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Abstract

The recently proposed reactive processing architectures are characterized by instruc-
tion set architectures (ISAs) that directly support reactive control flow including con-
currency and preemption. These architectures provide efficient execution platforms for
reactive synchronous programs; however, they do require novel compiler technologies,
notably with respect to the handling of concurrency. Another key quality of the reac-
tive architectures is that they have very predictable timing properties, which makes it
feasible to analyze their Worst Case Reaction Time (WCRT).

We present an approach to compile programs written in the synchronous language Es-
terel onto a reactive processing architecture that handles concurrency via priority-based
multi-threading. Building on this compilation approach, we also present a procedure
for statically determining tight, safe upper bounds on the WCRT. Experimental results
indicate the practicality of this approach, with WCRT estimates to be accurate within
22% on average.

1 Introduction

The programming language Esterel [5] has been designed for developing control-dominated
reactive software or hardware systems. It belongs to the family of synchronous languages [1],
which have a formal semantics that abstracts away run-time uncertainties, and allow abstract,
well-defined and executable descriptions of the application at the system level. Hence these
languages are particularly suited to the design of safety-critical real-time systems. To express
reactive behavior, Esterel offers numerous powerful control flow primitives, in particular
concurrency and various preemption operators. Concurrent threads can communicate back
and forth instantaneously, with a tight semantics that guarantees deterministic behavior.
This is valuable for the designer, but also poses implementation challenges.

Besides being compiled to C and executed as software, or being compiled to VHDL
and synthesized to hardware, Esterel can be executed on a reactive processor [34]. These
processors directly support reactive control flow, such as preemption and concurrency, in their
instruction set architecture (ISA). One approach to handle concurrency is multi-threading, as
implemented in the Kiel Esterel Processor (KEP). The KEP uses a priority-based scheduler,
which makes threads responsible to manage their own priorities. This scheme allows to keep
the scheduler very light-weight. In the KEP, scheduling and context switching do not cost
extra instruction cycles, only changing a thread’s priority costs an instruction. One challenge
for the compiler is to compute these priorities in a way that on the one hand preserves the
execution semantics of Esterel and on the other hand does not lead to too many changes of
the priorities, since this would decrease the execution speed. We have developed a priority
assignment algorithm that makes use of a special concurrent control flow graph and has a
complexity that is linear in the size of that graph, which in practice tends to be linear in the
size of the program.
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Apart from efficiency concerns, which may have been the primary driver towards reactive
processing architectures, one of their advantages is their timing predictability. To leverage
this, we have augmented our compiler with a timing analysis capability. As we here are
investigating the timing behavior for reactive systems, we are specifically concerned with
computing the maximal time it takes to compute a single reaction. We refer to this time,
which is the time from given input events to generated output events, as Worst Case Reac-
tion Time (WCRT). The WCRT determines the maximal rate for the interaction with the
environment.

There are two main factors that facilitate the WCRT analysis in the reactive processing
context. These are on the one hand the synchronous execution model of Esterel, and on
the other hand the direct implementation of this execution model on a reactive processor.
Furthermore, these processors are not designed to optimize (average) performance for general
purpose computations, and hence do not have a hierarchy of caches, pipelines, branch predic-
tors, etc. This leads to a simpler design and execution behavior and further facilitates WCRT
analysis. Furthermore, there are reactive processors, such as the KEP, which allow to fix the
reaction lengths to a pre-determined number of clock cycles, irrespective of the number of
instructions required to compute a specific reaction, in order to minimize the jitter.

We here present a WCRT analysis of complete Esterel programs including concurrency
and preemption. The analysis computes the WCRT in terms of KEP instruction cycles,
which roughly match the number of executed Esterel statements. As part of the WCRT
analysis, we also present an approach to calculate potential instantaneous paths, which may
be used in compiler analysis and optimizations that go beyond WCRT analysis.

Thus this paper is concerned with both the compilation and the timing analysis of Esterel
programs executed on multi-threaded reactive processors. Previous reports presented earlier
results in both fields [18, 8]. This paper extends and updates these reports, and represents
the first comprehensive description of these two closely interrelated areas. Further details
can be found in the theses of the first author [7, 6].

In the following section, we consider related work. In Section 3 we will give an introduction
into the synchronous model of computation for Esterel and the KEP. We outline the genera-
tion of a Concurrent KEP Assembler Graph (CKAG), an intermediate graph representation
of an Esterel program, which we use for our analysis. Section 4 explains the compilation and
Section 5 the algorithm for the WCRT analysis. Section 6 presents experimental results that
compare the WCRT estimates with values obtained from exhaustive simulation. The paper
concludes in Section 7.

2 Related Work

In the past, various techniques have been developed to synthesize Esterel into software; see
Potop-Butucaru et al. [27] for an overview. The compiler presented here belongs to the
family of simulation-based approaches, which try to emulate the control logic of the original
Esterel program directly, and generally achieve compact and yet fairly efficient code. These
approaches first translate an Esterel program into some specific graph formalism that repre-
sents computations and dependencies, and then generate code that schedules computations
accordingly. The EC/Synopsys compiler first constructs a concurrent control flow graph
(CCFG), which it then sequentializes [12]. Threads are statically interleaved according to
signal dependencies, with the potential drawback of superfluous context switches; further-
more, code sections may be duplicated if they are reachable from different control points. The
SAXO-RT compiler [11] divides the Esterel program into basic blocks, which schedule each
other within the current and subsequent logical tick. An advantage relative to the Synopsis
compiler is that the SAXO-RT compiler does not perform unnecessary context switches and
largely avoids code duplications; however, the scheduler it employs has an overhead propor-
tional to the total number of basic blocks present in the program. The grc2c compiler [26]
is based on the graph code (GRC) format, which preserves the state-structure of the given
program and uses static analysis techniques to determine redundancies in the activation pat-
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terns. A variant of the GRC has also been used in the Columbia Esterel Compiler (CEC) [14],
which again follows SAXO-RT’s approach of dividing the Esterel program into atomically
executed basic blocks. However, their scheduler does not traverse a score board that keeps
track of all basic blocks, but instead uses a compact encoding based on linked lists, which
has an overhead proportional to just the number of blocks actually executed.

In summary, there is currently not a single Esterel compiler that produces the best code
on all benchmarks, and there is certainly still room for improvements. For example, the
simulation-based approaches presented so far restrict themselves to interleaved single-pass
thread execution, which in the case of repeated computations (“schizophrenia” [3]) requires
code replications.

We differ from these approaches in that we do not want to compile Esterel to C, but
instead want to map it to a concurrent reactive processing ISA. Initial reactive ISAs did not
consider full concurrency [30, 19] and will not be discussed further here. Since then, two
alternatives have been proposed that do include concurrency, namely multi-processing and
multi-threading.

The multi-processing approach is represented by the EMPEROR [36], which uses a cyclic
executive to implement concurrency, and allows the arbitrary mapping of threads onto pro-
cessing nodes. This approach has the potential for execution speed-ups relative to single-
processor implementations. However, their execution model potentially requires to replicate
parts of the control logic at each processor. The EMPEROR Esterel Compiler 2 (EEC2) [36]
is based on a variant of the GRC, and appears to be competitive even for sequential execu-
tions on a traditional processor. However, their synchronization mechanism, which is based
on a three-valued signal logic, does not seem able to take compile-time scheduling knowledge
into account, and instead repeatedly cycles through all threads until all signal values have
been determined.

The multi-threading approach has been introduced by the Kiel Esterel Processor family
and has subsequently been adapted by the STARPro architecture [37], a successor of the
EMPEROR. The compilation for this type of architecture is a subject of this paper. In some
sense, compilation onto KEP assembler is relatively simple, due to the similarities between
the Esterel and the KEP Assembler. However, we do have to compute priorities for the
scheduling mechanism of the KEP, and cannot hard-code the scheduling-mechanism into the
generated code directly. Incidentally, it is this dynamic, hardware-supported scheduling that
contributes to the efficiency of the reactive processing approach.

It has also been proposed to run Esterel programs on a virtual machine (BAL [25]), which
allows a very compact byte code representation. In a way, this execution platform can be
considered as an intermediate form between traditional software synthesis and reactive pro-
cessing; it is software running on traditional processors, but uses a more abstract instruction
set. The proposal by Plummer et al. also uses a multi-threaded concurrency model, as in
the KEP platform considered here. However, they do not assume the existence of a run-time
scheduler, but instead hand control explicitly over between threads. Thus their scheduling
problem is related to ours, but does not involve the need to compute priorities as we have to
do here. Instead they have to insert explicit points for context switches. The main difference
in both approaches is that the KEP only switches to active threads, while the BAL switches
to statically defined control points. One could, however, envision a virtual machine that
has an ISA that adopts our multi-threading model (a straightforward, albeit inefficient VM
would be a KEP simulator), and for which the approach presented here could be applied.

One of the by-products of our compilation approach is Dead Code Elimination (DCE),
see also Section 4.3. Our approach here is rather conservative, considering only static reacha-
bility. A more aggressive approach to DCE based on Esterel* (an extension of Esterel with a
non-instantaneous jump instruction) has been presented by Tardieu and Edwards [33]. Their
approach, as well as other work that performs reachability analysis as part of constructive-
ness analysis [31], is more involved than our approach in that they perform a (more or less
conservative) analysis of the reachable state space.

Regarding timing analysis, there exist numerous approaches to classical Worst Case Ex-
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ecution Time (WCET) analysis. For surveys see, e. g., Puschner and Burns [28] or Wilhelm
et al. [35]. These approaches usually consider (subsets) of general purpose languages, such
as C, and take information on the processor designs and caches into account. It has long
been established that to perform an exact WCET analysis with traditional programming lan-
guages on traditional processors is difficult, and in general not possible for Turing-complete
languages. Therefore WCET analysis typically impose fairly strong restrictions on the an-
alyzed code, such as a-priori known upper bounds on loop iteration counts, and even then
control flow analysis is often overly conservative [24, 9]. Furthermore, even for a linear se-
quence of instructions, typical modern architectures make it difficult to predict how much
time exactly the execution of these instructions consumes, due to pipelining, out-of-order ex-
ecution, argument-dependent execution times (e. g., particularly fast multiply-by-zero), and
caching of instructions and/or data [2]. Finally, if external interrupts are possible or if an
operating system is used, it becomes even more difficult to predict how long it really takes
for an embedded system to react to its environment. Despite the advances already made in
the field of WCET analysis, it appears that most practitioners today still resort to exten-
sive testing plus adding a safety margin to validate timing characteristics. To summarize,
performing conservative yet tight WCET analysis appears by no means trivial and is still an
active research area.

