



Fig. 7. Seeing the big picture in SCADE

the view of the surrounding context.

Fig. 8. Monitor SSM in SCADE Editor

Opposing to that Fig. 9 shows almost the same Statechart
in the KIEL tool. It represents the monitoring Statechart of one
flap panel on the highest level with all states unfolded. This
allows to get a first impression of the complexity of the whole
chart, but it is certainly difficult to discern any details.

KIEL has a built-in Statechart simulation engine based on
SSM semantics. During a simulation run one can leverage the
Dynamic Charts paradigm [34]. The idea is to use focus and
context mechanisms to display the currently interesting parts of
the diagram in full detail in the focus. This “interesting” part of
the model in a Statechart is naturally the currently active state
with all its ancestors. The other states, the context, is visible
only with reduced detail. The sibling states are still present
but get folded so that their contents is not visible anymore.

Fig. 9. Overview of the Monitor SSM in KIEL

Fig. 10. First Dynamic View on the Model

Fig. 10 shows this dynamic focus and context in action when
the simulation is started for the Statechart. As you can see,
the chart gets simplified very much and its meaning becomes
obvious: In the beginning the system is in a power off state
and it might switch eventually into an operational state.

The system in operational state is shown in Fig. 11a. This
reveals the interior of this state to the next hierarchy level. The
panel might either be active, i.e. still capable of being moved,
or in emergency mode, which means the whole system needs
to be frozen, because some intolerable fault (most likely more
than one consecutive fault at a time) has happened. In the
latter case there are no further refinements and hence no other
substates.

During normal operation the system will be in the active
state as shown in Fig. 11b. This reveals two substates: The
hold state in which the flap panel is not moving and the drive
state in which the flap panel is moving in one direction. Either
of the states is active and the hold mode is the initial one. It
itself has two basic substates and a simple init state. When
the system is held, it can either be held by the brake (brake
state) or if the brake has failed it can actively be held by the
motors (activehold state).

The brake mode is illustrated in Fig. 11c and depicts the
lowest hierarchy level of this Statechart: The brake monitor
state is the default state here and the other states indicate severe
error conditions. An exceed signal of one of the control loops
would indicate that this station has moved too far from its set-
point position where the flap should be held. In this case it can
be assumed that the brake is not working properly. The brake
state switches to its following acthold state, which is marked
final and hence would follow the normal termination transition
to exit the parent brake state and switch to the activehold



(a) The Operational State here in Emergency Mode (b) The Operational State entering Active Mode

(c) The Brake Mode (d) The Drive Mode and its Direct Children

Fig. 11. Different Dynamic Views in KIEL

state (which also has some internal monitoring states that are
not explicitly shown here).

Given a flap movement command of the pilot, the panels
will start to move in the desired direction. Therefore the system
switches from hold mode to drive mode. This also has two
main states and an initializer. The main states twomot and
onemot say whether one or two motors of the panel are still
operational. This triggers different movement speeds and also
different foregoing monitoring states and respective guards to
their error states. The drive state with its direct children is
shown in Fig. 11d.

In this paper for every new dynamic view we need to present
a new image and for better readability need to adjust the zoom

level. During simulation in KIEL this is morphed smoothly
between the dynamic views in order to preserve the user’s
mental map of the system. Hence it is quite comprehensible
to follow from one view to the next. The dynamic views are
computed on the fly, using a hierarchical layout engine that
recursively performs a bottom-up layout across the hierarchy
levels. The computation times for the layout are in practice
negligible and typically well in the sub-second range.

To create the models, KIEL’s interaction mechanisms were
employed, namely the macro-based editing and the synchro-
nized textual representation. With these methods, the devel-
oper does not need to manually move around boxes and
arrows, think about what makes a comprehensible layout or



spend time making space for new objects. Hence creating those
models—though they are a bit simplified—took only a fraction
of time compared to build the models in the classical drag-
and-drop fashion in SCADE.

V. CONCLUSION

We presented a safety-critical aerospace application that was
graphically modeled in the commercial tool SCADE and the
experimental KIEL platform.

SCADE has its strengths in its rigorous, formal basis as
it builds upon synchronous languages and supports qualified
code generation. In questions of user interaction it reflects the
current state-of-the-practice, which means to be a drag-and-
drop static view graphical editing and simulation environment.
Either during editing of a diagram or simulation the user
is busy with manually navigating to the views of interest
or manually arranging or fixing the graphical layout for the
diagram.

The KIEL tool shows the idea of systematically employed
automatic graphical layout and relieves the developer of many
laborious mechanical tasks. Additionally it is the enabler for
further techniques, as illustrated with the dynamic charts for
this application. Those can help to better understand not only
the structure of an application but also its behavior.

Despite its good approaches, the KIEL tool has some major
restrictions. Its prototype monolithic Java implementation does
yet integrate only with a small set of other tools (Esterel
Studio, Stateflow, ArgoUML). The only supported graphical
modeling language is Statecharts, though it supports multiple
dialects of those. Only a small set of concrete layout engines
is integrated, that sometimes do not lead to optimal layouts.
Especially the fact that one whole diagram is layouted at once
gives sometimes bad results for big diagrams.

VI. FUTURE WORK

We consider the KIEL results to be a promising start,
but there is much space for improvement. We are currently
undertaking a complete redesign, with the aims of added
functionality, support for a broader set of modeling languages,
and better integration with other tools. This new platform
integrates into the rich-client application framework of Eclipse
[11], which leads to its name Kiel Integrated Environment for
Layout for the Eclipse RichClientPlatform (KIELER) [17].

The Eclipse integration is done for multiple reasons. First it
allows to build upon an existing platform and leverage com-
mon already existing frameworks and therefore let this project
concentrate on its own topics. Second it can try to integrate the
new interaction mechanisms of graphical modeling in a more
generic way. It gets integrated into the common platform so
that its contributions can be used by a big, already existing
and still growing community. Hence the idea of consistent
employed automatic layout gets interfaced with the existing
graphical modeling projects in Eclipse, the Graphical Editing
Framework (GEF). This way every graphical editor that is built
upon GEF can leverage the KIELER functionalities.

Another major difference between KIEL and KIELER lies
in the approach towards providing simulation capabilities. In
KIEL, simulation is either done with an integrated simulator,
as done for SSMs, or by an interface to an external tool
that centers on a specific modeling language, such interfaces
exist for Stateflow and ArgoUML. Either method is rather
labor intensive and ultimately provides only limited simulation
capabilities. In KIELER, we follow an alternative approach,
which seeks for a clean separation of modeling pragmatics
and semantics, including simulation capabilities. The aim is to
allow a smooth integration with other modeling frameworks
that augment the KIELER capabilities in the realm of pragmatics
with other capabilities such as simulation and code synthesis.
We are currently investigating such an integration with the
Ptolemy framework [7], also with the aim of tool supported
multi-modeling [6].

Next to the simple layout interface a set of layout en-
gines gets integrated. Especially for actor-oriented dataflow
diagrams like SCADE or Simulink this is not trivial, because
the layout cannot naturally be mapped to standard graph layout
problems.

The ideas of dynamic views onto a model shall be expanded,
especially to actor oriented dataflow languages. Here, again, it
is not as obvious as in Statecharts how to trigger the different
focus and context views of a model. The introduction of a
common notion of simulation and semantics in Eclipse could
help to build the necessary base for this task.
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