Whether WCRT can be formulated as a classical WCET problem or not depends on
the implementation approach. If the implementation is based on sequentialization such that
there exist two dedicated points of control at the beginning and the end of each reaction,
respectively, then WCRT can be formulated as WCET problem; this is the case, for example,
if one “automaton function” is synthesized, which is called during each reaction. If, however,
the implementation builds on a concurrent model of execution, where each thread maintains
its own state of control across reactions, then WCRT requires not only determining the
maximal length of pre-defined instruction sequences, as in WCET, but one also has to analyze
the possible control point pairs that delimit these sequences. Thus, WCRT is more elementary
than WCET in the sense that it considers single reactions, instead of whole programs, and
at the same time WCRT is more general than WCET in that it is not limited to pre-defined
control boundaries.

One step to make the timing analysis of reactive applications more feasible is to choose
a programming language that provides direct, predictable support for reactive control flow
patterns. We argue that synchronous languages, such as Esterel, are generally very suitable
candidates for this, even though there has been little systematic treatment of this aspect
of synchronous languages so far. One argument is that synchronous languages naturally
provide a timing granularity at the application level, the logical ticks that correspond to
system reactions, and impose clear restriction onto what programs may do within these ticks.
For example, Esterel has the rule that there cannot be instantaneous loops: within a loop
body, each statically feasible path must contain at least one tick-delimiting instruction, and
the compiler must be able to verify this. Another argument is that synchronous languages
directly express reactive control flow, including concurrency, thus lowering the need for an
operating system with unpredictable timing.

Logothetis, Schneider and Metzler [22, 21] have employed model checking to perform a
precise WCET analysis for the synchronous language Quartz, which is closely related to
Esterel. However, their problem formulation was different from the WCRT analysis problem
we are addressing. They were interested in computing the number of ticks required to perform
a certain computation, such as a primality test, which we would actually consider to be a
transformational system rather than a reactive system [16]. We here instead are interested in
how long it may take to compute a single tick, which can be considered an orthogonal issue.

Ringler [29] considers the WCET analysis of C code generated from Esterel. However,
his approach is only feasible for the generation of circuit code [3], which scales well for large
applications, but tends to be slower than the simulation based approach.

Li et al. [19] compute a WCRT of sequential Esterel programs directly on the source
code. However, they did not address concurrency, and their source-level approach could not
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consider compiler optimizations. We perform the analysis on an intermediate level after the
compilation, as a last step before the generation of assembler code. This also allows a finer
analysis and decreases the time needed for the analysis.

One important problem that must be solved when performing WCRT analysis for Esterel
is to determine whether a code segment is reachable instantaneously, or delayed, or both.
This is related to the well-studied property of surface and depth of an Esterel program, i. e.,
to determine whether a statement is instantaneously reachable or not, which is also important
for schizophrenic Esterel programs [3]. This was addressed in detail by Tardieu and de Si-
mone [32]. They also point out that an exact analysis of instantaneous reachability has NP
complexity. We, however, are not only interested whether a statement can be instantaneous,
but also whether it can be non-instantaneous.

3 Esterel, the Kiel Esterel Processor and the Concur-
rent KEP Assembler Graph

Next we give a short overview of Esterel and the KEP. We also introduce the CKAG, a graph-
representation of Esterel, which is used both for the compilation and the WCRT analysis.

3.1 Esterel

The execution of an Esterel program is divided into logical instants, or ticks, and commu-
nication within or across threads occurs via signals. At each tick, a signal is either present
(emitted) or absent (not emitted). Esterel statements are either transient, in which case they
do not consume logical time, or delayed, in which case execution is finished for the current
tick. Per default statements are transient, and these include for example emit, loop, present,
or the preemption operators. Delayed statements include pause, (non-immediate) await, and
every. Esterel’s parallel operator, ||, groups statements in concurrently executed threads.
The parallel terminates when all its branches have terminated.

Esterel offers two types of preemption constructs. An abortion kills its body when an
abortion trigger occurs. We distinguish strong abortion, which kills its body immediately
(at the beginning of a tick), and weak abortion, which lets its body receive control for a last
time (abortion at the end of the tick). A suspension freezes the state of a body in the instant
when the trigger event occurs.

Esterel also offers an exception handling mechanism via the trap/exit statements. An
exception is declared with a trap scope, and is thrown (raised) with an exit statement. An
exit T statement causes control flow to move to the end of the scope of the corresponding
trap T declaration. This is similar to a goto statement, however, there are further rules when
traps are nested or when the trap scope includes concurrent threads. If one thread raises an
exception and the corresponding trap scope includes concurrent threads, then the concurrent
threads are weakly aborted; if concurrent threads execute multiple exit instructions in the
same tick, the outermost trap takes priority.

3.1.1 Examples

As an example of a simple, non-concurrent program consider the module ExSeq shown in
Figure 1a. As the sample execution trace illustrates, the module emits signal R in every
instant, until it is aborted by the presence of the input signal I. As this is a weak abortion,
the abortion body gets to execute (emit R) one last time when it is aborted, followed by an
emission of S.

The program ExPar shown in Figure 2a introduces concurrency: a thread that emits R
and then terminates, and a concurrent thread that emits S, pauses for an instant, emits T,
and then terminates are executed in an infinite loop. During each loop iteration, the parallel
terminates when both threads have terminated, after which the subsequent loop iteration is
started instantaneously, that is, within the same tick.
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module ExSeq:
input I ;
output R,S;

weak abort
loop

pause;
emit R

end loop
when I;
emit S
end module

tick

In:

Out:

-
R R

I

R

S

(a) Esterel code and
sample trace

module: ExSeq
EMIT _TICKLEN,#6

[L1,W5] WABORT I,A0

[L2,W3] A1

[L2,W3/6] PAUSE

[L3,W5] EMIT R[L5,W2] A0

I

w

[L4,W4] GOTO A1[L5,W2] EMIT S

[L6,W1/1] HALT

(b) CKAG

% module: ExSeq

INPUT I
OUTPUT R,S
EMIT TICKLEN,#6

[L1,W5] WABORT I,A0
[L2,W3/6] A1: PAUSE
[L3,W5] EMIT R
[L4,W4] GOTO A1
[L5,W2] A0: EMIT S
[L6,W1/1] HALT

(c) KEP assembler

− Tick 1 −
! reset ;
% In:
% Out: R
% RT = 3
WABORTL1

PAUSEL2

− Tick 2 −
% In:
% Out: R
% RT = 4
PAUSEL2 EMITL3

GOTOL4 PAUSEL2

− Tick 3 −
% In: I
% Out: R S
% RT = 6
PAUSEL2 EMITL3

GOTOL4 PAUSEL2

EMITL5 HALTL6

− Tick 4 −
% In:
% Out:
% RT = 1
HALTL6

(d) Execution
trace

Figure 1: A sequential Esterel example. The body of the KEP assembler program (without
interface declaration and initialization of the TickManager) is annotated with line numbers
L1–L6, which are also used in the CKAG and in the trace to identify instructions. The trace
shows for each tick the input and output signals that are present and the reaction time (RT ),
in instruction cycles.

module ExPar:

output R,S,T;

loop
[

emit R;
||

emit S;
pause;
emit T;

]
end loop

end module

tick

In:

Out:

-
R

S

R

S

T

R

S

T

(a) Esterel code and
sample trace

module: ExPar
EMIT _TICKLEN,#11

[L1,W7] A0

[L3,W7] PAR*

[L4,W1] A1

 1

[L5,W2] A2

 1

[L4,W1] EMIT R

[L8,W9/11] JOIN 0

[L5,W2] EMIT S

[L6,W1/2] PAUSE

[L7,W1] EMIT T

[L9,W8] GOTO A0

(b) CKAG

% module: ExPar

OUTPUT R,S,T
EMIT TICKLEN,#11

[L1,W7] A0: PAR 1,A1,1
[L2] PAR 1,A2,2
[L3,W7] PARE A3,1
[L4,W1] A1: EMIT R
[L5,W2] A2: EMIT S
[L6,W1/2] PAUSE
[L7,W1] EMIT T
[L8,W9/11] A3: JOIN 0
[L9,W8] GOTO A0

(c) KEP assembler

− Tick 1 −
! reset ;
% In:
% Out: R S
% RT = 7
PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

− Tick 2 −
% In:
% Out: R S T
PAUSEL6 EMITL7

JOINL8 GOTOL9

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

− Tick 3 −
% In:
% Out: R S T
PAUSEL6 EMITL7

JOINL8 GOTOL9

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

(d) Execution trace

Figure 2: A concurrent example program.
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1 module Edwards02:
2 input S, I ;
3 output O;
4

5 signal A,R in
6 every S do
7 await I ;
8 weak abort
9 sustain R;

10 when immediate A;
11 emit O;
12 ||
13 loop
14 pause;
15 pause;
16 present R then
17 emit A;
18 end present
19 end loop
20 end every
21 end signal
22

23 end module

(a) Esterel

1 module Edwards02−dism:
2 input S;
3 input I ;
4 output O;
5

6 signal A, R in
7 abort
8 loop pause end loop
9 when S;

10 loop
11 abort
12 [
13 abort
14 loop pause end loop
15 when I;
16 weak abort
17 loop
18 emit R;
19 pause
20 end loop
21 when immediate A;
22 emit O
23 ||
24 loop
25 pause;
26 pause;
27 present R then
28 emit A
29 end present
30 end loop
31 ];
32 loop pause end loop
33 when S
34 end loop
35 end signal
36 end module

(b) Esterel after dismantling

% Module Edwards02
INPUT S,I
OUTPUT O

[L00,T0] EMIT TICKLEN,#13
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10: EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11:PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12: PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0] A3: GOTO A2

(c) KEP assembler

Figure 3: The Edwards02 example [12].

A slightly more involved example is the program Edwards02 [12, 11], shown in Figure 3a.
This program implements the following behavior: whenever the signal S is present, (re-)start
two concurrent threads. The first thread first awaits a signal I; it then continuously emits R
until A is present, in which case it emits R one last time (weak abortion of the sustain), emits
O, and terminates. The second thread tests every other tick for the presence of R, in which
case it emits A.

3.1.2 Statement Dismantling

At the Esterel level, one distinguishes kernel statements and derived statements. The derived
statements are basically syntactic sugar, built up from the kernel statements. In principle,
any set of Esterel statements from which the remaining statements can be constructed can be
considered a valid set of kernel statements, and the accepted set of Esterel kernel statements
has evolved over time. For example, the halt statement used to be considered a kernel
statement, but is now considered to be derived from loop and pause. We here adopt the
definition of which statements are kernel statements from the v5 standard [4]. The process of
expanding derived statements into equivalent, more primitive statements—which may or may
not be kernel statements—is also called dismantling. The Esterel program Edwards02-dism
(Figure 3b) is a dismantled version of Edwards02. It is instructive to compare this program
to the original, undismantled version.
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Mnemonic, Operands Esterel Syntax Cycles Notes

PAR prio1, startAddr1, id1

. . .
PAR prion, startAddrn, idn

PARE endAddr
startAddr1:
. . .
startAddr2:

. . .
startAddrn:
. . .
endAddr :
JOIN

[
p1

||
...

||
pn

]

9>>=>>; n + 1

1

For each thread, one PAR is
needed to define the start ad-
dress, thread id and initial pri-
ority. The end of a thread is de-
fined by the start address of the
next thread, except for the last
thread, whose end is defined via
PARE.
The cycle count of a fork node
depends on the count of threads.

PRIO prio 1 Set current thread prior-
ity to prio.

[W]ABORT[I, n] S, endAddr
. . .
endAddr :

[weak] abort
. . .

when [immediate, n] S

2

SUSPEND[I,n] S, endAddr
. . .
endAddr :

suspend
. . .

when [immediate, n] S

2

startAddr :
. . .
EXIT exitAddr startAddr
. . .
exitAddr:

trap T in
. . .
exit T
. . .

end trap

1

Exit from a trap, star-
tAddr/exitAddr specifies trap
scope. Unlike GOTO, check for
concurrent EXITs and terminate
enclosing ||.

PAUSE pause 1 Wait for a signal. AWAIT TICK
is equivalent to PAUSE.AWAIT [I, n] S await [immediate, n] S 1

SIGNAL S signal S in . . . end 1 Initialize a local signal S.
EMIT S [, {#data|reg}] emit S [(val)] 1 Emit (valued) signal S.
SUSTAIN S [, {#data|reg}] sustain S [(val)] 1 Sustain (valued) signal S.
PRESENT S, elseAddr present S then . . . end 1 Jump to elseAddr if S is absent.

HALT halt 1 Halt the program.
addr : . . . GOTO addr loop . . . end loop 1 Jump to addr.

Table 1: Overview of the KEP instruction set architecture, and their relation to Esterel and
the number of processor cycles for the execution of each instruction.

3.2 The Kiel Esterel Processor

The Instruction Set Architecture (ISA) of the KEP is very similar to the Esterel language.
Part of the KEP instruction set is shown in Table 1; a complete description can be found
elsewhere [17]. The KEP instruction set includes all kernel statements (see Section 3.1.2),
and in addition some frequently used derived statements. The KEP ISA also includes valued
signals, which cannot be reduced to kernel statements. The only parts of Esterel v5 that are
not part of the KEP ISA are combined signal handling and external task handling, as they
both seem to be used only rarely in practice. However, adding these capabilities to the KEP
ISA seems relatively straightforward.

Due to this direct mapping from Esterel to the KEP ISA, most Esterel statements can
be executed in just one instruction cycle. For more complicated statements, well-known
translations into kernel statements exist, allowing the KEP to execute arbitrary Esterel
programs. The KEP assembler programs corresponding to ExSeq and ExPar and sample
traces are shown in Figures 1c/d and 2c/d, respectively, and the KEP assembler program for
Edwards02 is shown in Figure 3c. respectively. Note that PAUSE is executed for at least two
consecutive ticks, and consumes an instruction cycle at each tick.

The KEP provides a configurable number of Watcher units, which detect whether a signal
triggering a preemption is present and whether the program counter (PC) is in the corre-
sponding preemption body [20]. Therefore, no additional instruction cycles are needed to
test for preemption during each tick. Only upon entering a preemption scope two cycles
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are needed to initialize the Watcher, as for example the WABORTL1 instruction1 in ExSeq
(Figure 1c).

To implement concurrency, the KEP employs a multi-threaded architecture, where each
thread has an independent program counter (PC) and threads are scheduled according to
their statuses, thread id and dynamically changing priorities: between all active threads,
the thread with the highest priority is scheduled. If there is more than one thread with
this priority, the highest thread id wins. The scheduler is very light-weight. In the KEP,
scheduling and context switching do not cost extra instruction cycles, only changing a thread’s
priority costs an instruction. The priority-based execution scheme allows on the one hand to
enforce an ordering among threads that obeys the constraints given by Esterel’s semantics,
but on the other hand avoids unnecessary context switches. If a thread lowers its priority
during execution but still has the highest priority, it simply keeps executing.

A concurrent Esterel statement with n concurrent threads joined by the ||-operator is
translated into KEP assembler as follows. First, threads are forked by a series of instructions
that consist of n PAR instructions and one PARE instruction. Each PAR instruction creates
one thread, by assigning a non-negative priority, a start address, and the thread id. The end
address of the thread is either given implicitly by the start address specified in a subsequent
PAR instruction, or, if there is no more thread to be created, it is specified in a PARE
instruction. The code block for the last thread is followed by a JOIN instruction, which
waits for the termination of all forked threads and concludes the concurrent statement. The
example in Figure 2c illustrates this: instruction L4 constitutes thread 1, thread 2 spans
L5–L8, and the remaining instructions belong to the main thread, which implicitly has id 0.

The priority of a thread is assigned when the thread is created (with the aforementioned
PAR instruction), and can be changed subsequently by executing a priority setting instruction
(PRIO). A thread keeps its priority across delay instructions; that is, at the start of a tick it
resumes execution with the priority it had at the end of the previous tick. This mechanism
allows an arbitrary interleaving of thread execution for communicating among threads within
the same logical tick. Therefore, a thread may be executed partially, then control may jump
to another thread, and later return to the first thread, all within the same tick.

When a concurrent statement terminates, through regular termination of all concurrent
threads or via an exception/abort, the priorities associated with the terminated threads also
disappear, and the priority of the main thread is restored to the priority upon entering the
concurrent statement.

The KEP contains a TickManager, which monitors how many instructions are executed
in the current logical tick. To minimize jitter, a maximum number of instructions for each
logical tick can be specified, via the “special” valued signal TICKLEN. If the current tick
needs less instructions, the start of the next tick is delayed, making the maximum number
of instructions the exact number of instructions. If the tick needs more instructions, an
error-output is set. Hence a tight, but conservative upper bound of the maximal instructions
for one tick, as computed by the WCRT analysis presented in Section 5, is of direct value
for the KEP. See Li et al. [19] for details on the TickManager and the relation between the
maximum number of instruction per logical tick and the physical timing constraints from the
environment perspective.

Note that the KEP compiler per default computes a value for the WCRT and adds
a corresponding assembler instruction that specifies a value for TICKLEN. However, the
KEP does not require such a specification of TICKLEN. If TICKLEN is left unspecified, the
processor “runs freely” and starts the next logical tick as soon as the current tick is finished.
This lowers, on average, the reaction time, at the price of a possible jitter.

1To aid readability, we here use the convention of subscripting instructions with the line number where
they occur.
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Figure 4: Nodes and edges of a Concurrent KEP Assembler Graph.

3.3 The Concurrent KEP Assembler Graph

The CKAG is a directed graph composed of various types of nodes and edges to match KEP
program behavior. It is used during compilation from Esterel to KEP assembler, for, e. g.,
priority assigning, dead code elimination, further optimizations and the WCRT analysis.
The CKAG is generated from the Esterel program via a simple structural translation. The
only non-trivial aspect is the determination of non-instantaneous paths, which is needed for
certain edge types. For convenience, we label nodes with KEP instructions; however, we
could alternatively have used Esterel instructions as well.

The CKAG distinguishes the following sets of nodes, see also Figure 4:

L: label nodes (ellipses);

T : transient nodes (rectangles), which includes EMIT, PRESENT, etc.;

D: delay nodes (octagons), which correspond to delayed KEP instructions (PAUSE, AWAIT,
HALT, SUSTAIN);

F : fork nodes (triangles), corresponding to PAR/PARE;

J : join nodes (inverted triangles), corresponding to JOIN;

N : set of all nodes, with N = T ∪ L ∪D ∪ F ∪ J .

We also define

A: the abort nodes, which denote abortion scopes and correspond to [W]ABORT and SUS-
PEND; note that A ⊆ T .

For each fork node n (n ∈ F ) we define

n.join: the JOIN statement corresponding to n (n.join ∈ J), and

n.sub: the transitive closure of nodes in threads spawned by n.

For abort nodes n (n ∈ A) we define

n.end: the end of the abort scope opened by n, and

n.scope: the nodes within n’s abort scope.

A non-trivial task when defining the CKAG structure is to properly distinguish the dif-
ferent types of possible control flow, in particular with respect to their timing properties
(instantaneous or delayed). We define the following types of successors for each n:

n.succ: the control successors. These are the nodes that follow sequentially after n, consid-
ering normal control flow without any abortions. For n ∈ F , n.succ includes the nodes
corresponding to the beginnings of the forked threads.
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The successors are statically inserted, based on the syntax of the Esterel program,
based on the actual behavior, some of these can be removed. If n is the last node
of a concurrent thread, n.succ includes the node for the corresponding JOIN—unless
n’s thread is instantaneous and has a (provably) non-instantaneous sibling thread.
Furthermore, the control successors exclude those reached via a preemption (n.sucw,
n.sucs)—unless n is an immediate strong abortion node, in which case n.end ∈ n.succ.

n.sucw: the weak abort successors. If n ∈ D, this is the set of nodes to which control can
be transferred immediately, that is when entering n at the end of a tick, via a weak
abort; if n exits a trap, then n.sucw contains the end of the trap scope; otherwise it is
∅.
If n ∈ D and n ∈ m.scope for some abort node m, it is m.end ∈ n.sucw in case of
a weak immediate abort, or in case of a weak abort if there can (possibly) be a delay
between m and n.

n.sucs: the strong abort successors. If n ∈ D, these are the nodes to which control can
be transferred after a delay, that is when restarting n at the beginning of a tick, via a
strong abort; otherwise it is ∅.
If n ∈ D and n ∈ m.scope for some strong abort node m, it is m.end ∈ n.sucs.

Note that this is not a delayed abort in the sense that an abort signal in one tick
triggers the preemption in the next tick. Instead, this means that first a delay has to
elapse, and the abort signal must be present at the next tick (relative to the tick when
n is entered) for the preemption to take place.

n.suce: the exit successors. These are the nodes that can be reached by raising an exception.

n.sucf : the flow successors. This is the set n.succ ∪ n.sucw ∪ n.sucs.

For n ∈ F we also define two kinds of fork abort successors. These serve to ensure a
correct priority assignment to parent threads in case there is an abort out of a concurrent
statement.

n.sucwf : the weak fork abort successors. This is the union of m.sucw\n.sub for all m ∈ n.sub
where there exists an instantaneous path from n to m.

n.sucsf : the strong fork abort successors. This is the set ∪{(m.sucw∪m.sucs)\n.sub | m ∈
n.sub} \ n.sucwf .

In the graphical representation, control successors are shown by solid lines, all other
successors by dashed lines, annotated with the kind of successor.

The CKAG is built from Esterel source by traversing recursively over its Abstract Syntax
Tree (AST) generated by the Columbia Esterel Compiler (CEC) [13]. Visiting an Esterel
statement results in creating the according CKAG node. A node typically contains exactly
one statement, except label nodes containing just address labels and fork nodes containing
one PAR statement for each child thread initialization and a PARE statement. When a delay
node is created, additional preemption edges are added according to the abortion/exception
context.

Note that some of the successor sets defined above cannot be determined precisely by the
compiler, but have to be (conservatively) approximated instead. This applies in particular
to those successor types that depend on the existence of an instantaneous path. Here it may
be the case that for some pair of nodes there does not exist such an instantaneous path, but
that the compiler is not able to determine that. In such cases, the compiler conservatively
assumes that there may be such an instantaneous path. This is a common limitation of Esterel
compilers, and compilers differ in their analysis capabilities here—see also Section 4.1.
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4 The KEP Compiler

A central problem for compiling Esterel onto the KEP is the need to manage thread priorities
during their creation and their further execution. In the KEP setting, this is not merely a
question of efficiency or of meeting given deadlines, but a question of correct execution.
Specifically, we have to schedule threads in such a fashion that all signal dependencies are
obeyed. Such dependencies arise whenever a signal is possible emitted and tested in the same
tick; we must ensure that all potential emitters for a signal have executed before that signal
is tested.

A consequence of Esterel’s synchronous model of execution is that there may be depen-
dency cycles, which involve concurrent threads communicating back and forth within one
tick. Such dependency cycles must be broken, for example by a delay node, because oth-
erwise it would not be possible for the compiler to devise a valid execution schedule that
obeys all ordering (causality) constraints. In the Edwards02 example (Figure 3a), there is one
dependency cycle, from the sustain R9 instruction in the first parallel thread to the present
R16 in the second parallel to the emit A17 back to the sustain R9, which is weakly aborted
whenever A is present. The dependency cycle is broken in the dismantled version, as there
the sustain R has been separated into signal emission (emit R18) and a delay (pause19), en-
closed in a loop. The broken dependency cycle can also be observed in the CKAG, shown in
Figure 5. Referring to CKAG nodes by the corresponding line numbers (the “Lxx” part of
the node labels) in the KEP assembler code (Figure 3c), the cycle is L14 → L23 → L24 →
L17 → L18 → L14; it is broken by the delay in L17.

The priority assigned during the creation of a thread and by a particular PRIO instruction
is fixed. Due to the non-linear control flow, it is still possible that a given statement may
be executed with varying priorities. In principle, the architecture would therefore allow a
fully dynamic scheduling. However, we here assume that the given Esterel program can be
executed with a statically determined schedule, which requires that there are no cyclic signal
dependencies. This is a common restriction, imposed for example by the Esterel v7 [15] and
the CEC compilers; see also Section 3.3. Note that there are also Esterel programs that
are causally correct (constructive [5]), yet cannot be executed with a static schedule and
hence cannot be directly translated into KEP assembler using the approach presented here.
However, these programs can be transformed into equivalent, acyclic Esterel programs [23],
which can then be translated into KEP assembler. Hence, the actual run-time schedule of a
concurrent program running on KEP is static in the sense that if two statements that depend
on each other, such as the emission of a certain signal and a test for the presence of that signal,
are executed in the same logical tick, they are always executed in the same order relative to
each other, and the priority of each statement is known in advance. However, the run-time
schedule is dynamic in the sense that due to the non-linear control flow and the independent
advancement of each program counter, it in general cannot be determined in advance which
code fragments are executed at each tick. This means that the thread interleaving cannot
be implemented with simple jump instructions. Instead, a run-time scheduling mechanism is
needed that manages the interleaving according to the priority and actual program counter
of each active thread.

To obtain a more general understanding of how the priority mechanism influences the
order of execution, recall that at the start of each tick, all enabled threads are activated,
and are subsequently scheduled according to their priorities. Furthermore, each thread is
assigned a priority upon its creation. Once a thread is created, its priority remains the same,
unless it changes its own priority with a PRIO instruction, in which case it keeps that new
priority until it executes yet another PRIO instruction, and so on. Neither the scheduler nor
other threads can change a thread’s priority. Note also that a PRIO instruction is considered
instantaneous. The only non-instantaneous instructions, which delimit the logical ticks and
are also referred to delayed instructions, are the PAUSE instruction and derived instructions,
such as AWAIT and SUSTAIN. This mechanism has a couple of implications:

• At the start of a tick, a thread is resumed with the priority corresponding to the last

12



 module: Edwards02

[L0,T0-1] EMIT _TICKLEN,#10

[L1,T0-1] SIGNAL A

[L2,T0-1] SIGNAL R

[L3,T0-1/1] AWAIT S

[L4,T0-1] A2: LABORT S,A3

[L7,T0-1] PAR*

[L8,T1-1] A4: TABORT I,A7

 1

[L20,T2-1/1] A5:A11: PAUSE

 1

[L28,T0-1] A3: GOTO A2

sf

[L9,T1] A8: PRIO 3

[L10,T1-1/3] PAUSE

[L13,T1-3] A7: TWABORTI A,A9

I
s

S

s

[L11,T1] PRIO 1

[L12,T1-1] GOTO A8[L14,T1-3] A10: EMIT R

[L23,T2-2] PRESENT R,A12

i

[L15,T1] PRIO 1

[L17,T1-1/3] PAUSE

[L18,T1-3] GOTO A10 [L19,T1-1] A9: EMIT O

A
w

S

s

[L27,T0-1] JOIN

S

s

[L21,T2] PRIO 2

[L22,T2-1/2] PAUSE

S
s

[L24,T2-2] EMIT A

t

[L25,T2] A12: PRIO 1

f
i

[L26,T2-1] GOTO A11

[L16,T1] PRIO 3

Figure 5: The CKAG for the Edwards02 example from Figure 3a. Dotted lines indicate
dependencies (L14→L23 and L24→L17), the tail label “i” indicates that these are immediate
dependencies (see Section 4.1). For sake of compactness, label nodes have been incorporated
into their (unique) successor nodes.
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PRIO instruction it executed during the preceding ticks, or with the priority it has
been created with if it has not executed any PRIO instructions. In particular, if we
must set the priority of a thread to ensure that at the beginning of a tick the thread is
resumed with a certain priority, it is not sufficient to execute a PRIO instruction at the
beginning of that tick; instead, we must already have executed that PRIO instruction
in the preceding tick.

• A thread is executed only if no other active thread has a higher priority. Once a thread
is executing, it continues until a delayed statement is reached, or until its priority is
lower than that of another active thread or equal to that of another thread with higher
id. While a thread is executing, it is not possible for other inactive threads to become
active; furthermore, while a thread is executing, it is not possible for other threads to
change their priority. Hence, the only way for a thread’s priority to become lower than
that of other active threads is to execute a PRIO instruction that lowers its priority
below that of other active threads.

4.1 Annotating the CKAG with dependencies

In order to compute the thread priorities, we annotate the CKAG with additional information
about already known priorities and dependencies. For all nodes n we define

n.prio: the priority that the thread executing n should be running with.

For n ∈ D ∪ F , we also define

n.prionext: the priority that the thread executing n should be resumed with in the subse-
quent tick.

We annotate each node n with the set of nodes that read a signal which is emitted by n. It
turns out that analogously to the distinction between prio and prionext, we must distinguish
between dependencies that affect the current tick and the next tick:

n.depi: the dependency sinks with respect to n at the current tick (the immediate depen-
dencies),

n.depd: the dependency sinks with respect to n at the next tick (the delayed dependencies).

We here assume that the Esterel program given to our compiler has already been es-
tablished to be causal (constructive), using one of the established constructiveness analysis
procedures [31], as for example implemented in the Esterel v5 compiler. We therefore con-
sider only dependencies that cross thread boundaries, as dependencies within a thread do
not affect the scheduling. In other words, we assume that intra-thread dependencies are
already covered by control dependencies; would that not be the case, the program would not
be causal, and should be rejected. Should we not want to rely on a separate constructiveness
analysis, we would have to consider intra-thread dependencies as well.

In general, dependencies are immediate, meaning that they involve statements that are
entered at the same tick. An exception are dependencies between emissions of a strong abort
trigger signal and corresponding delay nodes within the abort scope, as strong aborts affect
control flow at the beginning of a tick and not at the end of a tick. In this case, the trigger
signal (say, S) is not tested when the delay node (N) is entered as the entering of N marks
the end of a tick, and hence control would not even reach N if S were present. However, S
is tested when N is restarted at beginning of the next tick.

As already mentioned, we assume that the given program does not have cycles. However,
what exactly constitutes a cycle in an Esterel program is not obvious, and to our knowledge
there is no commonly accepted definition of cyclicity at the language level. The Esterel
compilers that require acyclic programs differ in the programs they accept as “acyclic.” For
example, the CEC accepts some programs that the v5 compiler rejects and vice versa [23],
and a full discussion of this issue goes beyond the scope of this paper. Effectively, a program is
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considered cyclic if it is not (statically) schedulable—and compilers differ in their scheduling
abilities. We here consider a program cyclic if the priority assignment algorithm presented
in the next section fails. This results in the following definition, based on the CKAG.

Definition 1. (Program Cycle) An Esterel program is cyclic if the corresponding CKAG
contains a path from a node to itself, where for each node n and its successors along that
path, n′ and n′′, the following holds:

n ∈ D ∧ n′ ∈ n.sucw

∨ n ∈ F ∧ n′ ∈ n.succ ∪ n.sucwf

∨ n ∈ T ∧ n′ ∈ n.succ ∪ n.depi

∨ n ∈ T ∧ n′ ∈ n.depd ∧ n′′ ∈ n′.succ ∪ n′.sucs ∪ n′.sucsf .

Note that some of the sets that this definition uses are conservatively approximated by
the compiler, as already mentioned in Section 3.3. In other words, our compiler may detect
spurious cycles and therefore reject a program even if it is causal. As we consider dependencies
only if they cross thread boundaries, it appears that we can schedule more programs than
other compilers typically can, and we did not encounter a scheduling problem with any of
the tested programs. However, a systematic investigation of this issue is still open.

4.2 Computing Thread Priorities

The task of the priority algorithm is to compute a priority assignment that respects the
Esterel semantics as well as the execution model of the KEP. The algorithm computes for
each reachable node n in the CKAG the priority n.prio and, for nodes in D∪F , n.prionext.
According to the Esterel semantics and the observations made in Section 3.3, a correct
priority assignment must fulfill the following constraints, where m, n are arbitrary nodes in
the CKAG.

Constraint 1 (Dependencies). A thread executing a dependency source node must have a
higher priority than the corresponding sink. Hence, for m ∈ n.depi, it must be n.prio >
m.prio, and for m ∈ n.depd, it must be n.prio > m.prionext.

Constraint 2 (Intra-Tick Priority). Within a logical tick, a thread’s priority cannot increase.
Hence, for n ∈ D and m ∈ n.sucw, or n ∈ F and m ∈ n.succ ∪ n.sucwf , or n ∈ T and
m ∈ n.succ, it must be n.prio ≥ m.prio.

Constraint 3 (Inter-Tick Priority for Delay Nodes). To ensure that a thread resumes com-
putation from some delay node n with the correct priority, n.prionext ≥ m.prio must hold
for all m ∈ n.succ ∪ n.sucs.

Constraint 4 (Inter-Tick Priority for Fork Nodes). To ensure that a main thread that has
executed a fork node n resumes computation—after termination of the forked threads—with
the correct priority, n.prionext ≥ n.join.prio must hold. Furthermore, n.prionext ≥ m.prio
must hold for all m ∈ n.sucsf .

One could imagine an iterative approach for priority assignment, where all nodes are
initially assigned a low priority and priorities are iteratively increased until all constraints
are met. However, this would probably be not very efficient, and it would be difficult to
validate its correctness and its termination. As it turns out, there is a better alternative.
We can order the computations of all priorities such that when a specific priority value is
computed, all the priorities that this value may depend on have already been computed. The
algorithm shown in Figure 6 achieves this by performing recursive calls that traverse the
CKAG in a specific manner.

The algorithm starts in main(), which, after some initializations, in line 8 calls getPrio()
for all nodes that must yet be processed. This set of nodes, given by NToDo \ Vprio (for
“Visited”), initially just contains the root of the CKAG. After prio has been computed for
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1 procedure main()

2 forall n ∈ N do

3 n.prio := −1

4 Vprio := ∅
5 Vprionext := ∅
6 NToDo := nroot

7 while ∃n ∈ NToDo \ Vprio do

8 getPrio(n)

9 forall n ∈ ((D ∪ F ) ∩ Vprio) \Vprionext do

10 getPrioNext(n)

11 end

1 function getPrioNext(n)

2 if n.prionext = −1 then

3 if (n ∈ Vprionext) then

4 error(“Cycle detected!”)

5 Vprionext ∪= n

6 if n ∈ D then

7 n.prionext := prioMax(n.succ ∪ n.sucs)

8 elif n ∈ F then

9 n.prionext :=

10 max(n.join.prio, prioMax(n.sucsf ))

11 end

12 end

13 return n.prionext

14 end

1 function prio [Next]Max(M)

2 p := 0

3 forall n ∈M do

4 p := max(p, getPrio[Next](n))

5 return p

6 end

1 function getPrio(n)

2 if n.prio = −1 then

3 if (n ∈ Vprio) then

4 error(“Cycle detected!”)

5 Vprio ∪= n

6 if n ∈ D then

7 n.prio := prioMax(n.sucw)

8 NToDo ∪= n.succ ∪ n.sucs

9 elif n ∈ F then

10 n.prio := prioMax(n.succ ∪ n.sucwf )

11 NToDo ∪= n.sucsf∪ n.join.prio

12 elif n ∈ T then

13 n.prio := max(prioMax(n.succ),

14 prioMax(n.depi) + 1,

15 prioNextMax(n.depd) + 1)

16 end

17 end

18 return n.prio

19 end

Figure 6: Algorithm to compute priorities.

all reachable nodes in the CKAG, a forall loop computes prionext for reachable delay/fork
nodes that have not been computed yet.

getPrio() first checks whether it has already computed n.prio. If not, it then checks
for a recursive call to itself (lines 3/4, see also Lemma 1). The remainder of getPrio()
computes n.prio and, in case of delay and fork nodes, adds nodes to the NToDo list. Similarly
getPrioNext() computes n.prionext.

Lemma 1 (Termination). For a valid, acyclic Esterel program, getPrio() and getPrioNext()
terminate. Furthermore, they do not generate a “Cycle detected!” error message.

Proof. (Sketch) getPrio() produces an error (line 4) if it has not computed n.prio yet (checked
in line 2) but has already been called (line 3) earlier in the call chain. This means that it
has called itself via one of the calls to prioMax() or prioNextMax() (via getPrioNext()). An
inspection of the calling pattern yields that an acyclic program in the sense of Definition 1
cannot yield a cycle in the recursive call chain. Since the number of nodes is finite, both
algorithms terminate.

Lemma 2 (Fulfillment of Constraints). For a valid, acyclic Esterel program, the priority
assignment algorithm computes an assignment that fulfills Constraints 1–4.

Proof. (Sketch) First observe that—apart from the initialization in main()—each n.prio is
assigned only once. Hence, when prioMax() returns the maximum of priorities for a given set
of nodes, these priorities do not change any more. Therefore, the fulfillment of Constraint 1
can be deduced directly from getPrio(). Similarly for Constraint 2. Analogously getPrioNext()
ensures that Constraints 3 and 4 are met.
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1 procedure genPrioCode()

2 forall n ∈ F do // Step 1

3 forall m ∈ n.succ do

4 annotate corresponding PAR statement with m.prio

5

6 forall n ∈ N do // Step 2

7 // Case p. prio < n.prio impossible !

8 P := {p | n ∈ p.sucf , p.id = n.id} // id is the thread id

9 prio := max({p.prio | p ∈ P} ∪ {p.prionext | p ∈ P ∩D})
10 if prio > n.prio then

11 insert ”PRIO n.prio” at n

12 // If n ∈ D: insert before n (eg, PAUSE)

13 // If n ∈ T : insert after n (eg, a label)

14

15 forall n ∈ D ∪ F do // Step 3

16 // Case n.prio > n.prionext is already covered in Step 2

17 if n.prio < n.prionext then

18 insert ”PRIO n.prionext” before n

19 end

Figure 7: Algorithm to annotate code with priority settings according to CKAG node prior-
ities.

Lemma 3 (Linearity). For a CKAG with N nodes and E edges, the computational complexity
of the priority assignment algorithm is O(N + E).

Proof. (Sketch) Apart from the initialization phase, which has cost O(N ), the cost of the
algorithm is dominated by the recursive calls to getPrio(). The total number of calls is
bounded by E . With an amortization argument, where the costs of each call are attributed
to the callee, it is easy to see that the overall cost of the calls is O(E).

Note also that while the size of the CKAG may be quadratic in the size of the correspond-
ing Esterel program in the worst case, it is in practice (for a bounded abort nesting depth)
linear in the size of the program, resulting in an algorithm complexity linear in the program
size as well; see also the discussion in Section 6.2.

After priorities have been computed for each reachable node in the CKAG, we must
generate code that ensures that each thread is executed with the computed priority. This
task is relatively straightforward, Figure 7 shows the algorithm.

Another issue is the computation of thread ids, as these are also considered in scheduling
decisions in case there are multiple threads of highest priority. This property is exploited
by the scheduling scheme presented here, to avoid needless cycles. The compiler assigns
increasing ids to threads during a depth-first traversal of the thread hierarchy; this is required
in certain cases to ensure proper termination of concurrent threads [18].

4.3 Optimizations

Prior to running the priority/scheduling algorithm discussed before, the compiler tries to
eliminate dependencies as much as possible. It does that using two mechanisms. The first
is to try to be clever about the assignment of thread ids, as they are also used for schedul-
ing decisions if there are multiple threads that have the highest priority (see Section 3.2).
By considering dependencies between different threads, simple dependencies can be solved
without any explicit priority changes. The second mechanism is to determine whether two
nodes connected via a dependency are executable within the same instant. This is in general
a difficult problem to analyze. We here only consider the special case where two nodes share

17



some (least common) fork node, and one node has only instantaneous paths from that fork
node, and the other node only not instantaneous paths. In this case, the dependency can be
safely removed.

To preserve the signal-dependencies in the execution, additional priority assignments
(PRIO statements) might have to be introduced by the compiler. To assure schedulability,
the program is completely dismantled, i. e., transformed into kernel statements. In this
dismantled graph the priority assignments are inserted. A subsequent “undismantling” step
before the computation of the WCRT detects specific patterns in the CKAG and collapses
them to more complex instructions, such as AWAIT or SUSTAIN, which are also part of the
KEP instruction set.

The KEP compiler performs a statement dismantling (see Section 3.1.2) as a preprocessing
step. This facilitates code selection and also helps to eliminate spurious dependency cycles,
and to hence increase the set of schedulable (accepted) programs, as already discussed in
Section 4. After assigning priorities, the compiler tries again to “undismantle” compound
statements whenever this is possible. This becomes apparent in the Edwards02 example; the
AWAIT SL3 (Figure 3c) is the undismantled equivalent of the lines 7–9 in Edwards02-dism
(Figure 3b).

The compiler suppresses PRIO statements for the main thread, because the main thread
never runs concurrently to other threads. In the example, this avoids a PRIO 1 statement at
label A3.

Furthermore, the compiler performs dead code elimination, also using the traversal results
of the priority assignment algorithm. In the Edwards02 example, it determines that execution
never reaches the infinite loop in line 32 of Edwards02-dism, because the second parallel thread
never terminates normally, and therefore does not generate code for it.

However, there is still the potential for further optimizations, in particular regarding the
priority assignment. In the Edwards02 program, one could for example hoist the PRIO 221

out of the enclosing loop, and avoid this PRIO statement altogether by just starting thread
T2 with priority 2 and never changing it again. Even more effective would be to start T3
with priority 3, which would allow to undismantle L08–L12 into a single AWAIT.

5 Worst Case Reaction Time Analysis

Given a KEP program we define its WCRT as the maximum number of KEP cycles exe-
cutable in one instant. Thus WCRT analysis requires finding the longest instantaneous path
in the CKAG, where the length metric is the number of required KEP instruction cycles. We
abstract from signal relationships and might therefore consider unfeasible executions. There-
fore the computed WCRT can be pessimistic. We first present, in Section 5.1, a restricted
form of the WCRT algorithm that does not handle concurrency yet. The general algorithm
requires an analysis of instant reachability between fork and join nodes, which is discussed
in Section 5.2, followed by the presentation of the general WCRT algorithm in Section 5.3.

5.1 Sequential WCRT Algorithm

First we present a WCRT analysis of sequential CKAGs (no fork and join nodes). Consider
again the ExSeq example in Figure 1a.

The longest possible execution occurs when the signal I becomes present, as is the case in
Tick 3 of the example trace shown in Figure 1d. Since the abortion triggered by I is weak, the
abort body is still executed in this instant, which takes four instructions: PAUSEL2, EMITL3,
the GOTOL4, and PAUSEL2 again. Then it is detected that the body has finished its execution
for this instant, the abortion takes place, and EMITL5 and HALTL6 are executed. Hence the
longest possible path takes six instruction cycles.

The sequential WCRT is computed via a Depth First Search (DFS) traversal of the
CKAG, see the algorithm in Figure 8. For each node n a value n.inst is computed, which
gives the WCRT from this node on in the same instant when execution reaches the node. For
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1 int getWcrtSeq(g) // Compute WCRT for sequential CKAG g

2 forall n ∈ N do n.inst := n.next := ⊥ end

3 getInstSeq(g.root)

4 forall d ∈ D do getNextSeq(d) end

5 return max ({g.root.inst}
S
{d.next : d ∈ D})

6 end

1 int getInstSeq(n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then

3 if n ∈ T ∪ L then

4 n.inst := max {getInstSeq(c) : c ∈ n.suc c} + cycles(n.stmt)

5 elif n ∈ D then

6 n.inst := max {getInstSeq(c) : c ∈ n.suc w ∪ n.suc e} + cycles(n.stmt)

7 fi

8 fi

9 return n.inst

10 end

1 int getNextSeq(d) // Compute statements instantaneously reachable

2 if d.next = ⊥ then // from delay node d at tick start

3 d.next := max {getInstSeq(c) : c ∈ d.suc c ∪ d.suc s} + cycles(d.stmt)

4 fi

5 return d.next

6 end

Figure 8: WCRT algorithm, restricted to sequential programs. The nodes of a CKAG g are
given by N = T ∪ L ∪ D ∪ F ∪ J (see Section 3.3), g.root indicates the first KEP statement.
cycles(stmt) returns the number of instruction cycles to execute stmt, see third column in
Table 1.

a transient node, the WCRT is simply the maximum over all children plus its own execution
time.

For non-instantaneous delay nodes we distinguish two cases within a tick: control can
reach a delay node d, meaning that the thread executing d has already executed some other
instructions in that tick, or control can start in d, meaning that d must have been reached in
some preceding tick. In the first case, the WCRT from d on within an instant is expressed by
the d.inst variable already introduced. For the second case, an additional value d.next stores
the WCRT from d on within an instant; “next” here expresses that in the CKAG traversal
done to analyze the overall WCRT, the d.next value should not be included in the current
tick, but in a next tick. Having these two values ensures that the algorithm terminates in
the case of non-instantaneous loops: to compute d.next we might need the value d.inst.

For a delay node, we also have to take abortions into account. The handlers (i. e., their
continuations—typically the end of an associated abort/trap scope) of weak abortions and
exceptions are instantaneously reachable, so their WCRTs are added to the d.inst value. In
contrast, the handlers of strong abortions cannot be executed in the same instant the delay
node is reached, because according to the Esterel semantics an abortion body is not executed
at all when the abortion takes place. On the KEP, when a strong abort takes place, the delay
nodes where the control of the (still active) threads in the abortion body resides are executed
once, and then control moves to the abortion handler. In other words, control cannot move
from a delay node d to a (strong) abortion handler when control reaches d, but only when
it starts in d. Therefore, the WCRT of the handler of a strong abortion is added to d.next,
and not to d.inst.
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We do not need to take a weak abortion into account for d.next, because it cannot
contribute to a longest path. An abortion in an instant when a delay node is reached will
always lead to a higher WCRT than an execution in a subsequent instant where a thread
starts executing in the delay node.

The resulting WCRT for the whole program is computed as the maximum over all WCRTs
of nodes where the execution may start. These are the start node and all delay nodes. To
take into account that execution might start simultaneously in different concurrent threads,
we also have to consider the next value of join nodes.

Consider again the example ExSeq in Figure 1. Each node n in the CKAG g is annotated
with a label “W〈n.inst〉” or, for a delay node, a label “W〈n.inst〉/〈n.next〉.” In the following,
we will refer to specific CKAG nodes with their corresponding KEP assembler line numbers
L〈n〉. It is g.root = L1. The sequential WCRT computation starts initializing the inst
and next values of all nodes to ⊥ (line 2 in getWcrtSeq, Figure 8). Then getInstSeq(L1)
is called, which computes L1.inst := max { getInstSeq(L2) } + cycles(WABORTL1). The
call to getInstSeq(L2) computes and returns L2.inst := cycles(PAUSEL2) + cycles(EMITL5)
+ cycles(HALTL6) = 3, hence L1.inst := 3 + 2 = 5. Next, in line 4 of getWcrtSeq, we call
getNextSeq(L2), which computes L2.next := getInstSeq(L3) + cycles(PAUSEL2). The call to
getInstSeq(L3) computes and returns L3.inst := cycles(EMITL3) + cycles(GOTOL4) + L2.inst
= 1 + 1 + 3 = 5. Hence L2.next := 5 + 1 = 6, which corresponds to the longest path
triggered by the presence of signal I, as we have seen earlier. The WCRT analysis therefore
inserts an “EMIT TICKLEN, #6” instruction before the body of the KEP assembler program
to initialize the TickManager accordingly, as can be seen in Figure 1c.

5.2 Instantaneous Statement Reachability for Concurrent Esterel
Programs

It is important for the WCRT analysis whether a join and its corresponding fork can be
executed within the same instant. The algorithm for instantaneous statement reachability
computes for a source and a target node whether the target is reachable instantaneously from
the source. Source and target have to be in sequence to each other, i. e., not concurrent, to
get correct results.

In simple cases like EMIT or PAUSE the sequential control flow successor is executed in
the same instant respectively next instant, but in general the behavior is more complicated.
The parallel, for example, will terminate instantaneously if all sub-threads are instantaneous
or an EXIT will be reached instantaneously; it is non-instantaneous if at least one sub-thread
is not instantaneous.

The complete algorithm is presented in detail elsewhere [7]. The basic idea is to compute
for each node three potential reachability properties: instantaneous, non-instantaneous, exit-
instantaneous. Note that a node might be as well (potentially) instantaneous as (potentially)
non-instantaneous, depending on the signal context. Computation begins by setting the
instantaneous predicate of the source node to true and the properties of all other nodes to
false. When any property is changed, the new value is propagated to its successors. If we
have set one of the properties to true, we will not set it to false again. Hence the algorithm
is monotonic and will terminate. Its complexity is determined by the amount of property
changes which are bounded to three for all nodes, so the complexity is O(3 ∗ |N |) = O(|N |).

The most complicated computation is the property instantaneous of a join node, because
several attributes have to be fulfilled for it to be instantaneous:

• For each thread, there has to be a (potentially) instantaneous path to the join node.

• The predecessor of the join node must not be an EXIT, because EXIT nodes are no real
control flow predecessors. At the Esterel level, an exception (exit) causes control to
jump directly to the corresponding exception handler (at the end of the corresponding
trap scope); this jump may also cross thread boundaries, in which case the threads that
are jumped out of and their sibling threads terminate.
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To reflect this at the KEP level, an EXIT instruction does not jump directly to the
exception handler, but first executes the JOIN instructions on the way, to give them
the opportunity to terminate threads correctly. If a JOIN is executed this way, the
statements that are instantaneously reachable from it are not executed, but control
instead moves on to the exception handler, or to another intermediate JOIN. To express
this, we use the third property besides instantaneous and non-instantaneous: exit-
instantaneous.

Roughly speaking the instantaneous property is propagated via for-all quantifier, non-
instantaneous and exit-instantaneous via existence-quantifier.

Most other nodes simply propagate their own properties to their successors. The delay
node propagates in addition its non-instantaneous predicate to its delayed successors and
exit nodes propagate exit-instantaneous reachability, when they themselves are reachable
instantaneously.

5.3 General WCRT Algorithm

The general algorithm, which can also handle concurrency, is shown in Figure 9. It emerges
from the sequential algorithm that has been described in Section 5.1 by enhancing it with the
ability to compute the WCRT of fork and join nodes. Note that the instantaneous WCRT
of a join node is needed only by a fork node, all other transient nodes and delay nodes do
not use this value for their WCRT. The WCRT of the join node has to be accounted for just
once in the instantaneous WCRT of its corresponding fork node, which allows the use of a
DFS-like algorithm.

The instantaneous WCRT of a fork node is simply the sum of the instantaneously reach-
able statements of its sub-threads, plus the PAR statement for each sub-thread and the
additional PARE statement.

The join nodes, like delay nodes, also have a next value. When a fork-join pair (f, j) could
be non-instantaneous, we have to compute a WCRT j.next for the next instants analogously
to the delay nodes. Its computation requires first the computation of all sub-thread next
WCRTs. Note that in case of nested concurrency these next values can again result from a
join node. But at the innermost level of concurrency the next WCRT values all stem from
delay nodes, which will be computed before the join next values. The delay next WCRT
values are computed the same way as in the sequential case except that only successors
within of the same thread are considered. We call successors of a different thread inter-
thread-successors and their WCRT values are handled by the according join node. The join
next value is the maximum of all inter-thread-successor WCRT values and the sum of the
maximum next value for every thread.

If the parallel does not terminate instantaneously, all directly reachable states are reach-
able in the next instant. Therefore we have to add the execution time for all statements that
are instantaneously reachable from the join node.

The whole algorithm computes first the next WCRT for all delay and join nodes; it
computes recursively all needed inst values. Thereafter the instantaneous WCRT for all
remaining nodes is computed. The result is simply the maximum over all computed values.

Consider the example in Figure 2a. First we note that the fork/join pair is always non-
instantaneous, due to the PAUSEL6 statement. We compute L6.next = cycles(PAUSEL6) +
cycles(EMITL7) = 2. From the fork nodeL3, the PAR and PARE statements, the instanta-
neous parts of both threads and the JOIN are executed, hence L3.inst = 2 × cycles(PAR) +
cycles(PARE) + cycles(JOIN) + L4.inst + L5.inst = 2 + 1 + 1 + 1 + 2 = 7. It turns out that
the WCRT of the program is L8.next = L6.next + L8.inst = 2 + 9 = 11. Note that the JOIN
statement is executed twice.

A known difficulty when compiling Esterel programs is that due to the nesting of excep-
tions and concurrency, statements might be executed multiple times in one instant. This
problem, also known as reincarnation, is handled correctly by our algorithm. Since we com-
pute nested joins from inside to outside, the same statement may effect both the instantaneous
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1 int getWcrt(g) // Compute WCRT for a CKAG g

2 forall n ∈ N do n.inst := n.next := ⊥ end

3 forall d ∈ D do getNext(d) end

4 forall j ∈ J do getNext(j) end // Visit according to hierarchy (inside out)

5 return max ({getInst(g.root)}
S
{n.next : n ∈ D ∪ J})

6 end

1 int getInst (n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then

3 if n ∈ T ∪ L then

4 t.inst := max {getInst(c) : c ∈ suc c \ J} + cycles(n.stmt)

5 elif n ∈ D then

6 n.inst := max {getInst(c) : c ∈ suc w ∪ suc e \ J} + cycles(n.stmt)

7 elif n ∈ F then

8 n.inst :=
P

t∈n.suc c t.inst + cycles(n.par stmts) + cycles(PARE)

9 prop := reachability(n, n.join) // Compute instantaneous reachability of join from fork

10 if prop.instantaneous or prop.exit instantaneous then

11 n.inst += getInst(n.join)

12 elif prop.non instantaneous then

13 n.inst += cycles(JOIN) // JOIN is always executed

14 fi

15 elif n ∈ J then

16 n.inst := max{getInst(c) : c ∈ suc c ∪ suc e} + cycles(n.stmt);

17 fi

18 fi

19 return n.inst

20 end

1 int getNext(n) // Compute statements instantaneously reachable

2 if n.next = ⊥ then // from delay node d at tick start

3 if n ∈ D then

4 n.next := max {getInst(c) : c ∈ suc c ∪ suc s \ J ∧ c.id = n.id} + cycles(n.stmt)

5 // handle inter thread successors by their according join nodes:

6 for m ∈ {c ∈ suc c ∪ suc s \ J : c.id 6= n.id} do

7 j := according join node with j.id = m.id

8 j.next = max (j.next , getInst(m)+cycles(m.stmt)+cycles(j.stmt))

9 end

10 elif n ∈ J then

11 prop := reachability(n.fork, n) // Compute reachability predicates

12 if prop.non instantaneous then

13 n.next := max ((
P

t∈n.fork.suc c max{m.next : t.id = m.id}) + n.inst , n.next)

14 fi

15 fi

16 fi

17 return n.next

18 end

Figure 9: General WCRT algorithm.
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and non-instantaneous WCRT, which are added up in the next join. This exactly matches
the possible control-flow in case of reincarnation. Even when a statement is executed multiple
times in an instant, we compute a correct upper bound for the WCRT.

Regarding the complexity of the algorithm, we observe that for each node its WCRT’s
inst and next are computed at most once, and for all fork nodes a fork-join reachability
analysis is additionally made, which has itself O(|N |). So we get altogether a complexity of
O(|N |+ |D|+ |J |) + O(|F | ∗ |N |) = O(2 ∗ |N |) + O(|N |2) = O(|N |2).

5.4 Unreachable Paths

Signal informations are not taken into account in the algorithms described above. This can
lead to a conservative (too high) WCRT, because the analysis may consider unreachable
paths that can never be executed. In Figure 10a we see an unreachable path increasing
unnecessarily the WCRT because of demanding signal I present and absent instantaneously,
which is inconsistent. Nevertheless there is no dead code in the graph, but only two possible
paths regarding to path signal predicates.

Figure 10b shows an unreachable parallel path that leads to a too high WCRT of the fork
node, because the sub-paths cannot be executed at the same time. Furthermore, the parallel
is declared as possibly instantaneous, even though it is not. Therefore, all statements which
are instantaneously reachable from the join node are also added.

Another unreachable parallel path is shown in Figure 10c. This path is unreachable not
because of signal informations but because of instantaneous behavior: the maximal paths of
the two threads are never executed in the same instant. In other words, the system is never in
a configuration (collection of states) such that both code segments become activated together.
Instead of taking for each thread the maximum next WCRT and summing up it would be
more exact to sum up over all threads next WCRT’s executable instantaneously and then
taking the maximum of these sums. Therefore we would have to enhance the reachability
algorithm of the ability to determine how many ticks later a statement could be executed
behind another. However, in this case the possible tick counts can become arbitrarily high
for each node, so we would get a higher complexity and a termination problem. Our analysis
is conservative in simply assuming that all concurrent paths may occur in the same instant,
and that all can be executed in the same instant as the join.

6 Experimental Results

To evaluate the compilation and WCRT analysis approach presented here, we have imple-
mented a compiler for the KEP based on the CEC infrastructure [13]. We will discuss in
turn our validation approach and the quantitative results for the compiler, specifically the
priority assignment scheme, and for the WCRT estimation.

6.1 Validation

To validate the correctness of the compilation scheme, as well as of the KEP itself, we
have collected a fairly substantial validation suite, currently containing some 500 Esterel
programs. These include all benchmarks made available to us, such as the Estbench [10], and
other programs written to test specific situations and corner cases. An automated regression
procedure compiles each program into KEP assembler, downloads it into the KEP, provides an
input trace for the program, and records the output at each step. This output is compared to
the results obtained from running the same program on a work station, using Esterel Studio.

For each program, any differences in the output traces between the KEP results and the
workstation/Esterel Studio results are recorded. Furthermore, the Average Case Reaction
Time (ACRT) and WCRT for each program are measured. For these measurements, the KEP
is operating in “freely running” mode, i. e., TICKLEN is left unspecified (see Section 3.2);
the default would be to set TICKLEN according to the (conservatively) estimated WCRT, in
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module: inconsistant_path01
EMIT _TICKLEN,#6

[W6] PRESENT I,A0

[W5] EMIT R

t

[W4] A0

f

[W4] PRESENT I,A1

[W2] GOTO A2

t

[W3] A1

f

[W1] A2

[W3] EMIT S

[W2] EMIT T

[W1/1] HALT

(a) Inconsistent sequential path

module: inconsistant_path11
EMIT _TICKLEN,#11

[W11] PAR*

[W2] A0

 1

[W3] A1

 1

[W2] PRESENT I,A3

[W1/2] PAUSE

t

[W1] A3

f

[W1] NOTHING

[W2/6] JOIN 0

[W3] PRESENT I,A4

[W2] GOTO A5

t

[W1] A4

f

[W1] A5

[W1/2] PAUSE

[W1] NOTHING

[W1/1] HALT

(b) Inconsistent parallel path

module: par_unreachable_path
EMIT _TICKLEN,#9

[W6] PAR*

[W1] A0

 1

[W1] A1

 1

[W1/4] PAUSE

[W3] EMIT S

[W2] EMIT T

[W1/2] PAUSE

[W1] NOTHING

[W2/9] JOIN 0

[W1/2] PAUSE

[W1/3] PAUSE

[W2] EMIT U

[W1] EMIT V

[W1/1] HALT

(c) Unreachable con-
figuration

Figure 10: Unreachable Path Examples.

which case the measured ACRT and WCRT values would be equal to the estimated WCRT.
At this point, the full benchmark suite runs through without any differences in output, and
the analyzed WCRT is always safe; i. e., not lower than the measured WCRT.

Esterel Studio is also used to generate the input trace, using the “Full Transition Cov-
erage” mode. Note that the traces obtained this way still did not cover all possible paths.
However, at this point we consider it very probable that a compilation approach that handles
all transition coverage traces correctly would also handle the remaining paths. We also feel
that this level of validation probably already exceeds the current state of the practice.

6.2 Compilation and Priority Assignment

As the emphasis here is more on the compilation approach and less on the underlying exe-
cution platform, we here refrain from a comparison of execution times and code sizes on the
KEP vs. traditional, non-reactive platforms; such a comparison can be found elsewhere [18].
Instead, we are here primarily interested in static code characteristics, and in particular how
well the priority assignment algorithm works. Table 2 summarizes the experimental results
for a selection of programs taken from the Estbench.

We note first that the generated code is very compact, and that the KEP assembler
line count is comparable to the Esterel source. This is primarily a reflection on the KEP
ISA, which provides instructions that directly implement most of the Esterel statements.
Furthermore, the relationship between source code and KEP assembler size (and CKAG
size) seems fairly linear. We note that the connection between program size and number
of (inter-thread) dependencies is rather loose. For example, eight buttons is smaller than
tcint, but contains more than twice the number of dependencies. Next, we see that the
maximal abort nesting depth tends to be limited, only in one case it exceeded three. The
degree of concurrency again varied widely; not too surprisingly, the degree of concurrency
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Esterel KEP tassign tcomp

Module name LoC Lines Dependencies Depth Max.Conc. #PRIO Max.Prio [ms] [ms]

abcd 152 167 36 2 4 30 3 2.7 14.9
abcdef 232 251 90 2 6 48 3 4.2 63.8
eight buttons 332 335 168 2 8 66 3 5.9 72.3
channel protocol 57 61 8 3 4 10 2 0.8 5.3

reactor control 24 32 5 2 3 0 - 0.4 3.9
runner 26 38 2 2 2 0 - 0.4 4.4
ww button 94 134 6 3 4 6 2 1.6 10.0
tcint 410 472 65 5 17 45 3 17.3 112.2

Table 2: Experimental results for the compiler and priority assignment. For each benchmark
it lists the lines of code (LoC) for the source code, the lines of generated KEP assembler, the
number of dependencies, the maximal nesting depth of abort scopes, the maximal degree of
concurrency, the number of generated PRIO statements, the maximum priority of any thread,
and the times for computing the priorities and for the overall compilation.

also influenced the required number of PRIO statements (which—potentially—induce context
switches). However, overall the number of generated PRIO statements seems acceptable
compared to overall code size, and there were cases where we did not need PRIO at all,
despite having several inter-thread dependencies. This reflects that the thread id assignment
mechanism (see Section 4.3) is already fairly efficient in resolving dependencies. Similarly,
the assigned priorities tended to be low in general, for none of the benchmarks they exceeded
three. Finally, the priority assignment algorithm and the overall compilation are quite fast,
generally in the millisecond range.

6.3 Accuracy of WCRT Analysis

As mentioned before, the WCRT analysis is implemented in the KEP compiler, and is used to
automatically insert a correct EMIT TICKLEN instruction at the beginning of the program,
such that the reaction time is constant and as short as possible, without ever raising a timing
violation by the TickManager. As discussed in Section 6.1, we measured the maximal reaction
times and compared it to the computed value. Figure 11 provides a qualitative comparison
of estimated and measured WCRT and measured ACRT, more details are given in Table 3.
We never underestimated the WCRT, and our results are on average 22% too high, which we
consider fairly tight compared to other reported WCET results[35]. For each program, the
lines of code, the computed WCRT and the measured WCRT with the resulting difference is
given. We also give the average WCRT analysis time on a standard PC (AMD Athlon XP,
2.2GHz, 512 KB Cache, 1GB Main Memory); as the table indicates, the analysis takes only
a couple of milliseconds.

The table also compares the ACRT with the WCRT. The ACRT is on average about two
thirds of the WCRT, which is relatively high compared to traditional architectures. In other
words, the worst case on the KEP is not much worse than the average case, and padding
the tick length according to the WCRT does not waste too much resources. On the same
token, designing for worst-case performance, as typically must be done for hard real-time
systems, does not cause too much overhead compared to the typical average-case performance
design. Finally, the table also lists the number of scenarios generated by Esterel-Studio and
accumulated logical tick count for the test traces.

7 Conclusions and Further Work

We have presented a compiler for the KEP, and its integrated WCRT analysis. Since the KEP
ISA is very similar to Esterel, the compilation of most constructs is straightforward. But the
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Figure 11: Estimated and measured Worst and Average Case Reaction Times.

Esterel WCRT tan ACRT Test Ticks
Module name LoC WCe WCm ∆e/m [ms] ACm ACm/WCm cases

abcd 152 47 44 7% 1.0 27 61% 161 673
abcdef 232 71 68 4% 1.5 41 60% 1457 50938
eight buttons 332 96 92 4% 2.0 57 62% 13121 45876
channel protocol 57 41 38 8% 0.4 18 47% 114 556

reactor control 24 17 14 21% 0.2 10 71% 6 20
runner 26 12 10 20% 0.3 2 20% 131 2548
ww button 94 31 18 72% 1.0 12 67% 8 37
tcint 410 192 138 39% 2.8 86 62% 148 1325

Table 3: Detailed comparison of WCRT/ACRT times. The WCe and WCm data denote
the estimated and measured WCRT, respectively, measured in instruction cycles. The ratio
∆e/m := WCe/WCm−1 indicates by how much our analysis overestimates the WCRT. ACm

is the measured Average Case Reaction Time (ACRT), ACm/WCm gives the ratio to the
measured WCRT. Test cases and Ticks are the number of different scenarios and logical ticks
that were executed, respectively.

computation of priorities for concurrent threads is not trivial. The thread scheduling problem
is related to the problem of generating statically scheduled code for sequential processors,
for which Edwards has shown that finding efficient schedules is NP hard [12]. We encounter
the same complexity, even though our performance metrics for an optimal schedule is a
little different. The classical scheduling problem tries to minimize the number of context
switches. On the KEP, context switches are free, because no state variables must be stored
and resumed. However, to ensure that a program meets its dependency-implied scheduling
constraints, threads must manage their priorities accordingly, and it is this priority switching
which contributes to code size and costs an extra instruction at run time. Minimizing priority
switches is related to classical constraint-based optimization problems as well as to compiler
optimization problems such as loop invariant code motion.

We also have presented the WCRT analysis of Esterel programs. The restricted nature
of Esterel and its sound mathematical semantics allow formal analysis of Esterel programs
and make the computation of a WCRT for Esterel programs achievable. Our analysis is
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incorporated in the compiler and uses its internal graph representation, the Concurrent KEP
Assembler Graph (CKAG). In a first step we compute whether concurrent threads terminate
instantaneously, thereafter we are able to compute for each statement how many instruction
are maximally executable from it in one logical tick. The maximal value over all nodes
gives us the WCRT of the program. The analysis considers concurrency and the multiple
forms of preemption that Esterel offers. The asymptotic complexity of the WCRT analysis
algorithm is quadratic in the size of the program; however, experimental results indicate that
the overhead of WCRT analysis as part of compilation is negligible. We have implemented
this analysis into the KEP compiler, and use it to automatically compute an initialization
value for the KEP’s TickManager. This allows to achieve a high, constant response frequency
to the environment, and can also be used to detect hardware errors by detecting timing
overruns.

Our analysis is safe, i. e., conservative in that it never underestimates the WCRT, and it
does not require any user annotations to the program. In our benchmarks it overestimates
the WCRT on average by about 22%. This is already competitive with the state of the art
in general WCET analysis, and we expect this to be acceptable in most cases. However,
there is still significant room for improvement. So far, we are not taking any signal status
into account, therefore our analysis includes some unreachable paths. Considering all signals
would lead to an exponential growth of the complexity, but some local knowledge should be
enough to rule out most unreachable paths of this kind. Also a finer grained analysis of which
parts of parallel threads can be executed in the same instant could lead to better results.
However, it is not obvious how to do this efficiently.

Our analysis is influenced by the KEP in two ways: the exact number of instructions
for each statement and the way parallelism is handled. At least for non-parallel programs
our approach should be of value for other compilation methods for Esterel as well, e. g.,
simulation-based code generation. A virtual machine with similar support for concurrency
could also benefit from our approach. We would also like to generalize our approach to handle
different ways to implement concurrency. A WCRT analysis directly on the Esterel level gives
information on the longest possible execution path. Together with a known translation to C,
this WCRT information could be combined with a traditional WCET analysis, which takes
caches and other hardware details into account.

To conclude, while we think that the approaches for compilation and WCRT analysis
presented here are another step towards making reactive processing attractive, there are still
numerous paths to be investigated here, including the application of these results towards
classical software synthesis. A further issue, which we have not investigated here at all, is
to formalize the semantics of reactive ISAs. This would help to deepen the understanding
of reactive processing platforms, and could open the door towards formal correctness proofs
down to the execution platform. As the ISA provided by the KEP allows to execute programs
that are not constructive in the classical sense (such as signal emissions after the signals are
tested), and yet have a well-defined outcome (i. e., are deterministic), we also envision that
this could ultimately lead towards new, interesting synchronous models of computation.
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